Exploring the Quark-Gluon Plasma at RHIC & LHC Today s Perspective

Size: px
Start display at page:

Download "Exploring the Quark-Gluon Plasma at RHIC & LHC Today s Perspective"

Transcription

1 Exploring the Quark-Gluon Plasma at RHIC & LHC Today s Perspective

2 Modifications to α s heavy quark-antiquark coupling at finite T from lattice QCD O.Kaczmarek, hep-lat/ Constituents - Hadrons, dressed quarks, quasi-hadrons, resonances? Coupling strength varies investigates (de-)confinement, hadronization, & intermediate objects. high Q 2 low Q 2

3 Nobel Prize 2005 Modifications to α s heavy quark-antiquark coupling at finite T from lattice QCD O.Kaczmarek, hep-lat/ D. Gross H.D. Politzer F. Wilczek QCD Asymptotic Freedom (1973) Constituents - Hadrons, dressed quarks, quasi-hadrons, resonances? Coupling strength varies investigates (de-)confinement, hadronization, & intermediate objects. Before [QCD] we could not go back further than 200,000 years after the Big Bang. Today since QCD simplifies at high energy, we can extrapolate to very early times when nucleons melted to form a quark-gluon plasma. high Q 2 low Q David Gross, Nobel Lecture (RMP 05) 2

4 Early universe Phase Diagram of QCD Matter see: Alford, Rajagopal, Reddy, Wilczek Phys. Rev. D64 (2001) Temperature T c ~ 170 MeV LHC RHIC Critical point? quark-gluon plasma hadron gas color superconductor nucleon gas nuclei Neutron stars CFL vacuum ρ 0 baryon density

5 Quark-Gluon Plasma Plasma (Soup) Standard Model Lattice Gauge Calculations predict QCD Deconfinement phase transition at T c ~ 175 MeV (ε c ~ 0.5 GeV / fm 3 ) Cosmology Quark-hadron phase transition in early Universe Can we make the primordial quark-gluon soup in the lab? Establish properties of QCD at high T (and density?)

6 Ultra-Relativistic Heavy Ion Collisions Interaction of Au nuclei complete in τ few tenths fm/c Gold nucleus diameter = 14 fm γ = 100 (Lorenz contracted) τ = (14 fm/c) / γ ~ 0.1 fm/c General Orientation Hadron (baryons, mesons) masses ~ 1 GeV Hadron sizes ~ meters (1 fm 1 fermi) RHIC Collisions E cm = 200 GeV/nn-pair Total E cm = 40 TeV

7 Ultra-Relativistic Heavy Ion Collision at RHIC

8 On the First Day (at RHIC) Initial Observations: dn ch /dη PHOBOS Large produced particle multiplicities 400 ed. - less than expected! gluon-saturation? 200 dn ch /dη η=0 = 670, N total ~ 7500 CGC? 0 > 15,000 q + q in final state, > 92% are produced quarks Au + Au 200 GeV 130 GeV 19.6 GeV η Large energy densities (dn/dη, de T /dη) ε 5 GeV/fm 3 ε 5 15 ε critical x nuclear density PHENIX Large collective flow ed. - completely unexpected! Due to large early pressure gradients, energy & gluon densities Requires hydrodynamics and quark-gluon equation of state Quark flow & coalescence constituent quark degrees of freedom! 1

9 How do RHIC Collisions Evolve? 1) Superposition of independent p+p: momenta random relative to reaction plane Reaction plane b r

10 How do RHIC Collisions Evolve? 1) Superposition of independent p+p: momenta random relative to reaction plane High density pressure at center 2) Evolution as a bulk system Pressure gradients (larger in-plane) push bulk out flow more, faster particles seen in-plane b r zero pressure in surrounding vacuum

11 Azimuthal Angular Distributions 1) Superposition of independent p+p: momenta random relative to reaction plane N 2) Evolution as a bulk system Pressure gradients (larger in-plane) push bulk out flow N 0 π/4 π/2 3π/4 π φ-ψ RP (rad) more, faster particles seen in-plane 0 π/4 π/2 3π/4 π φ-ψ RP (rad)

12 1 On the First Day at RHIC - Azimuthal Distributions STAR, PRL (2003) b 6.5 fm b 4 fm midcentral central collisions Top view Beams-eye view

13 1 On the First Day at RHIC - Azimuthal Distributions STAR, PRL (2003) b 10 fm b 6.5 fm b 4 fm peripheral collisions Top view Beams-eye view

14 y 1 z Elliptic Flow Saturates Hydrodynamic Limit Azimuthal asymmetry of charged particles: dn/dφ ~ v 2 (p T ) cos (2 φ) +... x Mass dependence of v 2 Requires - Early thermalization (0.6 fm/c) curves = hydrodynamic flow zero viscosity, Tc = 165 MeV Ideal hydrodynamics (zero viscosity) nearly perfect fluid ε ~ 25 GeV/fm 3 ( >> ε critical ) Quark-Gluon Equ. of State

15 Identified Hadron Elliptic Flow Complicated Complicated v 2 (p T ) flow pattern is observed for identified hadrons d 2 n/dp T dφ ~ v 2 (p T ) cos (2 φ) Baryons quarks flow collectively Mesons If the flow established at quark level, it is predicted to be simple KE T KE T / n q, v 2 v 2 / n q, n q = (2, 3 quarks) for (meson, baryon)

16 If baryons and mesons form from independently flowing quarks then quarks are deconfined for a brief moment (~ s), then hadronization!

17 Universality of Classical Strongly-Coupled Systems? Transport in gases of strongly-coupled atoms RHIC fluid behaves like this a strongly coupled fluid. Universality of classical strongly-coupled systems? Atoms, sqgp,. AdS/CFT K.M. O Hara et al Science 298 (2002) 2179

18 AdS 5 /CFT a 5D Correspondence of 4D Systems Analogy between black hole physics and equilibrium thermodynamics Solutions possess hydrodynamic characteristics Similar to fluids viscosity, diffusion constants,. MULTIPLICITY Entropy Black Hole Surface Area Use strongly coupled DISSIPATION N = 4 SUSY YM theory. Viscosity Graviton Absorption Derive a quantum lower viscosity bound: η/s > 1/4π our world dim brane horizon (the bulk) Extra dimension

19 Ultra-low (Shear)Viscosity Fluids 4π η/s η/s (water) >10 η/s (limit) = 1/4π QGP T = 2 x K Quantum lower viscosity bound: η/s > 1/4π (Kovtun, Son, Starinets) From strongly coupled N = 4 SUSY YM theory. 2-d Rel Hydro describes STAR v 2 data with η/s 0.1 near lower bound!

20 The RHIC fluid may be the least viscous fluid ever seen The American Institute of Physics announced the RHIC quark-gluon liquid as the top physics story of 2005! see

21 It Flows - Is It Really Thermalized? Chemical equilibration (particle yields & ratios): Particles yields represent equilibrium abundances universal hadronization temperature Small net baryon density (K + /K -, B/B ratios) μ B ~ MeV Chemical Freezeout Conditions T = 177 MeV, μ B = 29 MeV T ~ T critical (QCD)

22 Particles are thermally distributed and flow collectively, at universal hadronization temperature T = 177 MeV!

23 On the Second Day (~ Year) at RHIC Probing Hot QCD Matter with Hard-Scattered Probes leading particle hadrons hadrons leading particle parton energy loss: modification of jets and leading particles & jet-correlations

24 High Momentum Hadrons Suppressed - Photons Not dev Deviations from binary scaling of hard collisions: R N π / γ AA AA = π / γ NcollNpp Photons Hadrons factor 4 5 suppression

25 Dynamical Origin of High p T Hadron Suppression? How does parton lose energy? What happens to the radiation? ε E q ~ μ Λ What is the dependence on the type of parton? For collisional energy loss what about recoil energy? ΔE gluon > ΔE quark, m=0 > ΔE quark, m>0 One parameterization of energy loss q ^ = μ 2 / Λ

26 q^ Parameterization of Parton Energy Loss Eskola, Honkanen, Salgado, Wiedemann Nucl Phys A747 (2005) 511 q ~ μ Λ q ^ = 5 15 GeV 2 / fm from RHIC R AA Data

27 Interpretation of the Parton Energy Loss Energy loss requires large qˆ GeV /fm 5-15 (also : Dainese, Loizides, Paic, hep-ph/ ) RHIC data sqgp q ~ μ Λ QGP Pion gas Cold nuclear matter R. Baier, Nucl Phys A715, 209c

28 Heavy Quark Suppression Using fixed order next-toleading log (FONL) cross sections for charm and beauty Armesto, Cacciari, Dainese, Salgado, Wiedemann, PLB637:362, 2006 Insufficient suppression from theoretical models!

29 AdS 5 /CFT Again! - Initial Results on Jet Quenching from J. J. Friess, S. S. Gubser and G. Michalogiorgakis,arXiv:hep-th/ H. Liu, K. Rajagopal and U. A. Wiedemann, arxiv:hep-ph/ , recent PRL

30 Hard Scattering (Jets) as a Probe of Dense Matter II STAR p + p jet event Jet STAR event Au+Au in e + e (jet?) collision event Can we see jets in high energy Au+Au?

31 dev Jet correlations in proton-proton reactions. Strong back-toback peaks. Where Does the Energy Go? Azimuthal Angular Correlations

32 dev Jet correlations in central Gold-Gold. Away side jet disappears for particles p T > 2 GeV Where Does the Energy Go? Azimuthal Angular Correlations

33 Where Does the Energy Go? dev Jet correlations in central Gold-Gold. Away side jet reappears in particles p T > 200 MeV Color wakes? J. Ruppert & B. Müller Mach cone from sonic boom? H. Stoecker J. Casalderrey-Solana & E. Shuryak Cherenkov-like gluon radiation? I. Dremin A. Majumder, X.-N. Wang Azimuthal Angular Correlations Lost energy of away-side jet is redistributed to rather large angles!

34 A Near-side Ridge Appears! Di-hadron correlations Near-side ridge Trigger jet Trigger Jet (near-side) η Near-side ridge Au+Au 0-10% preliminary 3 < p t,trigger < 4 GeV p t,assoc. > 2 GeV J. Putschke, STAR, QM 2006 Jets: scale with # of binary collisions Ridge: exists to highest p T (trig) correlated with jets But ridge spectra same as medium ( bulk-like, seen for mesons/baryons) John Harris thermal (Yale) spectra + flow origin? Hadron or jet-heating? 07 - Frascati, Italy, 8-13 Oct. 2007

35 Possible Ridge Mechanisms So Far References to proposed explanations so far: Radiated gluons, broadened by Longitudinal flow, Armesto et al, PRL 93 (2004) Color magnetic fields, Majumder et al, hep-ph/ Medium heating + recombination, Chiu & Hwa PRC72, Radial flow + trigger particle bias, Voloshin nucl-th/ , N.P. A749, 287 Initial parton scatter + Jet-medium interactions, C.Y. Wong, hep-ph/

36 The suppression of high p T hadrons and the quenching of jets indicates the presence of a high density, strongly-coupled colored medium.!

37 Conclusions about a QGP at RHIC (for reference) Large ε > ε c (T > T c ) system QCD vacuum melts NOT hadrons Thermalized system of quarks and gluons NOT just q & g scattering Large elliptic & radial flow fluid flow ( perfect!) Heavy quark (charm) flow (not shown) Particle ratios fit by thermal model T = 177 MeV ~ T c (lattice QCD) System governed by quark & gluon Equation of State NOT hadronic Flow depends upon particle (constituent quark & gluon) masses QGP EoS,, quark coalescence Deconfined system of quarks and gluons NOT hadrons Flow already at quark level, charmonium suppression (tbd) NOT a Weakly-interacting QGP (predicted by Lattice QCD) Strongly interacting quarks and gluons.degrees of freedom (tbd) Strongly-interacting QGP (NOT predicted by Lattice QCD) Suppression of high p T hadrons, away-side jet quenched Large opacity (energy loss) extreme gluon/energy densities strongly-interacting QGP (sqgp)

38 Future!

39 Geneva with Large Hadron Collider Superimposed Starts in Spring 2008

40 Simple Expectations - Heavy Ion Physics at the LHC s NN (GeV) factor 28 t form (fm/c) T / T c ε (GeV/fm 3 ) τ QGP (fm/c) SPS RHIC LHC 0.1 shorter hotter denser > 10 longerlived Significant increase in hard scattering yields at LHC: - jets & large p T processes - σ bb (LHC ) ~ 100 σ bb (RHIC) - σ cc (LHC) ~ 10 σ cc (RHIC)

41 The Future of RHI s at the LHC: Dedicated HI experiment - ALICE Two pp experiments with HI program: ATLAS and CMS

42 Size: 16 x 26 meters Weight: 10,000 tons HMPID TOF TRD PMD ITS Muon Arm PHOS TPC ALICE Set-up

43 A View of ALICE Before Detector Installation

44

45 So far at RHIC: R AA The Quark-Gluon Plasma at RHIC & LHC Today s Perspective! Elliptic Flow Near-perfect Fluid High p T Suppression Strongly-coupled QGP d 2 N AA dydp T d 2 N pp!!! AA dydp T N coll!! Jet Quenching Strongly-coupled QGP Away-side of jet Energy dissipation/propagation in medium Medium properties? Near-side Ridge!!!! Something new, unresolved Heating of the system Longitudinal expansion? Initial parton distributions? Initial parton bremsstrahlung + flow? RHIC and LHC: Cover 2 3 decades of energy ( s NN ~ 20 GeV 5.5 TeV) What are the properties of hot QCD in this temperature range (T ~ MeV)?

46 At LHC: R AA The Quark-Gluon Plasma at RHIC & LHC Today s Perspective Is the QCD phase diagram feature-less at 1 4 T c? What happens as we go up in T (e.g. coupling)? Are there new phenomena? d 2 N AA dydp T d 2 N pp AA dydp T N coll What s the range of theoretical validities (non-pqcd, pqcd, strings)? Measure/understand parton energy loss at the fundamental level Establish flavor (gluon and quark mass) dependence Use jets and/or photons to establish hard-scattered parton energy Jet modifications - longitudinal & transverse heating Medium response to jet-heating (near- and away-side) Measure/use open charm and beauty decays (also as jet-tags) cc and bb states (T i, screening/suppression, enhancement?) Direct Photon Radiation? Developments in theory (lattice, hydro, parton E-loss, string theory ) the next frontier!

47 Special Thanks for Contributions to This Presentation!! Miklos Gyulassy Peter Jacobs Mike Lisa Thomas Ullrich Urs Wiedemann

Prospects with Heavy Ions at the LHC

Prospects with Heavy Ions at the LHC Prospects with Heavy Ions at the LHC The Quark-Gluon Plasma at RHIC & LHC So far at RHIC: Elliptic Flow Near-perfect Fluid High p T Suppression Strongly-coupled QGP R AA! d 2 N AA dydp T d 2 N pp!!! AA

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Studies of QCD Matter From E178 at NAL to CMS at LHC

Studies of QCD Matter From E178 at NAL to CMS at LHC Studies of QCD Matter From E178 at NAL to CMS at LHC Wit Busza MIT Wit Busza Fermilab Colloquium, May 2012 1 The Study of the Condensed Matter of QCD, more commonly known as Relativistic Heavy Ion Physics

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

Photon and neutral meson production in pp and PbPb collisions at ALICE

Photon and neutral meson production in pp and PbPb collisions at ALICE Photon and neutral meson production in pp and PbPb collisions at ALICE Dieter Roehrich University of Bergen, Norway for the ALICE Collaboration Nuclear collisions at the LHC Photons as a probe for the

More information

Heavy-flavour meson production at RHIC

Heavy-flavour meson production at RHIC Heavy-flavour meson production at RHIC André Mischke ERC-Starting Independent Research Group QGP - Utrecht 1 Outline Introduction - heavy-flavour production and energy loss in QCD matter Total charm production

More information

Lessons from RHIC and Potential Discoveries at LHC with Ions

Lessons from RHIC and Potential Discoveries at LHC with Ions Lessons from RHIC and Potential Discoveries at LHC with Ions recent reviews: M. Gyulassy and L. McLerran, Nucl. Phys. A750 (2005) 30 pbm and J. Stachel, Nature 448 (2007) 302 pbm and J. Wambach, Rev. Mod.

More information

Charm production at RHIC

Charm production at RHIC 1 Charm production at RHIC Charm 2007 Conference Cornell University, Ithaca, NY 5 August 2007 2 The Quark Gluon Plasma T c Early universe quark-gluon plasma LHC RHIC Tri-critical point? Quark deconfinement

More information

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN Jet quenching in heavy-ion collisions at the LHC Marta Verweij CERN EPFL Seminar May. 2, 2016 Thousands of particles are produced in one heavy ion collision Marta Verweij 2 Heavy ion collision Marta Verweij

More information

Summary on high p T probes

Summary on high p T probes Eur. Phys. J. C (2009) 61: 741 745 DOI 10.1140/epjc/s10052-009-0913-6 Regular Article - Experimental Physics Summary on high p T probes Saskia Mioduszewski a Cyclotron Institute, Texas A&M University,

More information

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions The ALICE experiment at LHC Experimental conditions at LHC The ALICE detector Some physics observables Conclusions ALICE @ LHC PbPb collisions at 1150 TeV = 0.18 mj Experimental conditions @LHC 2007 start

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

2 nd talk will focus on ALICE and the TPC. Introduction to High Energy Heavy Ion Physics P. Christiansen (Lund)

2 nd talk will focus on ALICE and the TPC. Introduction to High Energy Heavy Ion Physics P. Christiansen (Lund) An Introduction to High Energy Heavy Ion Physics What is high energy heavy ion physics QCD and the Quark Gluon Plasma Heavy ion collisions and experiments Results from RHIC Bulk physics: stopping, particle

More information

Berndt Müller. H-QM Opening Symposium GSI, November 9, 2006

Berndt Müller. H-QM Opening Symposium GSI, November 9, 2006 Berndt Müller H-QM Opening Symposium GSI, November 9, 2006 1 Nucleons + mesons Genre: Comedy / Crime / Romance / Thriller Eating Takoyaki (squid balls) fresh from the grill in Osaka/Japan Quarkgluon plasma

More information

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Steffen A. Bass QCD Theory Group Introduction: the Quark-Gluon-Plasma How can one create a QGP? Basic tools for a Theorist: Transport Theory

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

Heavy flavour production at RHIC and LHC

Heavy flavour production at RHIC and LHC Heavy flavour production at RHIC and LHC Gian Michele Innocenti 1, 1 Massachusetts Institute of Technology Abstract. In this proceedings, I present selected experimental results on heavy-flavour production

More information

Review of collective flow at RHIC and LHC

Review of collective flow at RHIC and LHC Review of collective flow at RHIC and LHC Jaap Onderwaater 29 November 2012 J. Onderwaater (EMMI,GSI) Collective flow 29 November 2012 1 / 37 Heavy ion collision stages Outline Heavy ion collisions and

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

Creating a Quark Gluon Plasma With Heavy Ion Collisions

Creating a Quark Gluon Plasma With Heavy Ion Collisions Creating a Quark Gluon Plasma With Heavy Ion Collisions David Hofman UIC Special thanks to my Collaborators in PHOBOS, STAR, & CMS and B. Back, M. Baker, R. Hollis, K. Rajagopal, R. Seto, and P. Steinberg

More information

Introduction to Heavy Ion Physics at the LHC

Introduction to Heavy Ion Physics at the LHC Introduction to Heavy Ion Physics at the LHC F. Noferini (noferini@bo.infn.it) INFN Bologna/CNAF E. Fermi Centre, Rome ALICE Review http://en.sif.it/journals/ncr/econtents/2016/039/10 24/10/2016 1 Hadrons

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

Creating Quark Soup. Helen Caines - Yale University April 13 th 2009 Franklin & Marshall College. Quark Gluon Plasma. Andy Warhol

Creating Quark Soup. Helen Caines - Yale University April 13 th 2009 Franklin & Marshall College. Quark Gluon Plasma. Andy Warhol Creating Quark Soup Quark Gluon Plasma Andy Warhol - Yale University April 13 th 2009 Franklin & Marshall College Evolution of the universe 10-44 sec Quantum Gravity Unification of all 4 forces 10-35 sec

More information

In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE

In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE Jan Fiete Grosse-Oetringhaus CERN/PH for the ALICE Collaboration Heavy Ions: Experiments Confront Theory Copenhagen, 8th

More information

ALICE results in p Pb collisions at the LHC

ALICE results in p Pb collisions at the LHC on behalf of the ALICE Collaboration Subatech - Laboratoire de Physique Subatomique et des Technologies Associées, Nantes, France E-mail: stocco@subatech.inp.fr ALICE studies the properties of the strongly

More information

QGP event at STAR. Patrick Scott

QGP event at STAR. Patrick Scott QGP event at STAR Patrick Scott Overview What is quark-gluon plasma? Why do we want to study quark-gluon plasma? How do we create quark-gluon plasma? The past and present SPS and RHIC The future LHC and

More information

Quark Gluon Plasma Recent Advances

Quark Gluon Plasma Recent Advances Quark Gluon Plasma Recent Advances Lawrence Berkeley National Laboratory LP01, Rome, July 2001 Introduction P.C. Sereno et al. Science, Nov. 13, 1298(1998). (Spinosaurid) We may not see the entire body

More information

Overview of heavy ion CMS results

Overview of heavy ion CMS results Overview of heavy ion CMS results Gian Michele Innocenti on behalf of the CMS Collaboration Massachusetts Institute of echnology Rencontres de Moriond QCD and High Energy Interactions March 19th - 26th,

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

Exploring the Quark-Gluon Plasma with ALICE at the LHC

Exploring the Quark-Gluon Plasma with ALICE at the LHC Exploring the Quark-Gluon Plasma with ALICE at the LHC Yvonne Pachmayer, University of Heidelberg Introductory remarks Selected results Pb-Pb collisions Global observables Hard probes Summary and outlook

More information

Selected highlights from the STAR experiment at RHIC

Selected highlights from the STAR experiment at RHIC Selected highlights from the STAR experiment at RHIC Sonia Kabana for the STAR Collaboration Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

A fresh look at the radiation from the QGP

A fresh look at the radiation from the QGP A fresh look at the radiation from the QGP Wolfgang Cassing (Uni. Giessen) In collaboration with Taesoo Song, Elena Bratkovskaya, Pierre Moreau The Erice School on Nuclear Physics 2018 The Strong Interaction:

More information

Status of Heavy-Ion Physics at the LHC

Status of Heavy-Ion Physics at the LHC Status of Heavy-Ion Physics at the LHC Yvonne Pachmayer, Heidelberg University J. Jowett LHC Page 1 2 Motivation: What is the question? ALICE/LHC Pb+Pb snn = 2760 GeV What happens if you make matter Hotter

More information

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC High- Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC K. Reygers for the WA98 and the PHENIX collaboration Institut für Kernphysik der Universität Münster Wilhelm-Klemm-Str. 9, D-4849 Münster,

More information

Studying the QCD Medium in Proton-Proton Collisions Using PYTHIA

Studying the QCD Medium in Proton-Proton Collisions Using PYTHIA Studying the QCD Medium in Proton-Proton Collisions Using PYTHIA A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Omar Tarek ElSherif Department of Physics,

More information

arxiv: v1 [nucl-ex] 12 May 2008

arxiv: v1 [nucl-ex] 12 May 2008 1 Highlights from PHENIX - II arxiv:0805.1636v1 [nucl-ex] 12 May 2008 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Terry C. Awes (for the PHENIX Collaboration ) Oak

More information

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013 Big Bang to Little Bang ---- Study of Quark-Gluon Plasma Tapan Nayak July 5, 2013 Universe was born through a massive explosion At that moment, all the matter was compressed into a space billions of times

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez 51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016 Manuel Calderón de la Barca Sánchez Heavy Flavors in Heavy Ions Heavy quarks produced early: initial hard parton collision

More information

Physics at Extreme Temperatures and Energy Densities

Physics at Extreme Temperatures and Energy Densities Physics at Extreme Temperatures and Energy Densities APS Meeting Jacksonville, April 14, 2007 MIT Special thanks to APS David Jacksonville, d Enterria, April 14, 2007 CERN 1 The "Little Bang" in the laboratory:

More information

Using particle correlations to probe the medium produced at RHIC

Using particle correlations to probe the medium produced at RHIC Using particle correlations to probe the medium produced at RHIC Helen Caines - Yale University Oxford/RAL November 2008 Relativistic Heavy-Ion Collider (RHIC) PHENIX PHOBOS STAR 1 km RHIC BRAHMS v = 0.99995

More information

RHIC and the QGP at 10: from the age of discovery to the age of exploration

RHIC and the QGP at 10: from the age of discovery to the age of exploration RHIC and the QGP at 10: from the age of discovery to the age of exploration QCHS IX Madrid - August 2010 Helen Caines - Yale University The beginning of knowledge is the discovery of something we do not

More information

Selected highlights from RHIC

Selected highlights from RHIC Selected highlights from RHIC Sonia Kabana Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France QGP-France workshop Etretat, France, 9-11 September

More information

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons HUGS 2015 Bolek Wyslouch Techniques to study the plasma Radiation of hadrons Azimuthal asymmetry and radial expansion Energy loss by quarks, gluons

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

The Physics of RHIC Peter Jacobs Lawrence Berkeley National Laboratory

The Physics of RHIC Peter Jacobs Lawrence Berkeley National Laboratory The Physics of RHIC Peter Jacobs Lawrence Berkeley National Laboratory Why collide nuclei at high energy? RHIC: machine and experiments Physics from the first year of RHIC Outlook SLAC, Nov 13, 2001 The

More information

Characterising the QCD Plasma with the ALICE Experiment

Characterising the QCD Plasma with the ALICE Experiment Characterising the QCD Plasma with the ALICE Experiment Federico Antinori INFN, Padova, Italy and CERN, Geneva, Switzerland The Standard Model and QCD strong interaction: binds quarks into hadrons binds

More information

Dihadron correlations from AMPT

Dihadron correlations from AMPT Dihadron correlations from AMPT Che-Ming Ko Texas A&M University AMPT Anisotropic flows Dihadron azimuthal correlations 2D dihadron correlations Based on work with Jun Xu, PRC 83, 021903(R) (2011); 034904

More information

Particle Physics Phenomenology Part 10 March 20, 2018

Particle Physics Phenomenology Part 10 March 20, 2018 1 Particle Physics Phenomenology Part 10 March 20, 2018 2 Outline Part 1 The medium temperature Hard probes Part 2 The standard candles Jets and high p T particles Quarkonium Soft medium properties Collective

More information

Studying collective phenomena in pp and A-A collisions with the ALICE experiment at the LHC

Studying collective phenomena in pp and A-A collisions with the ALICE experiment at the LHC Studying collective phenomena in pp and A-A collisions with the ALICE experiment at the LHC Ivan Ravasenga Politecnico di Torino and I.N.F.N. 56 th course, Erice (Sicily, Italy) 14-23.06.2018 Ivan Ravasenga

More information

Strongly interacting quantum fluids: Experimental status

Strongly interacting quantum fluids: Experimental status Strongly interacting quantum fluids: Experimental status Thomas Schaefer North Carolina State University Perfect fluids: The contenders QGP (T=180 MeV) Liquid Helium (T=0.1 mev) Trapped Atoms (T=0.1 nev)

More information

3 Lectures. Lecture 1. Lecture 2. Lecture 3. Introduction to Heavy Ion Collisions. Hydrodynamics in Heavy Ion Collisions

3 Lectures. Lecture 1. Lecture 2. Lecture 3. Introduction to Heavy Ion Collisions. Hydrodynamics in Heavy Ion Collisions 1/2567 3 Lectures Lecture 1 Introduction to Heavy Ion Collisions Lecture 2 Hydrodynamics in Heavy Ion Collisions Lecture 3 Probing the Near-Perfect Fluid at RHIC Lecture 3 Probing the Near-Perfect Fluid

More information

Jet and Minijet Contributions to Transverse Momentum Correlations in High Energy Collisions

Jet and Minijet Contributions to Transverse Momentum Correlations in High Energy Collisions Jet and Minijet Contributions to Transverse Momentum Correlations in High Energy Collisions Mike Catanzaro August 14, 2009 1 Intro I have been studying the effects of jet and minijet production on momentum

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV + High p T with ATLAS and CMS in Heavy-Ion Collisions @ 2.76TeV Lamia Benhabib On behalf of ATLAS and CMS HCP 2011, Paris lamia.benhabib@llr.in2p3.fr +Outlook Introduction : hard probes Strongly interacting

More information

Relativistic Heavy Ions Collisions at PHENIX (some of) Recent results

Relativistic Heavy Ions Collisions at PHENIX (some of) Recent results Relativistic Heavy Ions Collisions at PHENIX (some of) Recent results Vladislav Pantuev Stony Brook University 1 Outline: 1. Jet quenching 2. Direct photons: high pt, thermal, correlations 3. J/Ψ, cold

More information

Preparations for the ATLAS Heavy Ion Physics Program at the LHC. Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration

Preparations for the ATLAS Heavy Ion Physics Program at the LHC. Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration Preparations for the ATLAS Heavy Ion Physics Program at the LHC Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration 1 QCD Hadronic phase: Bound states of quark and gluon pp collisions Heavy

More information

Shingo Sakai Univ. of California, Los Angeles

Shingo Sakai Univ. of California, Los Angeles Shingo Sakai Univ. of California, Los Angeles Non-photonic e result in AuAu b/c separation in non-photonic electron by electron-hadron correlations @ pp Bottom production Discuss heavy flavor energy loss

More information

Heavy Ion Physics Program of CERN: Alice Setup at LHC.

Heavy Ion Physics Program of CERN: Alice Setup at LHC. Heavy Ion Physics Program of CERN: Alice Setup at LHC. Dr.Sc. Mais Suleymanov Department of Physics CIIT Islamabad First School on LHC Physics: ALICE week NCP Islamabad, 12-30 October,2009 1 1 ρc 7 10

More information

Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS)

Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS) Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS) Wen-Chen Chang 章文箴 Institute of Physics, Academia Sinica Weekly Journal Club for Medium Energy Physics at IPAS March 21,

More information

Questions for the LHC resulting from RHIC Strangeness

Questions for the LHC resulting from RHIC Strangeness Questions for the LHC resulting from RHIC Strangeness Outline Intermediate p T strangeness production not jets! (Credit for work goes to Betty Abelev & Jana Bielcikova) Helen Caines Yale University ALICE

More information

A Senior Honors Thesis

A Senior Honors Thesis A Study Using Relativistic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions: The Quark-Gluon-Plasma to Hadron Phase Transition and LHC Predictions A Senior Honors Thesis Presented in Partial Fulfillment

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk Beijing Charmed hadron signals of partonic medium Olena Linnyk Our goal properties of partonic matter Hadron-string models Experiment QGP models Observables Hadron abundances J/Ψ anomalous suppression

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 2: Experimental Discoveries Columbia University Reminder- From Lecture 1 2 General arguments suggest that for temperatures T ~ 200 MeV, nuclear

More information

Jet Medium Interactions

Jet Medium Interactions Jet Medium Interactions Yasuki Tachibana Nishinippon Institute of Technology ( Central China Normal University) ATHIC 216, New Delhi, India, 19 February 216 Introduction Jet energy loss in QGP medium Bjorken

More information

(Some) Bulk Properties at RHIC

(Some) Bulk Properties at RHIC (Some) Bulk Properties at RHIC Many thanks to organizers! Kai Schweda, University of Heidelberg / GSI Darmstadt 1/26 EMMI workshop, St. Goar, 31 Aug 3 Sep, 2009 Kai Schweda Outline Introduction Collectivity

More information

Exploring the QGP with Jets at ALICE

Exploring the QGP with Jets at ALICE Exploring the QGP with Jets at ALICE Oliver Busch University of sukuba Oliver Busch HI café, okyo 217/1 1 jets in pp collisions jets in heavy-ion collisions jet nuclear modification factor event plane

More information

Charmonium Production and the Quark Gluon Plasma

Charmonium Production and the Quark Gluon Plasma Charmonium Production and the Quark Gluon Plasma introductory remarks on charmonium and QGP discussion of time scales and open charm conservation equation remarks on 'cold nuclear matter effects' the statistical

More information

Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma

Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma Professor David Evans The University of Birmingham Nuclear Physics Summer School Queen s University, Belfast XX th August 2017 Outline of Lectures

More information

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting PHY357 Lecture 14 Applications of QCD Varying coupling constant Jets and Gluons Quark-Gluon plasma Colour counting The proton structure function (not all of section 5.8!) Variable Coupling Constants! At

More information

Correlations and Fluctuations in Nuclear Collisions - Experimental Overview

Correlations and Fluctuations in Nuclear Collisions - Experimental Overview Correlations and Fluctuations in Nuclear Collisions - Experimental Overview Gunther Roland - MIT Supercomputing RHIC Physics TIFR, Mumbai Dec 5-9 2005 This talk dn/dη/ Pseudorapidity Hadron

More information

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Hydrodynamics Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad First School on LHC Physics, NCP, Islamabad Oct 28, 2009 1 Outline QGP Evolution Centrality Why Hydrodynamics? What is a flow? Percolation

More information

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by SAR Nuclear Physics Institute, Academy of Sciencis of Czech Republic, Na ruhlarce 39/64, 180 86 Prague, Czech Republic

More information

What is a heavy ion? Accelerator terminology: Any ion with A>4, Anything heavier than α-particle

What is a heavy ion? Accelerator terminology: Any ion with A>4, Anything heavier than α-particle Outline Introduction to Relativistic Heavy Ion Collisions and Heavy Ion Colliders. Production of particles with high transverse momentum. Collective Elliptic Flow Global Observables Particle Physics with

More information

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011 Correlations of Electrons from Heavy Flavor Decay with Hadrons in and Collisions arxiv:7.v [nucl-ex] Jul Anne M. Sickles, for the PHENIX Collaboration Brookhaven National Laboratory, Upton, NY E-mail:

More information

Soft physics results from the PHENIX experiment

Soft physics results from the PHENIX experiment Prog. Theor. Exp. Phys. 2015, 03A104 (15 pages) DOI: 10.1093/ptep/ptu069 PHYSICS at PHENIX, 15 years of discoveries Soft physics results from the PHENIX experiment ShinIchi Esumi, Institute of Physics,

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Selected Topics in the Theory of Heavy Ion Collisions Lecture 3

Selected Topics in the Theory of Heavy Ion Collisions Lecture 3 Selected Topics in the Theory of Heavy Ion Collisions Lecture 3 Urs Achim Wiedemann CERN Physics Department TH Division Varenna, 20 July 2010 Based on http://cdsweb.cern.ch/record/1143387/files/p277.pdf

More information