Intense laser-matter interaction: Probing the QED vacuum

Size: px
Start display at page:

Download "Intense laser-matter interaction: Probing the QED vacuum"

Transcription

1 Intense laser-matter interaction: Probing the QED vacuum Hartmut Ruhl Physics Department, LMU Munich, Germany ELI-NP, Bucharest March 11, 2011

2 Experimental configuration Two laser pulses (red) collide (yellow) and interact with an electron beam (blue). Energetic photons are generated (black). Under extreme conditions pairs can be produced.

3 Control parameter If we assume an electron interacting with a constant magnetic field B the peak of the emitted radiation spectrum versus its kinetic energy scales like ω 0 ɛ ( ɛ m ) 3 = B ɛ m E s, ω 0 = eb ɛ, E s = m2 e. This is equivalent to the quantum efficiency parameter χ χ = e (F µν p ν ) 2 = γ ( ) 2 E + v ( v E ) 2 B. m 3 c 4 E s c

4 Total transition rate The total transition rate for radiation is W rad α m2 c 4 χ 2 3. ɛ The larger χ is the more energetic photons become. Their emission will also be more likely as compared to classical Compton. The threshold for nonlinear photon emission scales as γ a a s > 1, a = ee m ω c, a s = ee s m ωc. Unlike photon generation via Compton scattering the emission can now be controled via the particle energy γ and the field stength a measured on the Schwinger scale a s.

5 W rad in a rotating electric field E(t) = (E 0 cos ωt, E 0 sin ωt) p(t) = e E(t), p(t 0 ) = 0 p x (t) = mca sin ωt p y (t) = mca (1 cos ωt) W rad (t) = ( a ω a mc 2 sin 4 ωt a αmc 2 sin 2 ωt 2 2 ) 2 3

6 W rad

7 Photon emission The energy distribution of the probability rate for photon emission by electron in electromagnetic field is given by (see: Fedotov, Ritus, Baier, Landau) dw rad (ε γ ) dε γ = αm2 c 4 ε 2 e x ( ) 2 Ai (ξ) dξ + x + χ γ x Ai (x) The parameter x is given by x = χ γ /χ e (χ e χ γ ) with 0 χ γ < χ e, Ai is the Airy function, ε γ, and ε e are the energies of the photon and electron, respectively. The quantum efficiency parameters χ e and χ γ are given by v χ e = e u t m 3 c 4 v χ γ = e u t m 3 c 4 ε 2 E + p H! ( p E) 2, c ε 2 E + k H! ( k E) 2. c

8 Cascading Starting from a seed electron in an intense laser field a cascade is triggered.

9 Pair creation The energy distribution of the probability rate for direct pair creation by photons is given by (see: Fedotov, Ritus, Baier, Landau) dw cr (ε e ) dε e = αm2 c 4 ε 2 γ y ( ) 2 Ai (ξ) dξ + y χ γ y Ai (y) The parameter y is given by y = χ γ /χ e (χ γ χ e ) with 0 χ e < χ γ. The quantum efficiency parameters χ e and χ γ are given on the previous slide.

10 Kinetic equations for e, e + and γ Each phase space volume element for electrons and positrons has gains and losses. The corresponding rate equations are t + v x + F p f ± ( x, p, t) Z = d 3 k dw E, B Z rad d 3 ( k, p + k) f ± ( x, p + k, t) f ± ( x, p, t) k Z + d 3 dw E, B pair k d 3 p ( k, p) f γ ( x, k, t). d 3 k dw E, B rad d 3 ( k, p) k Each phase space element for photons has gains and losses. The corresponding balance is t + c2 k ω x! Z f γ ( x, k, t) = d 3 p dw E, B rad d 3 ( k, p) ˆf +( x, p, t) + f ( x, p, t) k Z f γ ( x, k, t) d 3 p dw E, B pair d 3 p ( k, p).

11 Theoretical estimates (Fedotov, 2010) Cascading is a double chain process between electrons, positrons, and photons. The e + e -multiplicity of the cascade grows exponentially as N(t) e Γt, Γ 1 mc αµ 1/4 2 ω t em, µ = E αe s.

12 Cascading Electrons (red), positrons (blue), and photons (black). Trajectory of original seed (magenta).

13 Exponential growth of N e + e N(t) e Γt Γ 1/t em αµ 1/4 mc 2 ω/ The number of pairs N e + e as a function of time (results of three MC simulations for a 0 = , ω = 1 ev, Γ = 4.91 ± 0.75). Parametric study of the growth rate Γ(µ) for pairs in the range between a = (10 100) 10 4, for ω = 1 ev, and ω = 0.66 ev.

14 Primary electron dynamics Figure: χ e (t) of a primary electron in the laser field with a 0 = and ω = 1 ev as a function of time for three Monte-Carlo simulations. The analytical estimate in the absence of QED processes is plotted in purple. Right plot: Averaged electron quantum efficiency parameter < χ e > as a function of time found from the same simulations.

15 Scaling of energy and χ e ε mc 2 µ 3/4 mc 2 ω χ µ 3/2 Characteristic energy ε of electrons as a function of µ. Characteristic quantum efficiency parameter χ e of electrons as a function of µ.

16 Electrons injected into a focused laser beam Simulations for the field of two colliding Gaussian beams. The focal spot is R λ and the intensity is I W /cm 2. In addition, 600 MeV electrons are injected. The plot shows the electron and positrons trajectories created in the laser focus. The observed multiplicity is still 2.5 nonlinear QED.

17 Conclusions Preliminary simulations for focused counter-propagating circularly polarized laser beams predict the onset of nonlinear QED effects at a few times W /cm 2 and a few 600 MeV electrons. ELI-NP can probably be used for novel radiation sources (see talk of Nina Elkina).

18 In collaboration with Alexander Fedotov, MEPhi, Moscow; Nina Elkina, LMU, Munich; Constantin Klier, LMU, Munich; Dietrich Habs, LMU, Munich Y. Hadad, L. Labun, J. Rafelski, N. Elkina, C. Klier, and H. Ruhl, Effects of radiation reaction relativistic laser acceleration, Phy. Rev. D 82, (2010). E. N. Nerush, I. Yu. Kostyukov, A. M. Fedotov, N. B. Narozhny, N. Elkina, and H. Ruhl, Laser Field Absorption in Self-Generated Electron-Positron Pair Plasma, Phys. Rev. Lett. 106, (2011). N. V. Elkina, A. M. Fedotov, I. Yu. Kostyukov, M. V. Legov, N. B. Narozhny, E. N. Nerush, and H. Ruhl QED cascades induced by circularly polarized laser fields, arxiv: (2010).

Simulating experiments for ultra-intense laser-vacuum interaction

Simulating experiments for ultra-intense laser-vacuum interaction Simulating experiments for ultra-intense laser-vacuum interaction Nina Elkina LMU München, Germany March 11, 2011 Simulating experiments for ultra-intense laser-vacuum interaction March 11, 2011 1 / 23

More information

Nonlinear Quantum Electrodynamics

Nonlinear Quantum Electrodynamics Nonlinear Quantum Electrodynamics Nikolay B. Narozhny National Research Nuclear University MEPHI, Russia Résidence de France Moscou, 26 avril 2013 Today, two exawatt class facilities in Europe are already

More information

Unruh effect & Schwinger mechanism in strong lasers?

Unruh effect & Schwinger mechanism in strong lasers? Unruh effect & Schwinger mechanism in strong lasers? Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Unruh effect & Schwinger mechanism in strong lasers? p.1/14 Unruh Effect Uniformly accelerated

More information

QED processes in intense laser fields

QED processes in intense laser fields QED processes in intense laser fields Anton Ilderton Dept. Physics, Umeå, Sweden 22 September, QFEXT 2011, Benasque Phys.Rev.Lett. 106 (2011) 020404. Phys. Lett. B692 (2010) 250. With C. Harvey, F. Hebenstreit,

More information

Elementary processes in the presence of super-intense laser fields; beyond perturbative QED

Elementary processes in the presence of super-intense laser fields; beyond perturbative QED Elementary processes in the presence of super- ; beyond perturbative QED University of Bucharest, Faculty of Physics madalina.boca@g.unibuc.ro 30 June 2016 CSSP 2016, June 26-July 09, Sinaia 1 Overview

More information

IZEST Pair Plasma Physics and Application to Astrophysics

IZEST Pair Plasma Physics and Application to Astrophysics IZEST Pair Plasma Physics and Application to Astrophysics H. Takabe (Aki) ILE and GS of Science, Osaka University Collaborators: L. Baiotti, T. Moritaka, L. An, W. Li TN Kato, A. Hosaka, and A. Titov 1

More information

arxiv: v1 [physics.plasm-ph] 3 Mar 2015

arxiv: v1 [physics.plasm-ph] 3 Mar 2015 Quantum radiation reaction in laser-electron beam collisions T. G. Blackburn 1, C. P. Ridgers 2,3, J. G. Kirk 4, A. R. Bell 1,3 1 Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU,

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Relativistic Strong Field Ionization and Compton Harmonics Generation

Relativistic Strong Field Ionization and Compton Harmonics Generation Relativistic Strong Field Ionization and Compton Harmonics Generation Farhad Faisal Fakultaet fuer Physik Universitiaet Bielefeld Germany Collaborators: G. Schlegel, U. Schwengelbeck, Sujata Bhattacharyya,

More information

Radiation reaction in classical and quantum electrodynamics

Radiation reaction in classical and quantum electrodynamics Radiation reaction in classical and quantum electrodynamics Antonino Di Piazza Program on Frontiers of Intense Laser Physics Santa Barbara, California, August 12th 2014 OUTLINE Introduction to classical

More information

THE INTERACTION OF FREE ELECTRONS WITH INTENSE ELECTROMAGNETIC RADIATION

THE INTERACTION OF FREE ELECTRONS WITH INTENSE ELECTROMAGNETIC RADIATION THE ITERACTIO OF FREE ELECTROS WITH ITESE ELECTROMAGETIC RADIATIO M. BOCA, V. FLORESCU Department of Physics and Centre for Advanced Quantum Physics University of Bucharest, MG-11, Bucharest-Mãgurele,

More information

Recollision processes in strong-field QED

Recollision processes in strong-field QED Recollision processes in strong-field QED Antonino Di Piazza Program on Frontiers of Intense Laser Physics Santa Barbara, California, August 21st 2014 Outline Introduction to recollision processes in atomic

More information

Milano 18. January 2007

Milano 18. January 2007 Birefringence in Theoretisch-Physikalisches Institut, FSU Jena with T. Heinzl (University Plymouth) B. Liesfeld, K. Amthor, H. Schwörer (FS-University Jena) R. Sauerbrey FZ Dresden-Rossendorf Optics Communications

More information

arxiv: v1 [physics.plasm-ph] 19 Oct 2017

arxiv: v1 [physics.plasm-ph] 19 Oct 2017 Multi-GeV electron-positron beam generation from laser-electron scattering Marija Vranic 1,2,*, Ondrej Klimo 2,3, Georg Korn 2, and Stefan Weber 2 arxiv:171.722v1 [physics.plasm-ph] 19 Oct 217 1 GoLP/Instituto

More information

Extreme Light Infrastructure - Nuclear Physics ELI - NP

Extreme Light Infrastructure - Nuclear Physics ELI - NP Extreme Light Infrastructure - Nuclear Physics ELI - NP Nicolae-Victor Zamfir National Institute for Physics and Nuclear Engineering (IFIN-HH) Bucharest-Magurele, Romania www.eli-np.ro Bucharest-Magurele

More information

Particle-in-Cell Simulations of Particle Acceleration. E. A. Startsev and C. J. McKinstrie. Laboratory for Laser Energetics, U.

Particle-in-Cell Simulations of Particle Acceleration. E. A. Startsev and C. J. McKinstrie. Laboratory for Laser Energetics, U. Particle-in-Cell Simulations of Particle Acceleration E. A. Startsev and C. J. McKinstrie Laboratory for Laser Energetics, U. of Rochester Previous analytical calculations suggest that a preaccelerated

More information

arxiv: v1 [physics.plasm-ph] 15 May 2015

arxiv: v1 [physics.plasm-ph] 15 May 2015 Measuring quantum radiation reaction in laser electron-beam collisions arxiv:1505.04178v1 [physics.plasm-ph] 15 May 2015 T G Blackburn Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1

More information

arxiv: v1 [physics.plasm-ph] 24 Apr 2013

arxiv: v1 [physics.plasm-ph] 24 Apr 2013 On extreme field limits in high power laser matter interactions: iation dominant regimes in high intensity electromagnetic wave interaction with electrons arxiv:1304.6519v1 [physics.plasm-ph] 24 Apr 2013

More information

Introduction to intense laser-matter interaction

Introduction to intense laser-matter interaction Pohang, 22 Aug. 2013 Introduction to intense laser-matter interaction Chul Min Kim Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST) & Center for Relativistic

More information

Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations

Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations 1 Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations Yu.A.Mikhailov, L.A.Nikitina, G.V.Sklizkov, A.N.Starodub, M.A.Zhurovich P.N.Lebedev Physical Institute,

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

τ lepton mass measurement at BESIII

τ lepton mass measurement at BESIII τ lepton mass measurement at BESIII J. Y. Zhang 1* on behalf of BESIII collaboration 1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China * jyzhang@ihep.ac.cn November

More information

Dynamically assisted Sauter-Schwinger effect

Dynamically assisted Sauter-Schwinger effect Dynamically assisted Sauter-Schwinger effect Ralf Schützhold Fachbereich Physik Universität Duisburg-ssen Dynamically assisted Sauter-Schwinger effect p.1/16 Dirac Sea Schrödinger equation (non-relativistic)

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas T.Okada, Y.Mikado and A.Abudurexiti Tokyo University of Agriculture and Technology, Tokyo -5, Japan

More information

Lecture on: Multiphoton Physics. Carsten Müller

Lecture on: Multiphoton Physics. Carsten Müller Lecture on: Multiphoton Physics Carsten Müller Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf Max-Planck-Institut für Kernphysik, Heidelberg IMPRS-QD Annual Event, MPIK, Heidelberg,

More information

arxiv: v2 [physics.ins-det] 17 Jun 2014

arxiv: v2 [physics.ins-det] 17 Jun 2014 Preprint typeset in JINST style - HYPER VERSION Compton Backscattering for the Calibration of KEDR Tagging System arxiv:146.244v2 [physics.ins-det] 17 Jun 214 V.V. Kaminskiy a,b, N.Yu. Muchnoi a,c, and

More information

New horizons for extreme light physics with mega-science project XCELS

New horizons for extreme light physics with mega-science project XCELS Eur. Phys. J. Special Topics 223, 1105 1112 (2014) c EDP Sciences, Springer-Verlag 2014 DOI: 10.1140/epjst/e2014-02161-7 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Review New horizons for extreme light

More information

THE POSSIBILITY OF PRECISE MEASUREMENT OF ABSOLUTE ENERGY OF THE ELECTRON BEAM BY MEANS OF RESONANCE ABSORPTION METHOD R.A.

THE POSSIBILITY OF PRECISE MEASUREMENT OF ABSOLUTE ENERGY OF THE ELECTRON BEAM BY MEANS OF RESONANCE ABSORPTION METHOD R.A. THE POSSIBILITY OF PRECISE MEASUREMENT OF ABSOLUTE ENERGY OF THE ELECTRON BEAM BY MEANS OF RESONANCE ABSORPTION METHOD R.A. Melikian Yerevan Physics Institute, Yerevan, Armenia Abstract In this report

More information

Quantitative Assessment of Scattering Contributions in MeV-Industrial X-ray Computed Tomography

Quantitative Assessment of Scattering Contributions in MeV-Industrial X-ray Computed Tomography 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16530 Quantitative Assessment of Scattering

More information

Electron-Positron Pair Production in Strong Electric Fields

Electron-Positron Pair Production in Strong Electric Fields Electron-Positron Pair Production in Strong Electric Fields Christian Kohlfürst PhD Advisor: Reinhard Alkofer University of Graz Institute of Physics Dissertantenseminar Graz, November 21, 2012 Outline

More information

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s SLAC Summer School on Electron and Photon Beams Tor Raubenheimer Lecture #: Inverse Compton and FEL s Outline Synchrotron radiation Bending magnets Wigglers and undulators Inverse Compton scattering Free

More information

Interaction of Particles with Matter

Interaction of Particles with Matter Chapter 10 Interaction of Particles with Matter A scattering process at an experimental particle physics facility is called an event. Stable particles emerging from an event are identified and their momenta

More information

Supplementary Information

Supplementary Information 1 Supplementary Information 3 Supplementary Figures 4 5 6 7 8 9 10 11 Supplementary Figure 1. Absorbing material placed between two dielectric media The incident electromagnetic wave propagates in stratified

More information

Thomson Scattering from Nonlinear Electron Plasma Waves

Thomson Scattering from Nonlinear Electron Plasma Waves Thomson Scattering from Nonlinear Electron Plasma Waves A. DAVIES, 1 J. KATZ, 1 S. BUCHT, 1 D. HABERBERGER, 1 J. BROMAGE, 1 J. D. ZUEGEL, 1 J. D. SADLER, 2 P. A. NORREYS, 3 R. BINGHAM, 4 R. TRINES, 5 L.O.

More information

Tests of non-linear QED in the collision of electron beams with laser beams

Tests of non-linear QED in the collision of electron beams with laser beams Tests of non-linear QED in the collision of electron beams with laser beams Andreas Ringwald in collaboration/discussion with Paola Arias (DESY), Holger Gies (Jena), Axel Lindner (DESY), Gerhard Paulus

More information

Measurements of the Proton and Kaon Form Factors via ISR at BABAR

Measurements of the Proton and Kaon Form Factors via ISR at BABAR Measurements of the Proton and Kaon Form Factors via ISR at BABAR Fabio Anulli INFN Sezione di Roma on behalf of the BABAR Collaboration HADRON 015 XVI International Conference on Hadron Spectroscopy 13

More information

Studying quantum beamstrahlung and nonperturbative QED with beam-beam collisions at FACET-II

Studying quantum beamstrahlung and nonperturbative QED with beam-beam collisions at FACET-II Studying quantum beamstrahlung and nonperturbative QED with beam-beam collisions at FACET-II FACET-II Science Workshop 2017 @ SLAC October 20th, 2017 Sebastian Meuren Department of Astrophysical Sciences,

More information

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light Chapter 18 Fundamentals of Spectrophotometry Properties of Light Electromagnetic Radiation energy radiated in the form of a WAVE caused by an electric field interacting with a magnetic field result of

More information

Double Compton scattering in a constant crossed field and approximations used in simulation

Double Compton scattering in a constant crossed field and approximations used in simulation Journal of Physics: Conference Series OPEN ACCESS Double Compton scattering in a constant crossed field and approximations used in simulation To cite this article: B King 2015 J. Phys.: Conf. Ser. 594

More information

Relativistic reconnection at the origin of the Crab gamma-ray flares

Relativistic reconnection at the origin of the Crab gamma-ray flares Relativistic reconnection at the origin of the Crab gamma-ray flares Benoît Cerutti Center for Integrated Plasma Studies University of Colorado, Boulder, USA Collaborators: Gregory Werner (CIPS), Dmitri

More information

Interaction of Electron and Photons with Matter

Interaction of Electron and Photons with Matter Interaction of Electron and Photons with Matter In addition to the references listed in the first lecture (of this part of the course) see also Calorimetry in High Energy Physics by Richard Wigmans. (Oxford

More information

Generation of GeV positron and γ-photon beams with controllable angular momentum by intense lasers

Generation of GeV positron and γ-photon beams with controllable angular momentum by intense lasers Generation of GeV positron and γ-photon beams with controllable angular momentum by intense lasers Authors: Xing-Long Zhu 1, 2, Tong-Pu Yu 3, Min Chen 1, 2, Su-Ming Weng 1, 2 1, 2, 4, 5 and Zheng-Ming

More information

Chapter 2 Radiation-Matter Interactions

Chapter 2 Radiation-Matter Interactions Chapter 2 Radiation-Matter Interactions The behavior of radiation and matter as a function of energy governs the degradation of astrophysical information along the path and the characteristics of the detectors.

More information

remsstrahlung 1 Bremsstrahlung

remsstrahlung 1 Bremsstrahlung remsstrahlung 1 Bremsstrahlung remsstrahlung 2 Bremsstrahlung A fast moving charged particle is decelerated in the Coulomb field of atoms. A fraction of its kinetic energy is emitted in form of real photons.

More information

PIC simulations of laser interactions with solid targets

PIC simulations of laser interactions with solid targets PIC simulations of laser interactions with solid targets J. Limpouch, O. Klimo Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, Czech Republic

More information

BIG A Gamma Ray Source at FACET-II

BIG A Gamma Ray Source at FACET-II BIG A Gamma Ray Source at FACET-II Laser-Driven Radiation Sources for Nuclear Applications, GWU, December 13-15, 2015 Carsten Hast SLAC Outline FACET-II in a Nutshell BIG: Beams of Intense Gamma-Rays at

More information

Critical Acceleration

Critical Acceleration Critical Acceleration presented by Johann Rafelski The University of Arizona Credits to: Lance Labun and Yaron Hadad Sommerfeld Theory Center, LMU, May 25, 2011 In collisions of ultra-intense laser-pulse

More information

The Strange Physics of Nonabelian Plasmas

The Strange Physics of Nonabelian Plasmas The Strange Physics of Nonabelian Plasmas Guy Moore, McGill University Review: What does Nonabelian mean? Instability of a Uniform magnetic field Radiation and the LPM effect Plasma instabilities My units:

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nuclear and Particle Physics (5110) March 23, 2009 From Nuclear to Particle Physics 3/23/2009 1 Nuclear Physics Particle Physics Two fields divided by a common set of tools Theory: fundamental

More information

CLEO Results From Υ Decays

CLEO Results From Υ Decays CLEO Results From Υ Decays V. Credé 1 2 1 Cornell University, Ithaca, NY 2 now at Florida State University Tallahassee, FL Hadron 05 Outline 1 Introduction The Υ System CLEO III Detector CLEO III Υ Data

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Laser trigged proton acceleration from ultrathin foil

Laser trigged proton acceleration from ultrathin foil Laser trigged proton acceleration from ultrathin foil A.V. Brantov 1, V. Yu. Bychenkov 1, D. V. Romanov 2, A. Maksimchuk 3 1 P. N. Lebedev Physics Institute RAS, Moscow 119991, Russia 2 All-Russia Research

More information

Strong-Field QED and High-Power Lasers

Strong-Field QED and High-Power Lasers LC2006 16-05-2006 with: O. Schröder (UoP science + computing, Tübingen) B. Liesfeld, K.-U. Amthor, H. Schwörer and A. Wipf (FSU Jena) R. Sauerbrey, FZ Rossendorf Outline Introduction 1. Introduction QED

More information

Astrophysical Radiation Processes

Astrophysical Radiation Processes PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes 3: Relativistic effects I Dr. J. Hatchell, Physics 407, J.Hatchell@exeter.ac.uk Course structure 1. Radiation basics. Radiative transfer.

More information

PHYS 5012 Radiation Physics and Dosimetry

PHYS 5012 Radiation Physics and Dosimetry PHYS 5012 Radiation Physics and Dosimetry Tuesday 12 March 2013 What are the dominant photon interactions? (cont.) Compton scattering, photoelectric absorption and pair production are the three main energy

More information

Complete description of polarization effects in the nonlinear Compton scattering II. Linearly polarized laser photons

Complete description of polarization effects in the nonlinear Compton scattering II. Linearly polarized laser photons Complete description of polarization effects in the nonlinear Compton scattering II. Linearly polarized laser photons arxiv:hep-ph/0311v 10 Dec 003 D.Yu. Ivanov 1, G.L. Kotkin, V.G. Serbo 1 Sobolev Institute

More information

Simulations of relativistic reconnection in pulsar wind nebulae and pulsar winds

Simulations of relativistic reconnection in pulsar wind nebulae and pulsar winds Simulations of relativistic reconnection in pulsar wind nebulae and pulsar winds Benoît Cerutti Lyman Spitzer Jr. Fellow Princeton University, Dept. of Astrophysical Sciences Collaborators @ Colorado :

More information

IHEP-BINP CEPC accelerator collaboration workshop Beam energy calibration without polarization

IHEP-BINP CEPC accelerator collaboration workshop Beam energy calibration without polarization IHEP-BINP CEPC accelerator collaboration workshop Beam energy calibration without polarization Nickolai Muchnoi Budker INP, Novosibirsk January 12, 2016 Nickolai Muchnoi IHEP-BINP CEPC workshop January

More information

INTRODUCTION. As shown in Figure 1a, the phenomena of lightningmesosphere-ionosphere

INTRODUCTION. As shown in Figure 1a, the phenomena of lightningmesosphere-ionosphere ABSTRACT Intense, transient quasi-electrostatic (QE) fields, which exist above the thunderclouds following a positive cloud-to-ground lightning discharge, can produce an upward travelling runaway electron

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Status for 2017, CERN NA63 6. June 2017 U.I. Uggerhøj, T.N. Wistisen 1) Department of Physics and Astronomy, Aarhus University, Denmark NA63 Abstract In the NA63

More information

Passage of particles through matter

Passage of particles through matter Passage of particles through matter Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University September 11, 2017 Delta rays During ionization, the energy is transferred to electrons

More information

arxiv:hep-ph/ v1 29 May 2000

arxiv:hep-ph/ v1 29 May 2000 Photon-Photon Interaction in a Photon Gas Markus H. Thoma Theory Division, CERN, CH-1211 Geneva, Switzerland and Institut für Theoretische Physik, Universität Giessen, 35392 Giessen, Germany arxiv:hep-ph/0005282v1

More information

PIC modeling of particle acceleration and high-energy radiation in pulsars

PIC modeling of particle acceleration and high-energy radiation in pulsars PIC modeling of particle acceleration and high-energy radiation in pulsars Benoît Cerutti IPAG, CNRS, Université Grenoble Alpes In collaboration with : Sasha Philippov (Princeton), Anatoly Spitkovsky (Princeton),

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

arxiv: v2 [physics.plasm-ph] 11 Aug 2015

arxiv: v2 [physics.plasm-ph] 11 Aug 2015 Extended PIC schemes for physics in ultra-strong laser fields: review and developments A. Gonoskov, 1, 2, 3, S. Bastrakov, 3 E. Efimenko, 2, 3 A. Ilderton, 1 M. Marklund, 1 I. Meyerov, 3 A. Muraviev, 2,

More information

Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

Tracking properties of the ATLAS Transition Radiation Tracker (TRT) 2 racking properties of the ALAS ransition Radiation racker (R) 3 4 5 6 D V Krasnopevtsev on behalf of ALAS R collaboration National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),

More information

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging G. Golovin 1, S. Banerjee 1, C. Liu 1, S. Chen 1, J. Zhang 1, B. Zhao 1, P. Zhang 1, M. Veale 2, M. Wilson

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION. Multi-TeV CLIC Photon Collider Option. H. Burkhardt

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION. Multi-TeV CLIC Photon Collider Option. H. Burkhardt EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION CERN-SL-2000-070 CLIC Note 463 AP Multi-TeV CLIC Photon Collider Option H. Burkhardt Considerations for an option of γγ collisions at multi-tev

More information

GA A24166 SUPER-INTENSE QUASI-NEUTRAL PROTON BEAMS INTERACTING WITH PLASMA: A NUMERICAL INVESTIGATION

GA A24166 SUPER-INTENSE QUASI-NEUTRAL PROTON BEAMS INTERACTING WITH PLASMA: A NUMERICAL INVESTIGATION GA A24166 SUPER-INTENSE QUASI-NEUTRAL PROTON BEAMS INTERACTING WITH PLASMA: A NUMERICAL INVESTIGATION by H. RUHL, T.E. COWAN, and R.B. STEPHENS OCTOBER 2 DISCLAIMER This report was prepared as an account

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

Laser wakefield electron acceleration to multi-gev energies

Laser wakefield electron acceleration to multi-gev energies Laser wakefield electron acceleration to multi-gev energies N.E. Andreev Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Moscow Institute of Physics and Technology, Russia

More information

arxiv: v1 [physics.plasm-ph] 8 Feb 2018

arxiv: v1 [physics.plasm-ph] 8 Feb 2018 arxiv:1802.02927v1 [physics.plasm-ph] 8 Feb 2018 From quantum to classical modelling of radiation reaction: a focus on the radiation spectrum F. Niel 1,, C. Riconda 1, F. Amiranoff 1, M. Lobet 2, J. Derouillat

More information

Photoneutron reactions studies at ELI-NP using a direct neutron multiplicity sorting method Dan Filipescu

Photoneutron reactions studies at ELI-NP using a direct neutron multiplicity sorting method Dan Filipescu EUROPEAN UNION GOVERNMENT OF ROMANIA Sectoral Operational Programme Increase of Economic Competitiveness Investments for Your Future Structural Instruments 2007-2013 Extreme Light Infrastructure Nuclear

More information

Laser Ion Acceleration: Status and Perspectives for Fusion

Laser Ion Acceleration: Status and Perspectives for Fusion Laser Ion Acceleration: Status and Perspectives for Fusion Peter G. Thirolf, LMU Munich Outline: laser-particle acceleration fission-fusion mechanism: with ultra-dense ion beams towards r-process path

More information

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics Particle Detectors Summer Student Lectures 2010 Werner Riegler, CERN, werner.riegler@cern.ch History of Instrumentation History of Particle Physics The Real World of Particles Interaction of Particles

More information

Crystal Channeling Radiation and Volume Reflection Experiments at SLAC

Crystal Channeling Radiation and Volume Reflection Experiments at SLAC Crystal Channeling Radiation and Volume Reflection Experiments at SLAC Robert Noble, Andrei Seryi, Jim Spencer, Gennady Stupakov SLAC National Accelerator Laboratory Talk originally given at 4 th Crystal

More information

Experiments with combined laser and gamma beams at ELI-NP

Experiments with combined laser and gamma beams at ELI-NP EUROPEAN UNION GOVERNMENT OF ROMANIA Sectoral Operational Programme Increase of Economic Competitiveness Investments for Your Future Structural Instruments 2007-2013 Extreme Light Infrastructure Nuclear

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Title Surface Interaction under Oblique Intense. Author(s) Ruhl, H.; Sentoku, Y.; Mima, K.; Ta. Citation Physical Review Letters. 82(4) P.

Title Surface Interaction under Oblique Intense. Author(s) Ruhl, H.; Sentoku, Y.; Mima, K.; Ta. Citation Physical Review Letters. 82(4) P. Title Collimated Electron Jets by Surface Interaction under Oblique Intense I Author(s) Ruhl, H.; Sentoku, Y.; Mima, K.; Ta Citation Physical Review Letters. 82(4) P.74 Issue 1999-01-25 Date Text Version

More information

3. Particle-like properties of E&M radiation

3. Particle-like properties of E&M radiation 3. Particle-like properties of E&M radiation 3.1. Maxwell s equations... Maxwell (1831 1879) studied the following equations a : Gauss s Law of Electricity: E ρ = ε 0 Gauss s Law of Magnetism: B = 0 Faraday

More information

Virtual observation of the Unruh effect

Virtual observation of the Unruh effect *Instituto de Física Teórica (IFT) - UNESP 03/03/2017 Outline What is the Unruh effect? What does it mean to observe the Unruh effect? The Unruh effect and Larmor radiation. Quantum field theory reminder

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

Status report on parity violation in the (1232) resonance

Status report on parity violation in the (1232) resonance Status report on parity violation in the (1232) resonance Luigi Capozza A4 Collaboration Institut für Kernphysik Johannes Gutenberg Universität Mainz Institutsseminar - 6.2.2006 Luigi Capozza, Institutsseminar

More information

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES The purpose of this problem is to develop a simple theory to understand the so-called laser cooling and optical molasses phenomena. This

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

arxiv: v3 [physics.plasm-ph] 17 Dec 2016

arxiv: v3 [physics.plasm-ph] 17 Dec 2016 Seeded QED cascades in counter propagating laser pulses arxiv:1511.07503v3 [physics.plasm-ph] 17 Dec 2016 T. Grismayer, 1, M. Vranic, 1 J. L. Martins, 1 R. A. Fonseca, 1, 2 and L. O. Silva 1, 1 GoLP/Instituto

More information

LIST OF PUBLICATIONS

LIST OF PUBLICATIONS LIST OF PUBLICATIONS 1. F. Ehlotzky,Klein-Winkel Delbrück-Streuung, Acta Physica Austriaca 16, 374 (1963). 2. F. Ehlotzky,Small-Angle Delbrück Scattering, Nuovo Cimento 31, 1037 (1964). 3. F. Ehlotzky,

More information

Determination of e/m, mc 2, and the Relations Among Momentum, Velocity, and Energy of Relativistic Electrons

Determination of e/m, mc 2, and the Relations Among Momentum, Velocity, and Energy of Relativistic Electrons Determination of e/m, mc 2, and the Relations Among Momentum, Velocity, and Energy of Relativistic Electrons Edwin Ng MIT Department of Physics (Dated: November 16, 2011 Using a spherical electromagnet,

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

High energy X-ray vortex generation using inverse Compton scattering

High energy X-ray vortex generation using inverse Compton scattering 22nd International Spin Symposium 9/28/216 High energy X-ray vortex generation using inverse Compton scattering Yoshitaka Taira National Institute of Advanced Industrial Science and Technology (AIST),

More information

PhD Thesis. Nuclear processes in intense laser eld. Dániel Péter Kis. PhD Thesis summary

PhD Thesis. Nuclear processes in intense laser eld. Dániel Péter Kis. PhD Thesis summary PhD Thesis Nuclear processes in intense laser eld PhD Thesis summary Dániel Péter Kis BME Budapest, 2013 1 Background Since the creation of the rst laser light, there has been a massive progress in the

More information

Tight-Focusing of Short Intense Laser Pulses in Particle-in-Cell Simulations of Laser-Plasma Interaction

Tight-Focusing of Short Intense Laser Pulses in Particle-in-Cell Simulations of Laser-Plasma Interaction 16/05/2017, CTU in Prague Tight-Focusing of Short Intense Laser Pulses in Particle-in-Cell Simulations of Laser-Plasma Interaction Bc. Petr Valenta (petr.valenta@eli-beams.eu) Supervisors: doc. Ing. Ondrej

More information

ISR physics at BABAR

ISR physics at BABAR SLAC-PUB-499 ISR physics at BABAR S.Serednyakov, Budker Institute of Nuclear Physics, Novosibirsk, Russia Abstract A method of measuring e+e- annihilation cross sections at low energy s < 5 GeV, using

More information

Analysis of Runaway Electron Synchrotron Radiation in Alcator C-Mod

Analysis of Runaway Electron Synchrotron Radiation in Alcator C-Mod Analysis of Runaway Electron Synchrotron Radiation in Alcator C-Mod A. Tinguely 1, R. Granetz 1, A. Stahl 2, R. Mumgaard 1 Tuesday, November 17, 2015 C-Mod Oral Session APS DPP, Savannah, GA 1 Plasma Science

More information