Berndt Müller. H-QM Opening Symposium GSI, November 9, 2006

Size: px
Start display at page:

Download "Berndt Müller. H-QM Opening Symposium GSI, November 9, 2006"

Transcription

1 Berndt Müller H-QM Opening Symposium GSI, November 9,

2 Nucleons + mesons Genre: Comedy / Crime / Romance / Thriller Eating Takoyaki (squid balls) fresh from the grill in Osaka/Japan Quarkgluon plasma Melting nuclear matter (at RHIC / LHC / FAIR) 2

3 What heat does to matter: Increases disorder (entropy) Speeds up reactions Overcomes potential barriers States / phases of matter: Solid [long-range correlations, shear elasticity] Liquid [short-range correlations] Gas [few correlations] Plasma [charged constituents] (solid / liquid / gaseous) 3

4 Matter governed by the laws of QCD can also take on different states: Solid, e.g. crust of neutron stars Liquid, e.g. all large nuclei Gas, e.g. nucleonic or hadronic gas (T 7 MeV) Plasma - the QGP (T > T c MeV) The QGP itself may exist in different phases: Gaseous plasma (T Tc) Liquid plasma (T, near T c, c?) Solid, color superconducting plasma ( c ) 4

5 RHIC T Quark- Gluon Critical end point Plasma Hadronic matter Chiral symmetry broken 1 st order line Chiral symmetry restored Color superconductor Nuclei Neutron stars B 5

6 gluons quarks 7 2 Degrees of fr eedom : (2 8) 4 (2 3 Nf ) 1 O( g ) spin color spin color flavor MeV 30 RHIC LHC? Indication of weak coupling? Lattice QCD (Bielefeld) 6

7 2 g ( ) g ( ) a a b a b G Q Induced color density a 2 a N wit h ( gt ), ( gt ) F 2 G Q a Static color charge (heavy quark) generates screened potential t a a s r r e 7

8 B 8

9 Color correlation length M. Strickland, hep-ph/ Time Quasiabelian Nonabelian Noise Length (z) 9

10 QCD mass Higgs mass u d s c b t quark quark Higgs field Quark qq qq condensate QCD mass disappears above T c : (partial) chiral symmetry restoration 10

11 XY X 2 Y ln Z( T, ) XY X Y i XS i x s n i i i C XS 3 XS X S S 2 S 2 R. Gavai & S. Gupta, hep-lat/ pqgp 11

12 Arrow of time quarks gain QCD mass and become confined 12

13 is hexagonal and 3.8 km long Relativistic Heavy Ion Collider STAR 13

14 Detectors Computers BG-J Phenomenology pr ovides t he connect ion 14

15 Pre-equil. phase Liberation of saturated low-x glue fields (CGC) eq Bjorken formula dn( )/ dy s( ) dv( )/ dy 0 ( dn / dy) eq R 2 final s( 1 fm/c) 33/fm or T ( ) 275 MeV in Au+Au (200 GeV) 15 3

16 Some important results from RHIC: Chemical equilibration (incl. s-quarks!) u, d, s-quarks become light and unconfined Elliptic flow rapid thermalization, low viscosity Collective flow pattern related to valence quarks Jet quenching parton energy loss, high color opacity Strong energy loss of c and b quarks (why?) Charmonium suppression is not increased compared with lower (CERN-SPS) energies 16

17 Y1 ( m1 m2 ) exp Y T 2 ch Increase in flavor correlation length r c 1 fm (?) + gluon thermalization 17

18 No suppression for photons Suppression of hadrons R AA ( p ) T Yield in A+A 2 d NAA / T 2 AA NN / T dp dy T d dp dy Area density of p+p coll s in A+A Cross section in p+p coll s Without nuclear effects: R AA = 1. 18

19 q q Radiative energy loss: 2 2 E L k T q L q Scattering centers = color charges g Density of scattering centers d dq i ˆ q dq k 2 T dx Fi ( x ) F (0) q Scattering power of the QCD medium: Range of color force 19

20 Eskola et al. RHIC RHIC data sqgp?? QGP Baier plot Pion gas Cold nuclear matter 20

21 Where does the lost energy go? p+p Au+Au Away-side jet Trigger jet Lost energy of away-side jet is redistributed to angles away from 180 and low transverse momenta p T < 2 GeV/c ( Mach cone?). 21

22 Trigger jet (Colorless or colorful) sonic shockwave: H. Stöcker, Nucl. Phys. A 750: (2005), J. Casalderrey-Solana & E. Shuryak, hep-ph/ , J. Ruppert & B.M., Phys. Lett. B 618: (2005), T. Renk & J. Ruppert, hep-ph/ Trigger jet Localized heating of medium: A.Chaudhouri, U. Heinz, nucl-th/ (does not work!) Trigger jet Large Angle Gluon Emission: Ivan Vitev, Phys.Lett.B630:78-84,2005 Cherenkov (-like) radiation: A. Majumder & X. N. Wang, nucl-th/ , V. Koch et. al., nuclt-th/ , I. Dremin, hep-ph/

23 J. Ruppert N=4 SUSY YM at strong coupling J. Friess et al. hep-th/ Mach cone requires collective mode with (k) < k and strong coupling f s 0.8. T. Renk & J. Ruppert 23

24 Collision Geometry: Elliptic Flow Reaction plane y z Bulk evolution described by relativistic fluid dynamics, assumes that the medium is in local thermal equilibrium, but no details of how equilibrium was reached. I nput: (x, i ), P( ), (,etc.). Elliptic flow (v 2 ): Gradients of almond-shape surface will lead to preferential expansion in the reaction plane Anisotropy of emission is quantified by 2 nd Fourier coefficient of angular distribution: v 2 prediction of fluid dynamics x 24

25 Elliptic flow: early creation Time initial evolution energy of density the energy distribution: density: spatial eccentricity momentum anisotropy Flow anisotropy must generated at the earliest stages of the expansion, and matter needs to thermalize very rapidly, before 1 fm/ c. 25

26 2 p T Failure of ideal hydrodynamics tells us how hadrons form Mass splitting characteristic property of hydrodynamics 26

27 2 In the recombination regime, meson and baryon v 2 can be obtained from the quark v 2 : Chiho Nonaka v p 2v p M q t B q 2 t 2 2 t 2 2 v p 3v p t 3 q q q Paul Sorensen T,,v q q Emitting medium is composed of unconfined, flowing quarks. 27

28 QGP Relativistic viscous hydrodynamics: T ( P) u u T Pg 0 with ( u u trace) 1 3 np f p 3 tr D. Teaney s / 0 / QGP(T T c ) = sqgp? s Boost invariant hydrodynamics with T 0 0 ~ 1 requires /s 1/10. Exciting theoretical discovery: N=4 SUSY YM theory (g 2 N c 1) and string CFT duality give /s = 1/(4 (Kovtun, Son, Starinets). Absolute lower bound on /s!? 28

29 Is strong coupling really necessary for small /s? Possible resolution: Color instabilities 29

30 Unstable modes in plasmas occur generally when the momentum distribution of a plasma is anisotropic (Weibel-type instabilities). beam p y p x p z Conditions are satisfied in nuclear collisions: Longitudinal expansion locally red-shifts the longitudinal momentum components of released small-x gluon fields (CGC) from initial state: x y s z for Qs p p Q p In EM case, instabilities saturate due to effect on charged particles. In YM case, field nonlinearities lead to saturation (competition with Nielsen-Olesen instability?) 30

31 Wavelength and growth rate of unstable modes can be calculated perturbatively: k z ~ gq s, ~ gq s < k z Mrowczynski Strickland et al. Arnold et al. Exponential growth saturates when B 2 > g 2 T 4. Turbulent power spectrum 31

32 Expansion Anisotropy QGP X-space Perturbed equilibrium distribution: f ( p) f ( p) 1 f ( p) 1 f ( p) f ( p) exp[ u p / T ] QGP P-space For shear flow of ultrarelat. fluid: f 1 ( p) ( u) 5 / s 2 2ET u i j p p u 2 ij i j j i 3 ij 1 3 ij u ij ( u) Anisotropic momentum distributions generate instabilities of soft field modes. Growth rate ~ f 1 (p). Formation of turbulent color fields is controlled by f 1 (p), i.e. ij(u) and /s. But: turbulent color fields control the anomalous viscosity A. 32

33 Classical expression for shear viscosity: 1 3 np f a B p Momentum change in one coherent domain: p p a a gq B rm r m Anomalous (collisionless) mean free path: ( A) f Anomalous viscosity due to random col or field s: A r m p p np p g Q B r st m 3g Q B r g Q B r m m 33

34 p E Take moments of D( p) f ( r, p, t) C f with p 2 z t p r p p t a b Dij ( p) dt ' Fi r ( t '), t ' U ab ( r, r) Fj r, t F g E v B a a a = color force 1 2 N F m c g O O 3 N 1 st T 2 c 4 1 ln g 1 3 A C i 2 dt ' Fi ( t ') F ( t) F m q = jet quenching parameter!!! ˆ M. Asakawa, S.A. Bass, B.M., PRL 96:252301,2006 hep-ph/

35 Possible effects on QGP probes: Longitudinal broadening of jet cones (observed ridge ) Jet B Jet Anomalous diffusion of charm and bottom quarks (observed) Synchrotron-style radiation of soft, nonthermal photons? x y z Au+Au 20-30% Field induced quarkonium dissociation? c a b c No unstable modes for quarks: quasi-particle picture of QGP is compatible with low viscosity b 35

36 LHC CMS ALICE ATLAS 36

37 Heavy ion physics at the LHC is only ~2 years away LHC will provide quantitative tests of the models developed to describe the RHIC data: Saturation of the initial gluon density (Almost) ideal hydrodynamic evolution of matter (v 2 ) Scaling of parton energy loss with path length Color screening, quark recombination Major new probes: contained jets and b-quarks, permitting much improved control of theoretical predictions. 37

38 100 GeV jets similar to 2 GeV hadrons at RHIC Bulk physics probes 10-4 < x < 10-3 Forward/backward regions provide access to very small x

39 ~ 1/Q 2 Nonlinear interactions among classical fields lead to the saturation of gluon density in the transverse plane. Q 2 ( x, A) sat Color Glass Condensate parton density xg A ( x, Q ) A x ar ea = 1 R Q Q 2 1 / 3 s A Glassy gluons are liberated quark pairs are produced rapidly. Glasma turns into a quark-gluon plasma.. 39

40 E CM Geometric scaling à la Golec-Biernat & Wüsthoff x A Q ( x, A) Q x R sat 0 2 A with 0.288, 0.79 (Armesto et al. hep-ph/ ) 1/ 3 From fit to HERA e-p and NMC nuclear photoabsorption data. 2 dn dy Q R 2 2 / sat, A A T LHC in 3T 500 MeV RHIC in 40

41 Photon- or Z 0 -tagged jets [g+q q+ (Z)]: Study of jets with known energy. Fully resolved jets (E T > 100 GeV): Measurement of full medium-modified fragmentation function. Tri-jets: Study of gluon propagation. Jets initiated by c- and b-quarks.,, spectroscopy: Improved test of color screening. Nuclear parton distributions down to x ~ (in p+a collisions): probe of gluon saturation. 41

42 Do we have a coherent theoretical framework? High-p T hadrons: YES, but High-p T di-hadrons: MAYBE -jet correlations: YES, but Single jets: YES, but Tri-jets: NO Heavy quarkonia: NO High invariant mass lepton pairs: YES, but High p T photons: MAYBE There are many research challenges for theorists! 42

43 AA Extrapolations to LHC energy vary widely due to modeling differences: Vitev et al (GLV) Armesto et al (ASW) LHC 43

44 Deeper penetration of higher-p T probe leades to increased punch-through of away side jet. Detector T. Renk Vertex distribution for trigger hadrons of p T 25 GeV/c in LHC 44

45 Jet energy is not lost, but just redistributed inside the jet cone to larger k t than in vacuum fragmentation (LPM effect). Separation of fully evolved jet from background will become possible at LHC for large jet energies. k T Soft background: de T 2 dy 400 GeV Distributed over ~300 particles. Medium modifications of jet shape can tell us about the mechanism of energy loss of the initiating parton. Are jets induced by b-quarks modified differently than those induced by light quarks/gluons? 45

46 Outlook The RHIC program has shown that equilibrated matter is rapidly formed in heavy ion collisions; wide variety of probes available at collider energies; systematic study of matter properties is possible. QGP appears to be a turbulent color liquid with novel and unanticipated transport properties. Experimental surprises have become a gold mine for theorists: extreme opaqueness of matter to colored probes; large enhancement of baryon production; collective flow phenomena indicating strong coupling; connection to string theory and AdS/CFT duality. Exciting times for HI physics at the LHC lie ahead! 46

47 THE END OF THIS TALK - BUT THE BEGINNING FOR H-QM 47

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

Prospects with Heavy Ions at the LHC

Prospects with Heavy Ions at the LHC Prospects with Heavy Ions at the LHC The Quark-Gluon Plasma at RHIC & LHC So far at RHIC: Elliptic Flow Near-perfect Fluid High p T Suppression Strongly-coupled QGP R AA! d 2 N AA dydp T d 2 N pp!!! AA

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions The ALICE experiment at LHC Experimental conditions at LHC The ALICE detector Some physics observables Conclusions ALICE @ LHC PbPb collisions at 1150 TeV = 0.18 mj Experimental conditions @LHC 2007 start

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Studies of QCD Matter From E178 at NAL to CMS at LHC

Studies of QCD Matter From E178 at NAL to CMS at LHC Studies of QCD Matter From E178 at NAL to CMS at LHC Wit Busza MIT Wit Busza Fermilab Colloquium, May 2012 1 The Study of the Condensed Matter of QCD, more commonly known as Relativistic Heavy Ion Physics

More information

Exploring the Quark-Gluon Plasma at RHIC & LHC Today s Perspective

Exploring the Quark-Gluon Plasma at RHIC & LHC Today s Perspective Exploring the Quark-Gluon Plasma at RHIC & LHC Today s Perspective Modifications to α s heavy quark-antiquark coupling at finite T from lattice QCD O.Kaczmarek, hep-lat/0503017 Constituents - Hadrons,

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

Lessons from RHIC and Potential Discoveries at LHC with Ions

Lessons from RHIC and Potential Discoveries at LHC with Ions Lessons from RHIC and Potential Discoveries at LHC with Ions recent reviews: M. Gyulassy and L. McLerran, Nucl. Phys. A750 (2005) 30 pbm and J. Stachel, Nature 448 (2007) 302 pbm and J. Wambach, Rev. Mod.

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Parton Energy Loss. At Strong Coupling. Hard Probes 2010 Eilat, Israel: October Berndt Müller

Parton Energy Loss. At Strong Coupling. Hard Probes 2010 Eilat, Israel: October Berndt Müller Parton Energy Loss At Strong Coupling Berndt Müller Hard Probes 2010 Eilat, Israel: 10-15 October 2010 Overview Reminder: Jet quenching at weak coupling Micro-Primer: Strongly coupled AdS/CFT duality Jet

More information

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN Jet quenching in heavy-ion collisions at the LHC Marta Verweij CERN EPFL Seminar May. 2, 2016 Thousands of particles are produced in one heavy ion collision Marta Verweij 2 Heavy ion collision Marta Verweij

More information

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Shear viscosity from BAMPS Andrej El Zhe Xu Carsten Greiner Institut für Theoretische Physik

More information

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Steffen A. Bass QCD Theory Group Introduction: the Quark-Gluon-Plasma How can one create a QGP? Basic tools for a Theorist: Transport Theory

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC High- Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC K. Reygers for the WA98 and the PHENIX collaboration Institut für Kernphysik der Universität Münster Wilhelm-Klemm-Str. 9, D-4849 Münster,

More information

Jet Medium Interactions

Jet Medium Interactions Jet Medium Interactions Yasuki Tachibana Nishinippon Institute of Technology ( Central China Normal University) ATHIC 216, New Delhi, India, 19 February 216 Introduction Jet energy loss in QGP medium Bjorken

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

Heavy-flavour meson production at RHIC

Heavy-flavour meson production at RHIC Heavy-flavour meson production at RHIC André Mischke ERC-Starting Independent Research Group QGP - Utrecht 1 Outline Introduction - heavy-flavour production and energy loss in QCD matter Total charm production

More information

arxiv: v1 [nucl-ex] 12 May 2008

arxiv: v1 [nucl-ex] 12 May 2008 1 Highlights from PHENIX - II arxiv:0805.1636v1 [nucl-ex] 12 May 2008 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Terry C. Awes (for the PHENIX Collaboration ) Oak

More information

Dihadron correlations from AMPT

Dihadron correlations from AMPT Dihadron correlations from AMPT Che-Ming Ko Texas A&M University AMPT Anisotropic flows Dihadron azimuthal correlations 2D dihadron correlations Based on work with Jun Xu, PRC 83, 021903(R) (2011); 034904

More information

Review of collective flow at RHIC and LHC

Review of collective flow at RHIC and LHC Review of collective flow at RHIC and LHC Jaap Onderwaater 29 November 2012 J. Onderwaater (EMMI,GSI) Collective flow 29 November 2012 1 / 37 Heavy ion collision stages Outline Heavy ion collisions and

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

Charm production at RHIC

Charm production at RHIC 1 Charm production at RHIC Charm 2007 Conference Cornell University, Ithaca, NY 5 August 2007 2 The Quark Gluon Plasma T c Early universe quark-gluon plasma LHC RHIC Tri-critical point? Quark deconfinement

More information

Summary on high p T probes

Summary on high p T probes Eur. Phys. J. C (2009) 61: 741 745 DOI 10.1140/epjc/s10052-009-0913-6 Regular Article - Experimental Physics Summary on high p T probes Saskia Mioduszewski a Cyclotron Institute, Texas A&M University,

More information

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez 51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016 Manuel Calderón de la Barca Sánchez Heavy Flavors in Heavy Ions Heavy quarks produced early: initial hard parton collision

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Space-time Evolution of A+A collision

Space-time Evolution of A+A collision Time Space-time Evolution of A+A collision Jets Fluctuations p p K K0* f g e m Hadronization (Freeze-out) + Expansion Mixed phase? QGP phase Thermalization Space (z) A Pre-equilibrium A Hadrons reflect

More information

Soft physics results from the PHENIX experiment

Soft physics results from the PHENIX experiment Prog. Theor. Exp. Phys. 2015, 03A104 (15 pages) DOI: 10.1093/ptep/ptu069 PHYSICS at PHENIX, 15 years of discoveries Soft physics results from the PHENIX experiment ShinIchi Esumi, Institute of Physics,

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 2: Experimental Discoveries Columbia University Reminder- From Lecture 1 2 General arguments suggest that for temperatures T ~ 200 MeV, nuclear

More information

Uncertainties in the underlying e-by-e viscous fluid simulation

Uncertainties in the underlying e-by-e viscous fluid simulation Uncertainties in the underlying e-by-e viscous fluid simulation Ulrich Heinz (The Ohio State University) Jet Workfest, Wayne State University, 24-25 August 213 Supported by the U.S. Department of Energy

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

The Perfect Blac. as seen at RHIC

The Perfect Blac. as seen at RHIC The Perfect Blac The Quark-Gluo as seen at RHIC Berndt Muelle Part I Motivation The quest for simplicity Equation of state of trongly interacting matter ccording to lattice QCD Before the 197 highest energ

More information

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Hydrodynamics Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad First School on LHC Physics, NCP, Islamabad Oct 28, 2009 1 Outline QGP Evolution Centrality Why Hydrodynamics? What is a flow? Percolation

More information

Preparations for the ATLAS Heavy Ion Physics Program at the LHC. Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration

Preparations for the ATLAS Heavy Ion Physics Program at the LHC. Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration Preparations for the ATLAS Heavy Ion Physics Program at the LHC Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration 1 QCD Hadronic phase: Bound states of quark and gluon pp collisions Heavy

More information

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Cesar L. da Silva 1, 1 Los Alamos National Lab - USA Abstract. The use of probes containing heavy quarks is one of the pillars

More information

Physics with Heavy-Ion Beams at SppC

Physics with Heavy-Ion Beams at SppC Physics with Heavy-Ion Beams at SppC Guang-You Qin Central China Normal University Workshop on Physics at the CEPC/SppC August 10-1, 015 IHEP, Beijing Many thanks to Qun Wang, Xin-Nian Wang, Nu Xu Outline

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

Creating a Quark Gluon Plasma With Heavy Ion Collisions

Creating a Quark Gluon Plasma With Heavy Ion Collisions Creating a Quark Gluon Plasma With Heavy Ion Collisions David Hofman UIC Special thanks to my Collaborators in PHOBOS, STAR, & CMS and B. Back, M. Baker, R. Hollis, K. Rajagopal, R. Seto, and P. Steinberg

More information

Lecture 2: Single and di-hadron measurements and energy loss modelling

Lecture 2: Single and di-hadron measurements and energy loss modelling Lecture 2: Single and di-hadron measurements and energy loss modelling Marco van Leeuwen,! Nikhef and Utrecht University Helmholtz School Manigod! 17-21 February 2014 From RHIC to LHC RHIC LHC RHIC: n

More information

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV + High p T with ATLAS and CMS in Heavy-Ion Collisions @ 2.76TeV Lamia Benhabib On behalf of ATLAS and CMS HCP 2011, Paris lamia.benhabib@llr.in2p3.fr +Outlook Introduction : hard probes Strongly interacting

More information

Heavy quark production and elliptic flow at RHIC and LHC

Heavy quark production and elliptic flow at RHIC and LHC Heavy quark production and elliptic flow at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Institute for Theoretical Physics Hirschegg January 20, 2010 Outline Motivation Charm processes

More information

Exploring the Properties of the Phases of QCD Matter

Exploring the Properties of the Phases of QCD Matter Exploring the Properties of the Phases of QCD Matter Research opportunities and priorities for the next decade A White Paper for consideration in the 2015 NSAC Long Range Plan for Nuclear Physics (title

More information

Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS)

Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS) Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS) Wen-Chen Chang 章文箴 Institute of Physics, Academia Sinica Weekly Journal Club for Medium Energy Physics at IPAS March 21,

More information

Overview of heavy ion CMS results

Overview of heavy ion CMS results Overview of heavy ion CMS results Gian Michele Innocenti on behalf of the CMS Collaboration Massachusetts Institute of echnology Rencontres de Moriond QCD and High Energy Interactions March 19th - 26th,

More information

Are We There Yet? The STAR Collaboration s Critical Evaluation of the Evidence Regarding Formation of a Quark Gluon Plasma in RHIC Collisions

Are We There Yet? The STAR Collaboration s Critical Evaluation of the Evidence Regarding Formation of a Quark Gluon Plasma in RHIC Collisions Are We There Yet? The STAR Collaboration s Critical Evaluation of the Evidence Regarding Formation of a Quark Gluon Plasma in RHIC Collisions Abstract We review the most important experimental results

More information

Instability in an expanding non-abelian system

Instability in an expanding non-abelian system Instability in an expanding non-abelian system Kenji Fukushima (Department of Physics, Keio University) 1 Why expanding? 2 Relativistic Heavy-Ion Collision RHIC LHC Heavy-ions collide A new state of matter

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

Hints of incomplete thermalization in RHIC data

Hints of incomplete thermalization in RHIC data Hints of incomplete thermalization in RHIC data Nicolas BORGHINI CERN in collaboration with R.S. BHALERAO Mumbai J.-P. BLAIZOT ECT J.-Y. OLLITRAULT Saclay N. BORGHINI p.1/30 RHIC Au Au results: the fashionable

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL Duke University Chiho NONAKA in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/00108 to appear in PRL May 1, 00@INT, University of Washington, Seattle Introduction

More information

Small Collision Systems at RHIC

Small Collision Systems at RHIC EPJ Web of Conferences 7, (8) SQM 7 https://doi.org/.5/epjconf/87 Small Collision Systems at RHIC Norbert Novitzky, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 79, USA

More information

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 10 Feb 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics Highlights of the Beam Energy Scan from STAR Review Article arxiv:10.389v1 [nucl-ex] 10 Feb 01 A. Schmah for the STAR Collaboration

More information

2 nd talk will focus on ALICE and the TPC. Introduction to High Energy Heavy Ion Physics P. Christiansen (Lund)

2 nd talk will focus on ALICE and the TPC. Introduction to High Energy Heavy Ion Physics P. Christiansen (Lund) An Introduction to High Energy Heavy Ion Physics What is high energy heavy ion physics QCD and the Quark Gluon Plasma Heavy ion collisions and experiments Results from RHIC Bulk physics: stopping, particle

More information

Jet and bulk observables within a partonic transport approach

Jet and bulk observables within a partonic transport approach Jet and bulk observables within a partonic transport approach Florian Senzel with J. Uphoff, O. Fochler, C. Wesp, Z. Xu and C. Greiner based on Phys.Rev.Lett. 4 (25) 23 Transport meeting, 29.4.25 Outline

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Photon and neutral meson production in pp and PbPb collisions at ALICE

Photon and neutral meson production in pp and PbPb collisions at ALICE Photon and neutral meson production in pp and PbPb collisions at ALICE Dieter Roehrich University of Bergen, Norway for the ALICE Collaboration Nuclear collisions at the LHC Photons as a probe for the

More information

Heavy flavour production at RHIC and LHC

Heavy flavour production at RHIC and LHC Heavy flavour production at RHIC and LHC Gian Michele Innocenti 1, 1 Massachusetts Institute of Technology Abstract. In this proceedings, I present selected experimental results on heavy-flavour production

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA TOWARDS MORE REALISTIC MODELS OF THE QGP THERMALISATION Work with Michał Heller, David Mateos, Jorge Casalderrey, Paul Romatschke, Scott Pratt and Peter

More information

Outline: Introduction

Outline: Introduction Electromagnetic radiation in hadronic interactions: from pp to AA collisions Outline: Introduction Lijuan Ruan (Brookhaven National Laboratory) Recent results on dileptons (dielectrons) Recent results

More information

A fresh look at the radiation from the QGP

A fresh look at the radiation from the QGP A fresh look at the radiation from the QGP Wolfgang Cassing (Uni. Giessen) In collaboration with Taesoo Song, Elena Bratkovskaya, Pierre Moreau The Erice School on Nuclear Physics 2018 The Strong Interaction:

More information

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Oleg Andreev Landau Institute, Moscow & ASC, München Based on Int.J.Mod.Phys.

More information

Status of Heavy-Ion Physics at the LHC

Status of Heavy-Ion Physics at the LHC Status of Heavy-Ion Physics at the LHC Yvonne Pachmayer, Heidelberg University J. Jowett LHC Page 1 2 Motivation: What is the question? ALICE/LHC Pb+Pb snn = 2760 GeV What happens if you make matter Hotter

More information

Overview* of experimental results in heavy ion collisions

Overview* of experimental results in heavy ion collisions Overview* of experimental results in heavy ion collisions Dipartimento di Fisica Sperimentale dell Universita di Torino and INFN Torino * The selection criteria of the results presented here are (to some

More information

1992 Predictions for RHIC with HIJING

1992 Predictions for RHIC with HIJING 1992 Predictions for RHIC with HIJING HIJING: A MONTE CARLO MODEL FOR MULTIPLE JET PRODUCTION IN P P, P A AND A A COLLISIONS Phys.Rev.D44:3501-3516,1991 GLUON SHADOWING AND JET QUENCHING IN A + A COLLISIONS

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Strongly Interacting

More information

Review of photon physics results at Quark Matter 2012

Review of photon physics results at Quark Matter 2012 Review of photon physics results at Quark Matter 2012 Jet Gustavo Conesa Balbastre 1/28 Why photons? Direct thermal: Produced by the QGP Measure medium temperature R AA > 1, v 2 > 0 Direct prompt: QCD

More information

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons HUGS 2015 Bolek Wyslouch Techniques to study the plasma Radiation of hadrons Azimuthal asymmetry and radial expansion Energy loss by quarks, gluons

More information

Overview of anisotropic flow measurements from ALICE

Overview of anisotropic flow measurements from ALICE EPJ Web of Conferences 117, (2016) Overview of anisotropic flow measurements from ALICE You Zhou on behalf of the ALICE Collaboration Niels Bohr Institute, University of Copenhagen, Denmark Abstract Anisotropic

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

Physics at Extreme Temperatures and Energy Densities

Physics at Extreme Temperatures and Energy Densities Physics at Extreme Temperatures and Energy Densities APS Meeting Jacksonville, April 14, 2007 MIT Special thanks to APS David Jacksonville, d Enterria, April 14, 2007 CERN 1 The "Little Bang" in the laboratory:

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information

Heavy Ions at the LHC: Selected Predictions. Georg Wolschin. Institut für Theoretische Physik der Universität, Heidelberg, Germany

Heavy Ions at the LHC: Selected Predictions. Georg Wolschin. Institut für Theoretische Physik der Universität, Heidelberg, Germany Heavy Ions at the LHC: Selected Predictions Georg Wolschin Institut für Theoretische Physik der Universität, Heidelberg, Germany Heavy-ion collisions at relativistic energy have been investigated for many

More information

Heavy Ion Collision Measurements at the LHC Using the CMS Detector

Heavy Ion Collision Measurements at the LHC Using the CMS Detector Heavy Ion Collision Measurements at the LHC Using the CMS Detector David Krofcheck on behalf of the CMS Collaboration IAS-CERN Workshop, Singapore, March 26 th So, what happens at the LHC besides Higgs

More information

A Light-front Wave-function Approach to the In-medium Modification of Heavy-quark Fragmentation Functions

A Light-front Wave-function Approach to the In-medium Modification of Heavy-quark Fragmentation Functions A Light-front Wave-function Approach to the In-medium Modification of Heavy-quark Fragmentation Functions D-mesons, c u B-mesons Time evolution, Nuclear Theory, T-2, LANL Heavy Quark Physics in Nucleus-Nucleus

More information

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle?

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle? Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle? Carlota Andrés Universidade de Santiago de Compostela Hard Probes 2016, Wuhan, China N. Armesto,

More information

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory SCET approach to energy loss Zhongbo Kang Los Alamos National Laboratory Symposium on Jet and Electromagnetic Tomography of Dense Matter June 26-27, 2015 Outline Introduction SCET G = SCET with Glauber

More information

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Thermodynamics and Phase Transitions Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad Outline Thermodynamics in QGP What are the phase transitions? Order of the phase transition Where to study

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Penetrating probe of the hot, dense medium

Penetrating probe of the hot, dense medium Penetrating probe of the hot, dense medium Low mass dileptons (M ll

More information

Jet correlations at RHIC via AdS/CFT (and entropy production)

Jet correlations at RHIC via AdS/CFT (and entropy production) Jet correlations at RHIC via AdS/CFT (and entropy production) Amos Yarom, Munich together with: S. Gubser and S. Pufu The quark gluon plasma at RHIC Measuring jets Measuring jets φ Measuring di-jets φ=π

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information

Instabilities in the Quark-Gluon Plasma

Instabilities in the Quark-Gluon Plasma in the Quark-Gluon Maximilian Attems Institute for Theoretical Physics, TU Vienna October 5, 2010 Dans la vie, rien n est à craindre, tout est à comprendre. Marie Curie Vienna Theory Lunch Seminar 2010

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Quark Gluon Plasma Recent Advances

Quark Gluon Plasma Recent Advances Quark Gluon Plasma Recent Advances Lawrence Berkeley National Laboratory LP01, Rome, July 2001 Introduction P.C. Sereno et al. Science, Nov. 13, 1298(1998). (Spinosaurid) We may not see the entire body

More information

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting PHY357 Lecture 14 Applications of QCD Varying coupling constant Jets and Gluons Quark-Gluon plasma Colour counting The proton structure function (not all of section 5.8!) Variable Coupling Constants! At

More information