Quark-Gluon LHC

Size: px
Start display at page:

Download "Quark-Gluon LHC"

Transcription

1 Quar-Gluon LHC Stanisław Mrówczyńsi Świętorzysa Academy Kielce Poland & Institute for Nuclear Studies Warsaw Poland LHC wealy couled strongly collectie unstable equilibrates fast 1

2 Relatiistic heay-ion collision Little Bang after free hadrons t hadrons quars & gluons freeze-out hadronization equilibration z before

3 Au-Au RHIC s 1 +1 GeV/NN eeriment 3

4 RHIC s. LHC GeV/NN RHIC s s LHC 3 55 GeV/NN LHC s RHIC Initial temerature i 3 MeV RHIC 7 GeV LHC 3 / 4 1 T. 3 4

5 RHIC s. LHC cont. Asymtotic freedom α s 1π Q 33 N f ln ΛQCD Λ QCD Q #T MeV RHIC LHC T 3 MeV α s.3 T 7 MeV α s. 5

6 RHIC s. LHC cont. Lattice thermodynamics of Quar-Gluon Plasma Ideal EoS 3 1 ε RHIC LHC F. Karsch arxi: [he-lat]. 6

7 7 Mean fields s. collisions [ ] f C t f g t f t r B E r π α 4 g s Transort equation collisions ~ α s mean field ~ α s free streaming In wealy couled lasmas the mean field dominates the dynamics Wealy couled lasmas are strongly collectie

8 Plasma s collectie behaior λ D 1 m D ~ 1 gt screening length V r ~ e r λ r D V r Coulomb screened Debye shere λ D r V ~ ~ 3 1 πλd n T n V if g 3 3 D ~ 3 g T 3 >> g D 1 << 1 In a wealy couled lasma there are many articles in a Debye shere! 8

9 Plasma oscillations charge fluctuation E t r E cos ω t r + ϕ ω ω ~ gt lasma frequency E 9

10 Landau daming E t E cos ω t ω ϕ Resonance energy transfer from electric field to articles with φ 1

11 Instabilities stationary state Instability A t A + δa t δa t e γt fluctuation γ > stable configuration unstable configuration A At A At 11

12 Terminology Plasma instabilities interlay of articles and classical fields Quantum Field Theory no articles no classical fields ~ T hard articles hard ecitations hard modes classical fields highly oulated soft ecitations soft modes ~ 1/ g ~ soft gt 1

13 Plasma instabilities instabilities in configuration sace hydrodynamic instabilities instabilities in momentum sace inetic instabilities instabilities due to non-equilibrium momentum distribution f is not ~ E e T 13

14 Kinetic instabilities longitudinal modes E δρ ~ e i ωt r transerse modes E δj ~ e i ωt r E electric field wae ector ρ charge density j - current 14

15 Transerse modes Instabilities occur due to anisotroy of the momentum distribution Transerse modes are releant for relatiistic nuclear collisions! 15

16 Momentum Sace Anisotroy in Nuclear Collisions Parton momentum distribution is initially strongly anisotroic T T L time L CM after 1-st collisions local rest frame 16

17 17 Seeds of instability j a but current fluctuations are finite δ π δ ν ν t f E d j j ab b a t t t t Direction of the momentum surlus

18 Mechanism of filamentation z F F F F Lorentz force F q B Amere s law j z B j B y y 18

19 Instabilities s. collisions Time scale of collisional rocesses t hard t soft ~ g g 4 ~ 1 ln 1/ gt 1 ln 1/ gt Time scale of collectie henomena t q collec ~ hard scattering: q ~ T soft scattering: q ~ gt 1 g T g << 1 t >> t >> t hard soft collec The instabilities are fast! 19

20 Disersion equation Equation of motion of chromodynamic field A in momentum sace ν ν ν [ g Π ] A ν Disersion equation gluon self-energy det[ g ν ν Π ν ] ω Instabilities solutions with Imω > A Im ~ e ωt Dynamical information is hidden in ν Π. How to get it?

21 Transort theory transort equations fundamental adjoint g D Q { F Q} C g D Q + { F Q } C g D G { F G} C g quars antiquars gluons free streaming mean-field force collisions D ig[ A...] F ν A ν ν A ig[ A A ν ] D ν ν F j [ Q Q G] mean-field generation collisionless limit: C C Cg 1

22 Transort theory - linearization Q Q Q δ + fluctuation stationary colorless state n Q ij ij δ Q Q Q Q δ >> δ >> Linearized transort equations δ + δ δ QG g G Q F g Q D Q F g Q D F D

23 3 Transort theory olarization tensor ' ' 4 Q F d g Q δ A j ν ν Π 4 D δ ] [ G Q Q j δ δ δ g n n n f + + λ + σ σ λ ν λ ν + π Π f i g E d g ] [ 3 3 Π Π Π ν ν ν

24 Diagrammatic Hard Loo aroach Π ν Hard loo aroimation: << 3 ν λ ν g d λ f Π [ g ] 3 σ + λ π E σ + i Π ν ν ν Π Π St. M. & M. Thoma Phys. Re. C

25 Disersion equation Disersion equation det[ g ν ν Π ν ] ε ij ij 1 ij δ Π ω Disersion equation Π ν chromodielectric tensor ω det[ δ ij i j ω ε ij ] ij ij g d ε δ ω π ω + i 3 i f l [1 ω δ lj + l ω j ] / E 5

26 y Disersion equation configuration of interest z Direction of the momentum surlus j j E E Disersion equation ω ε zz ω 6

27 Eistence of unstable modes Penrose criterion H ω C ω ε zz ω d ω 1 dh ω πi H ω dω Im H ω ω ω dω d ln H ω ln H ω πi dω C number of zeros of Hω in C Imω C i Reω φπ φπ + ω ω Re H There are unstable modes if H ω < Anisotroy! 7

28 Unstable solutions f π 1/ 3/ ρσ σ σ 3 e σ α s ρ 6 fm 3 g / 4π. 3 σ.3 GeV ω ε zz ω solution ω ± i γ < γ R J. Randru & St. M. Phys. Re. C

29 9 Hard-Loo dynamics Soft fields in the assie bacground of hard articles Braaten-Pisarsi action generalized to anisotroic momentum distribution: ] [ ~ eff D f C i F D F f d g L F b ab a ψ γ ψ + π ρ ρ ν ν q q Σ + Σ Λ Π ν St. M. A. Rebhan & M. Stricland Phys. Re. D

30 Growth of instabilities 1+1 numerical simulations SU Hard Loo Dynamics total transerse magnetic A 1+1 dimensions a Aa t z Scaled field energy density Anisotroic article s momentum distribution f fiso + ζz m α s dfiso D π d d m ζ D Strong anisotroy ζ 1 γ * - maimal growth rate A. Rebhan P. Romatsche & M. Stricland Phys. Re. Lett

31 Isotroization - articles Direction of the momentum surlus j B F dt F 31

32 Isotroization - fields Direction of the momentum surlus E B P ~ B E ~ fields a a 3

33 Isotroization numerical simulation Classical system of colored articles & fields T ij 3 d π 3 i E j f T yy +T zz / Isotroy: T T + Tyy Tzz / A. Dumitru & Y. Nara Phys. Lett. B

34 Conclusions LHC wealy couled strongly collectie unstable equilibrates fast QGP is not a gas of artons 34

Instabilities Driven Equilibration of the Quark-Gluon Plasma

Instabilities Driven Equilibration of the Quark-Gluon Plasma Instabilities Driven Equilibration of the Quar-Gluon Plasma Stanisław Mrówczyńsi Świętorzysa Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland 1 - why Mar s favorite formula e -E/T

More information

Instabilities Driven Equilibration in Nuclear Collisions

Instabilities Driven Equilibration in Nuclear Collisions Instabilities Driven Equilibration in Nuclear Collisions Stanisław Mrówczyńsi Świętorzysa Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland 1 Evidence of equilibration success of

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Longitudinal thermalization via the chromo-weibel instability

Longitudinal thermalization via the chromo-weibel instability Longitudinal thermalization via the chromo-weibel instability Maximilian Attems Frankfurt Institute of Advanced Studies 1207.5795, 1301.7749 Collaborators: Anton Rebhan, Michael Strickland Schladming,

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

QCD at finite Temperature

QCD at finite Temperature QCD at finite Temperature II in the QGP François Gelis and CEA/Saclay General outline Lecture I : Quantum field theory at finite T Lecture II : in the QGP Lecture III : Out of equilibrium systems François

More information

arxiv: v1 [nucl-th] 2 Mar 2015

arxiv: v1 [nucl-th] 2 Mar 2015 The domain of validity of fluid dynamics and the onset of cavitation in ultrarelativistic heavy ion collisions arxiv:503.0053v [nucl-th] 2 Mar 205 Department of Physics, McGill University, 3600 University

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

MD Simulations of classical sqgp

MD Simulations of classical sqgp MD Simulations of classical sqgp From RHIC to LHC: Achievements and Opportunities Tuesday, November 7, 2006 Kevin Dusling Ismail Zahed Outline Introduction Motivation for sqgp Motivation for classical

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

Partonic transport simulations of jet quenching

Partonic transport simulations of jet quenching Partonic transport simulations of jet quenching Z. Xu, C. Greiner Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt Outline motivation introduction to the model simulations of Au+Au

More information

arxiv:hep-ph/ v1 19 Feb 1999

arxiv:hep-ph/ v1 19 Feb 1999 ELECTRICAL CONDUCTION IN THE EARLY UNIVERSE arxiv:hep-ph/9902398v1 19 Feb 1999 H. HEISELBERG Nordita, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark E-mail: hh@nordita.dk The electrical conductivity has been

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Winter Workshop

More information

Perfect-fluid hydrodynamics for RHIC successes and problems

Perfect-fluid hydrodynamics for RHIC successes and problems Title Perfect-fluid hydrodynamics for RHIC successes and problems Wojciech Florkowski with W. Broniowski, M. Chojnacki, A. Kisiel, Institute of Nuclear Physics, Kraków & Jan Kochanowski University, Kielce,

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

arxiv:nucl-th/ v1 4 May 1999

arxiv:nucl-th/ v1 4 May 1999 QUARK-GLUON PLASMA Stanis law MRÓWCZYŃSKI So ltan Institute for Nuclear Studies ul. Hoża 69, PL - 00-681 Warsaw, Poland and Institute of Physics, Pedagogical University ul. Konopnickiej 15, PL - 25-406

More information

Shear Viscosity in an Anisotropically Expanding QGP

Shear Viscosity in an Anisotropically Expanding QGP Shear Viscosity in an Anisotroically Exanding QGP Steffen A. Bass Duke University QGP Proerties: key findings The sqgp: ro s and con s Anomalous Viscosity work in collaboration with M. Asakawa, B. Mueller

More information

Instability in an expanding non-abelian system

Instability in an expanding non-abelian system Instability in an expanding non-abelian system Kenji Fukushima (Department of Physics, Keio University) 1 Why expanding? 2 Relativistic Heavy-Ion Collision RHIC LHC Heavy-ions collide A new state of matter

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Stephan Endres, Hendrik van Hees, and Marcus Bleicher Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

Transport Coefficients of Hadron Matter at Finite Temperature

Transport Coefficients of Hadron Matter at Finite Temperature Transport Coefficients of Hadron Matter at Finite Temperature Andres Ortiz University of Texas at El Paso Department of Physics Dr. Ralf Rapp Texas A&M University Cyclotron Institute Objectives To obtain

More information

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by SAR Nuclear Physics Institute, Academy of Sciencis of Czech Republic, Na ruhlarce 39/64, 180 86 Prague, Czech Republic

More information

Instabilities in the Quark-Gluon Plasma

Instabilities in the Quark-Gluon Plasma in the Quark-Gluon Maximilian Attems Institute for Theoretical Physics, TU Vienna October 5, 2010 Dans la vie, rien n est à craindre, tout est à comprendre. Marie Curie Vienna Theory Lunch Seminar 2010

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Hadronization by coalescence plus fragmentation from RHIC to LHC

Hadronization by coalescence plus fragmentation from RHIC to LHC Vincenzo Minissale University of Catania INFN LNS Hadronization by coalescence lus fragmentation from RHIC to LHC Nucleus Nucleus 015, June 015 Vincenzo Greco Francesco Scardina arxiv:150.0613 Outline

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Steffen A. Bass QCD Theory Group Introduction: the Quark-Gluon-Plasma How can one create a QGP? Basic tools for a Theorist: Transport Theory

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Reorganizing the QCD pressure at intermediate coupling

Reorganizing the QCD pressure at intermediate coupling Reorganizing the QCD pressure at intermediate coupling Michael Strickland Gettysburg College and Frankfurt Institute for Advanced Studies (FIAS) Collaborators: Nan Su (FIAS) and Jens Andersen (NTNU) Reference:

More information

Heavy quarkonia at finite temperature: The EFT approach

Heavy quarkonia at finite temperature: The EFT approach Heavy quarkonia at finite temperature: he EF approach Jacopo Ghiglieri - echnische Universität München 5th Vienna Central European Seminar on QF 28 November 2008 Outline Motivation Introduction to Effective

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma T-Matrix approach to heavy quarks in the Quark-Gluon Plasma Hendrik van Hees Justus-Liebig-Universität Gießen June 1, 28 with M. Mannarelli, V. Greco, and R. Rapp Institut für Theoretische Physik JUSTUS-LIEBIG-

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina ECT*, Trento December 3, 2015 Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina initial stage pre-equilibrium hydrodynamical evolution hadronization freeze-out

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

Lecture contents. Metals: Drude model Conductivity frequency dependence Plasma waves Difficulties of classical free electron model

Lecture contents. Metals: Drude model Conductivity frequency dependence Plasma waves Difficulties of classical free electron model Lecture contents Metals: Drude model Conductivity frequency deendence Plasma waves Difficulties of classical free electron model Paul Karl Ludwig Drude (German: [ˈdʀuːdə]; July, 863 July 5, 96) Phenomenology

More information

Heavy quark production and elliptic flow at RHIC and LHC

Heavy quark production and elliptic flow at RHIC and LHC Heavy quark production and elliptic flow at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Institute for Theoretical Physics Hirschegg January 20, 2010 Outline Motivation Charm processes

More information

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Kyoto, 2015/10/05 Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Dr. Marco Ruggieri Physics and Astronomy Department, Catania University, Catania (Italy) Collaborators: Vincenzo Greco

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

( ) Lectures on Hydrodynamics ( ) =Λ Λ = T x T R TR. Jean-Yve. We can always diagonalize point by point. by a Lorentz transformation

( ) Lectures on Hydrodynamics ( ) =Λ Λ = T x T R TR. Jean-Yve. We can always diagonalize point by point. by a Lorentz transformation Lectures on Hydrodynamics Jean-Yve µν T µ ( x) 0 We can always diagonalize point by point by a Lorentz transformation T Λ µν x ( u ) µ and space-rotation R ( Ω) Then, in general, λ0 0 0 0 0 λx 0 0 Λ Λ

More information

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Final Exam Instructions: Please write clearly. Do not just answer the questions, but document the thoughts leading

More information

Overview* of experimental results in heavy ion collisions

Overview* of experimental results in heavy ion collisions Overview* of experimental results in heavy ion collisions Dipartimento di Fisica Sperimentale dell Universita di Torino and INFN Torino * The selection criteria of the results presented here are (to some

More information

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Akihiko Monnai Department of Physics, The University of Tokyo

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

Bulk and shear viscosities for the Gribov-Zwanziger plasma

Bulk and shear viscosities for the Gribov-Zwanziger plasma EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 215 Bulk and shear viscosities for the Gribov-Zwanziger plasma Wojciech

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Workshop on Hot and dense matter in the RHIC-LHC era, TIFR, Mumbai, February 2008 - p. 1 Outline

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Juhee Hong Yonsei University New Frontiers in QCD 2018, YITP, Kyoto University arxiv: 1804.05336, JH, Sungtae Cho, Taesoo Song, and Su Houng

More information

Collisional energy loss in the sqgp

Collisional energy loss in the sqgp Parton propagation through Strongly interacting Systems ECT, Trento, September 005 Collisional energy loss in the sqgp André Peshier Institute for Theoretical Physics, Giessen University, Germany Bjorken

More information

XI HADRON PHYSICS March, 22-27, 2010, São Sebastião, Brazil

XI HADRON PHYSICS March, 22-27, 2010, São Sebastião, Brazil XI HADRON PHYSICS March, 22-27, 2010, São Sebastião, Brazil Non-linear waves in the Quark Gluon Plasma F. Navarra and D.A. Fogaça IFUSP L.G. Ferreira Filho UERJ / Resende based on: D.A. Fogaça and F.S.

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

Lectures on NRQCD Factorization for Quarkonium Production and Decay

Lectures on NRQCD Factorization for Quarkonium Production and Decay Lectures on NRQCD Factorization for Quarkonium Production and Decay Eric Braaten Ohio State University I. Nonrelativistic QCD II. Annihilation decays III. Inclusive hard production 1 NRQCD Factorization

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information

Factorization in high energy nucleus-nucleus collisions

Factorization in high energy nucleus-nucleus collisions Factorization in high energy nucleus-nucleus collisions ISMD, Kielce, September 2012 François Gelis IPhT, Saclay 1 / 30 Outline 1 Color Glass Condensate 2 Factorization in Deep Inelastic Scattering 3 Factorization

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Past, Present, and Future of the QGP Physics

Past, Present, and Future of the QGP Physics Past, Present, and Future of the QGP Physics Masayuki Asakawa Department of Physics, Osaka University November 8, 2018 oward Microscopic Understanding In Condensed Matter Physics 1st Macroscopic Properties

More information

Studies of QCD Matter From E178 at NAL to CMS at LHC

Studies of QCD Matter From E178 at NAL to CMS at LHC Studies of QCD Matter From E178 at NAL to CMS at LHC Wit Busza MIT Wit Busza Fermilab Colloquium, May 2012 1 The Study of the Condensed Matter of QCD, more commonly known as Relativistic Heavy Ion Physics

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

A fresh look at the radiation from the QGP

A fresh look at the radiation from the QGP A fresh look at the radiation from the QGP Wolfgang Cassing (Uni. Giessen) In collaboration with Taesoo Song, Elena Bratkovskaya, Pierre Moreau The Erice School on Nuclear Physics 2018 The Strong Interaction:

More information

Multiplicity distributions for jet parton showers in the medium

Multiplicity distributions for jet parton showers in the medium Multiplicity distributions for jet parton showers in the medium Nicolas BORGHINI in collaboration with U.A. WIEDEMANN CERN N. BORGHINI, Multiplicity distributions for jet parton showers in the medium p.1/17

More information

Thermal Transport and Energy Loss in Non-critical Holographic QCD

Thermal Transport and Energy Loss in Non-critical Holographic QCD Thermal Transport and Energy Loss in Non-critical Holographic QCD Umut Gürsoy University of Utrecht DAMTP - Cambridge - November 5, 2009 U.G., E. Kiritsis, F. Nitti, L. Mazzanti ongoing U.G., E. Kiritsis,

More information

Quark Gluon Plasma Recent Advances

Quark Gluon Plasma Recent Advances Quark Gluon Plasma Recent Advances Lawrence Berkeley National Laboratory LP01, Rome, July 2001 Introduction P.C. Sereno et al. Science, Nov. 13, 1298(1998). (Spinosaurid) We may not see the entire body

More information

Creating a Quark Gluon Plasma With Heavy Ion Collisions

Creating a Quark Gluon Plasma With Heavy Ion Collisions Creating a Quark Gluon Plasma With Heavy Ion Collisions David Hofman UIC Special thanks to my Collaborators in PHOBOS, STAR, & CMS and B. Back, M. Baker, R. Hollis, K. Rajagopal, R. Seto, and P. Steinberg

More information

1 Introduction. 2 Charge Fluctuations

1 Introduction. 2 Charge Fluctuations Net Charge and Isospin Fluctuations in the World of Elementary Particles Vesna Mikuta-Martinis Rudjer Boskovic Institute 10001 Zagreb, Bijenicka c. 54, P.O.Box 1016, Croatia vmikuta@rudjer.irb.hr arxiv:nucl-th/0412007v2

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Strongly Interacting

More information

Isotropization from Color Field Condensate in heavy ion collisions

Isotropization from Color Field Condensate in heavy ion collisions Isotropization from Color Field Condensate in heavy ion collisions Stefan Flörchinger (CERN) RBRC Workshop on The Approach to Equilibrium in Strongly Interacting Matter, BNL, April 2, 2014. based on: S.

More information

A Senior Honors Thesis

A Senior Honors Thesis A Study Using Relativistic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions: The Quark-Gluon-Plasma to Hadron Phase Transition and LHC Predictions A Senior Honors Thesis Presented in Partial Fulfillment

More information

arxiv: v1 [nucl-th] 7 Jan 2019

arxiv: v1 [nucl-th] 7 Jan 2019 arxiv:1901.01924v1 [nucl-th] 7 Jan 2019 E-mail: sigtryggur.hauksson@mail.mcgill.ca Sangyong Jeon E-mail: jeon@physics.mcgill.ca Charles Gale E-mail: gale@physics.mcgill.ca Jets are a promising way to probe

More information

Fluid dynamic propagation of initial baryon number perturbations

Fluid dynamic propagation of initial baryon number perturbations Fluid dynamic propagation of initial baryon number perturbations Stefan Flörchinger (Heidelberg U.) Initial Stages 2016, Lisbon, mainly based on S. Floerchinger & M. Martinez: Fluid dynamic propagation

More information

Quark-Gluon Plasma and Relativistic Heavy Ion Collisions

Quark-Gluon Plasma and Relativistic Heavy Ion Collisions June 23-25, Bautzen, Quark-Gluon Plasma and Relativistic Heavy Ion Collisions G.Zinovjev Bogolyubov Institute for Theoretical Physics, Kiev, UKRAINE High energy density physics E.Teller, Ya.Zeldovich 4

More information

Heating up QGP: towards charm quark chemical equilibration

Heating up QGP: towards charm quark chemical equilibration Heating up QGP: towards charm quark chemical equilibration Mikko Laine (University of Bern, Switzerland) 1 What is it? 2 Melting / recombination: Leptonic annihilation: q q l + l Chemical equilibration:

More information

The Weibel Instability in Collisionless Relativistic Shocks

The Weibel Instability in Collisionless Relativistic Shocks The Weibel Instability in Collisionless Relativistic Shocks Tanim Islam University of Virginia The Weibel instability[1], purely electromagnetic in nature, has been used to explain the strong magnetic

More information

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Thermodynamics and Phase Transitions Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad Outline Thermodynamics in QGP What are the phase transitions? Order of the phase transition Where to study

More information

Jet evolution in a dense QCD medium: I. Edmond Iancu IPhT Saclay & CNRS. June 19, 2013

Jet evolution in a dense QCD medium: I. Edmond Iancu IPhT Saclay & CNRS. June 19, 2013 Jet evolution in a dense QCD medium: I Edmond Iancu IPhT Saclay & CNRS R AA 1 ALICE Pb-Pb s NN = 2.76 TeV (0-5%) STAR Au-Au s NN = 200 GeV (0-5%) PHENIX Au-Au s NN = 200 GeV (0-10%) June 19, 2013 0.1 0

More information

arxiv: v1 [hep-ph] 18 Feb 2016

arxiv: v1 [hep-ph] 18 Feb 2016 Nuclear Physics A Nuclear Physics A 00 (2016) 1 5 www.elsevier.com/locate/procedia arxiv:1602.05811v1 [hep-ph] 18 Feb 2016 Abstract Confronting fluctuations of conserved charges in central nuclear collisions

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information