# Passage of particles through matter

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Passage of particles through matter Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University September 11, 2017

2 Delta rays During ionization, the energy is transferred to electrons what happens to these electrons? if transferred energy is small, the electron is absorbed almost at the same point where the interaction occurred if the interaction involved a lot of energy transfer (head-on or almost head-on collision), the electron may travel a significant distance before it loses its energy these electrons are called delta rays (or delta ray electrons) If we model the passage of a particle though matter we want to distinguish between these situations don t want to simulate creation of electrons of low energies it s a waste of CPU time it s important to simulate the passage of delta rays of high energies they may escape the detector volume (so the deposited energy will be less than the one predicted by the Bethe formula), or they may produce additional ( secondary ) ionization In reality, there is no clear boundary between continuous energy loss and delta ray production, but in models there is usually a parameter ( delta ray cut-off ) above which the delta rays are considered real particles the actual cut-off value depends on the physics problem, typical values are kev A. Khanov (PHYS6260, OSU) Passage of particles through matter 9/11/17 2 / 1

3 Calculation of maximum electron energy Maximum energy transfer occurs in head-on collision { p0 = p 1 + p e E 0 + m e = E 1 + E e using E 1 = M 2 + p1 2 and squaring, E 0 + m e = M 2 + (p 0 p e ) 2 + E e p 0 p e = (E 0 + m e )(E e m e ) using E e = m e + p 2 e and squaring, [(E 0 + m e ) 2 p 2 0]E 2 e 2m e (E 0 + m e ) 2 E e + m 2 e[(e 0 + m e ) 2 + p 2 0] = 0 this is a quadratic equation w.r.t. E e, which has the solutions E e = m e (E 0 + m e ) 2 ± p 2 0 (E 0 + m e ) 2 p 2 0 the solution corresponds to the case without interaction the + solution is the one we are looking for A. Khanov (PHYS6260, OSU) Passage of particles through matter 9/11/17 3 / 1

4 Energies of delta rays The maximum energy of a delta ray electron can be significant For a proton (M = MeV) E e = 5(29) MeV at incident particle momentum of 2(5) GeV Relation between the electron kinetic energy T e and emission angle θ: cosθ = T e/p e T max e /p max e In general, the probability of a head-on collision is very low, most delta rays are soft for a β = 1 particle on average only one collision with T e > 10 kev will occur along a path length of 90 cm of Ar gas A. Khanov (PHYS6260, OSU) Passage of particles through matter 9/11/17 4 / 1

5 Particle scattering We discussed the quantitative picture of energy losses, but what about the path of the particle? one would expect that due to interactions with matter, particle path would deviate from a straight line If the interaction probability is very small (so the probability to have more than one interaction is negligible), we have single scattering described by the Rutherford formula dσ dω = ( 1 4πɛ 0 ) 2 z 2 e 4 M 2 c 4 β 4 1 sin 4 (θ/2) A. Khanov (PHYS6260, OSU) Passage of particles through matter 9/11/17 5 / 1

6 Multiple scattering If the number of interactions is large, it is multiple scattering the process described by Molière theory (Phys. Rev. 89 (1256) 1953) for small deflection angles, multiple scattering is roughly Gaussian with a width θ 0 given by 13.6 MeV θ 0 = z x/x 0 [ ln(x/x 0 )] βcp X 0 is a parameter called radiation length (more on that later) A. Khanov (PHYS6260, OSU) Passage of particles through matter 9/11/17 6 / 1

7 Electron interactions At low energies, electrons lose energy due to ionization just like other charged particles there are some differences between energy losses for electrons and positrons at low energies, e.g. annihillation is present for positrons but not for electrons At higher energies, the dominant mechanism of energy loss becomes bremsstrahlung (German: braking radiation ) in general, any accelerating charge radiates, and this leads to many phenomena (synchrotron radiation etc.) Bremsstrahlung usually refers to particles decelerating in the medium A. Khanov (PHYS6260, OSU) Passage of particles through matter 9/11/17 7 / 1

8 Photon interactions Photons don t have electric charge, so there is no ionization instead of steady loss, photons undergo catastrophic interactions leading to significant energy loss in a single act At low energies, photons mostly lose energy due to Compton scattering As the energy increases, the photon energy loss becomes dominated by pair production a photon can t just decay into a e + e pair, it would violate the 4-momentum conservation need presence of a nucleus A. Khanov (PHYS6260, OSU) Passage of particles through matter 9/11/17 8 / 1

9 Radiation length Radiation length X 0 : the mean distance over which a high energy electron loses all but 1/e of its energy by bremsstrahlung (de/dx) brems = E/X 0 Besides being a characteristic length for bremsstrahlung, X 0 is a scaling parameter for multiple scattering (as we ve seen) and also a characteristic length for the pair production by photons: σ = 7 A 9 X 0N A The radiation length defined as above is not exactly a constant since the energy loss (slightly) depends on the electron energy The definition implies that X 0 has units of length, but it is also common to multiply it by material density and measure X 0 in g/cm 2 A practical approximation: a fit to data, <2.5% accuracy for all elements except He [ 1 = 4αr 2 N A e Z(Z + 1) ln 287 ] X 0 A Z for A = 1 g/mol, 4αr 2 e N A A = (716.4 g/cm2 ) 1 A. Khanov (PHYS6260, OSU) Passage of particles through matter 9/11/17 9 / 1

10 Critical energy The energy at which the energy loss of electrons due to ionization becomes equal to the one due to bremsstrahlung is called critical energy E c When a high energy electron (photon) enters the absorber, it initiates an electromagnetic cascade as bremsstrahlung (pair production) generate lower energy photons (electrons) Eventually the energy of all involved electrons and photons falls below the critical energy and the rest of the energy is deposited through ionization (Compton scattering) A. Khanov (PHYS6260, OSU) Passage of particles through matter 9/11/17 10 / 1

### Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther

### Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

### Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

### CHARGED PARTICLE IONIZATION AND RANGE

CHAGD PATICL IONIZATION AND ANG Unlike the neutral radiations (e.g., neutrons and gamma/x rays), the charged particles (e.g., electrons, protons and alphas) are subjected to the coulombic forces from electrons

### The Bohr Model of Hydrogen

The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

### PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω

PHYS 352 Charged Particle Interactions with Matter Intro: Cross Section cross section σ describes the probability for an interaction as an area flux F number of particles per unit area per unit time dσ

### Chapter 2 Problem Solutions

Chapter Problem Solutions 1. If Planck's constant were smaller than it is, would quantum phenomena be more or less conspicuous than they are now? Planck s constant gives a measure of the energy at which

### LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate

Basics of Radiation Dosimetry for the Physicist http://en.wikipedia.org/wiki/ionizing_radiation I. Ionizing radiation consists of subatomic particles or electromagnetic waves that ionize electrons along

### Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015

Neutrino detection Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Sources of wild neutrinos The Big Bang The Atmosphere (cosmic rays) Super novae AGN's,

### Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

.101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

Physics of Radiography Yao Wang Polytechnic Institute of NYU Brooklyn, NY 11201 Based on J L Prince and J M Links Medical Imaging Signals and Based on J. L. Prince and J. M. Links, Medical Imaging Signals

### Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions

Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions Previously we considered interactions from the standpoint of photons: a photon travels along, what happens

### Particle Detectors : an introduction. Erik Adli/Are Strandlie, University of Oslo, August 2017, v2.3

Particle Detectors : an introduction Erik Adli/Are Strandlie, University of Oslo, August 2017, v2.3 Experimental High-Energy Particle Physics Event rate in ATLAS : N = L x (pp) 10 9 interactions/s Mostly

### (10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly.

Sample questions for Quiz 3, 22.101 (Fall 2006) Following questions were taken from quizzes given in previous years by S. Yip. They are meant to give you an idea of the kind of questions (what was expected

### Lecture 9 - Applications of 4 vectors, and some examples

Lecture 9 - Applications of 4 vectors, and some examples E. Daw April 4, 211 1 Review of invariants and 4 vectors Last time we learned the formulae for the total energy and the momentum of a particle in

### Interaction X-rays - Matter

Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

### Heavy charged particle passage through matter

Heavy charged particle passage through matter Peter H. Hansen University of Copenhagen Content Bohrs argument The Bethe-Bloch formula The Landau distribution Penetration range Biological effects Bohrs

### QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter 1. An atomic nucleus contains 39 protons and 50 neutrons. Its mass number (A) is a)

### Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 4

Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics Lecture 4 Karsten Heeger heeger@wisc.edu Homework Homework is posted on course website http://neutrino.physics.wisc.edu/teaching/phys736/

### CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

### LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH

LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH Lesson Objectives At the end of the lesson, student should able to: Define attenuation Explain interactions between x-rays and matter in

### Physics 111 Homework Solutions Week #9 - Thursday

Physics 111 Homework Solutions Week #9 - Thursday Monday, March 1, 2010 Chapter 24 241 Based on special relativity we know that as a particle with mass travels near the speed of light its mass increases

### Building a Tracking Detector for the P2 Experiment

Building a Tracking Detector for the P Experiment DPG Frühjahrstagung, Hamburg 016 Marco Zimmermann Institute for Nuclear Physics March 3, 016 The P Experiment: Overview The Idea Precision measurement

### Attenuation of Radiation in Matter. Attenuation of gamma particles

Attenuation of Radiation in Matter In this experiment we will examine how radiation decreases in intensity as it passes through a substance. Since radiation interacts with matter, its intensity will decrease

### Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics

SPH4UI Physics Modern understanding: the ``onion picture Nuclear Binding, Radioactivity Nucleus Protons tom and neutrons Let s see what s inside! 3 Nice Try Introduction: Development of Nuclear Physics

### Recitation on the Compton effect Solution

Recitation on the Compton effect Solution 1. Show that a photon cannot transfer all of its energy to a free electron. (Hint: Energy and momentum must be conserved.) Answer 1: If all the photon s energy

### CHAPTER 7 TEST REVIEW

IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

### Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( )

Quantum physics Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 (1885-1962) I can safely say that nobody understand quantum physics Richard Feynman

### (a) (i) State the proton number and the nucleon number of X.

PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

### Shielding Design Considerations for Proton Therapy Facilities

Shielding Design Considerations for Proton Therapy Facilities p p n π ± INC π 0 Nisy Elizabeth Ipe, Ph.D., C.H.P. Consultant, Shielding Design, Dosimetry & Radiation Protection San Carlos, CA, U.S.A. Email:

### Analysis of γ spectrum

IFM The Department of Physics, Chemistry and Biology LAB 26 Analysis of γ spectrum NAME PERSONAL NUMBER DATE APPROVED I. OBJECTIVES - To understand features of gamma spectrum and recall basic knowledge

### Simulation of Multiple Coulomb scattering in GEANT4 1. Simulation of Multiple Coulomb scattering in GEANT4

Simulation of Multiple Coulomb scattering in GEANT4 1 Simulation of Multiple Coulomb scattering in GEANT4 Simulation of Multiple Coulomb scattering in GEANT4 2 Single Coulomb scattering Single Coulomb

### The Configuration of the Atom: Rutherford s Model

CHAPTR 2 The Configuration of the Atom: Rutherford s Model Problem 2.2. (a) When α particles with kinetic energy of 5.00 MeV are scattered at 90 by gold nuclei, what is the impact parameter? (b) If the

### X-RAY PRODUCTION. Prepared by:- EN KAMARUL AMIN BIN ABDULLAH

X-RAY PRODUCTION Prepared by:- EN KAMARUL AMIN BIN ABDULLAH OBJECTIVES Discuss the process of x-ray being produced (conditions) Explain the principles of energy conversion in x-ray production (how energy

### PAIR AND TRIPLET PRODUCTION REVISITED FOR THE RADIOLOGIST*

VOL. 114, No. 3 PAIR AND TRIPLET PRODUCTION REVISITED FOR THE RADIOLOGIST* By RALPH D. REYMOND, M.D. BALTIMORE, I.- HE purpose of this paper is to elucidate in a simple manner the processes of pair and

### The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002)

The Compton Effect Martha Buckley MIT Department of Physics, Cambridge, MA 02139 marthab@mit.edu (Dated: November 26, 2002) We measured the angular dependence of the energies of 661.6 kev photons scattered

### THE NATURE OF THE ATOM. alpha particle source

chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

### Lecture 9. Isospin The quark model

Lecture 9 Isospin The quark model There is one more symmetry that applies to strong interactions. isospin or isotopic spin It was useful in formulation of the quark picture of known particles. We can consider

### Outline. Absorbed Dose in Radioactive Media. Introduction. Radiation equilibrium. Charged-particle equilibrium

Absorbed Dose in Radioactive Media Chapter F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry Outline General dose calculation considerations, absorbed fraction Radioactive disintegration

### ELECTROMAGNETIC SHOWERS. Paolo Lipari. Lecture 2

ELECTROMAGNETIC SHOWERS Paolo Lipari Lecture 2 Corsika school 26/Nov/2008 Bremsstrahlung Pair Creation BREMSSTRAHLUNG Fully ionized free nucleus (approximation of infinite mass) High Energy Limit (Full

### COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS

COLLEGE PHYSICS Chapter 30 ATOMIC PHYSICS Matter Waves: The de Broglie Hypothesis The momentum of a photon is given by: The de Broglie hypothesis is that particles also have wavelengths, given by: Matter

### GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

### X-Ray Emission and Absorption

X-Ray Emission and Absorption Author: Mike Nill Alex Bryant February 6, 20 Abstract X-rays were produced by two bench-top diffractometers using a copper target. Various nickel filters were placed in front

### Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

### PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes

### GAS TARGET BACKGROUND SUBTRACTION FOR TRITIUM/ARGON CONFIGURATION SHUJIE LI HALL A/C ANALYSIS WORKSHOP JUNE, 2017

GAS TARGET BACKGROUND SUBTRACTION FOR TRITIUM/ARGON CONFIGURATION SHUJIE LI HALL A/C ANALYSIS WORKSHOP JUNE, 2017 GAS TARGET CELL 2017 FALL E12-10-103 MARATHON E12-11-112 x>1 SRC E12-14-011 (e,e p) SRC

### Ionization Detectors. Mostly Gaseous Detectors

Ionization Detectors Mostly Gaseous Detectors Introduction Ionization detectors were the first electrical devices developed for radiation detection During the first half of the century: 3 basic types of

### Physics of Particle Detection

Physics of Particle Detection 113 Physics of Particle Detection Claus Grupen Department of Physics, University of Siegen, D-57068 Siegen, Germany e-mail: grupen@hep.physik.uni-siegen.de ABSTRACT In this

### QUANTUM MECHANICS Chapter 12

QUANTUM MECHANICS Chapter 12 Colours which appear through the Prism are to be derived from the Light of the white one Sir Issac Newton, 1704 Electromagnetic Radiation (prelude) FIG Electromagnetic Radiation

### Comparison of available measurements of the absolute air-fluorescence yield*

Comparison of available measurements of the absolute air-fluorescence yield* J. Rosado, F. Blanco and F. Arqueros Universidad Complutense de Madrid * J. Rosado et al., Astropart. Phys. 34 (2010) 164 Outline

IONIZING RADIATION RADIOLOGICAL PHYSICS The science of ionizing radiation and its interaction with matter Special interest in the energy absorbed Radiation dosimetry quantitative determination of that

### Rad T 290 Worksheet 2

Class: Date: Rad T 290 Worksheet 2 1. Projectile electrons travel from a. anode to cathode. c. target to patient. b. cathode to anode. d. inner shell to outer shell. 2. At the target, the projectile electrons

### Basic principles of x-ray production

Production of X-Rays part 1 George Starkschall, Ph.D. Lecture Objectives Identify what is needed to produce x-rays Describe how a diagnostic x-ray tube produces x-rays Describe the types of interactions

### Opacity and Optical Depth

Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

### Unit 6 Modern Physics

Unit 6 Modern Physics Early Booklet E.C.: + 1 Unit 6 Hwk. Pts.: / 46 Unit 6 Lab Pts.: / 16 Late, Incomplete, No Work, No Units Fees? Y / N Essential Fundamentals of Modern Physics 1. A photon s energy

### FI 3103 Quantum Physics

FI 3103 Quantum Physics Alexander A. Iskandar Physics of Magnetism and Photonics Research Group Institut Teknologi Bandung General Information Lecture schedule 17 18 9136 51 5 91 Tutorial Teaching Assistant

### Particle accelerators

Particle accelerators Charged particles can be accelerated by an electric field. Colliders produce head-on collisions which are much more energetic than hitting a fixed target. The center of mass energy

### Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

22.101 Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967),

### Introduction to Accelerator Physics Part 1

Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 27th July 2015 Pedro Castro / MPY Introduction to Accelerator Physics

### 2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission

. X-ray Sources.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission. Synchrotron Radiation Sources - Introduction - Characteristics of Bending Magnet

### 1 Monday, November 21: Inverse Compton Scattering

1 Monday, November 21: Inverse Compton Scattering When I did the calculations for the scattering of photons from electrons, I chose (for the sake of simplicity) the inertial frame of reference in which

### Coherent bremsstrahlung at the BEPC collider

Coherent bremsstrahlung at the BEPC collider arxiv:hep-ph/9805466v2 9 Jul 1998 Y.B.Ding Graduate School, USTC at Beijing, Academia Sinica, Beijing 100039, China and Department of Physics, University of

RADIATION EFFECTS AND DAMAGE The detrimental consequences of radiation are referred to as radiation damage. To understand the effects of radiation, one must first be familiar with the radiations and their

### X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015

X-ray Spectroscopy Danny Bennett and Maeve Madigan October 12, 2015 Abstract Various X-ray spectra were obtained, and their properties were investigated. The characteristic peaks were identified for a

### Imaging principle and experiment results of an 11 MeV low-energy proton radiography system

NUCLEAR SCIENCE AND TECHNIQUES 25, 060203 (2014) Imaging principle and experiment results of an 11 MeV low-energy proton radiography system LI Yi-Ding ( 李一丁 ), 1, ZHANG Xiao-Ding ( 张小丁 ), 1 WEI Tao ( 魏涛

### 1 Geant4 to simulate Photoelectric, Compton, and Pair production Events

Syed F. Naeem, hw-12, Phy 599 1 Geant4 to simulate Photoelectric, Compton, and Pair production Events 1.1 Introduction An Aluminum (Al) target of 20cm was used in this simulation to see the eect of incoming

### Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170

22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 See Homework #95 in "Chapter 12-Electrostatics" for the table of "Useful nformation" on atomic particles. 01. What is the energy

### Analysis of light elements in solids by elastic recoil detection analysis

University of Ljubljana Faculty of mathematics and physics Department of physics Analysis of light elements in solids by elastic recoil detection analysis 2nd seminar, 4th year of graduate physics studies

### Angular Distribution of Solar Gamma Rays and Solar Neutrons Simulated by GEANT4 Program

Angular Distribution of Solar Gamma Rays and Solar Neutrons Simulated by GEANT4 Program 1), K. Koga 1), S. Masuda 2), H. Matsumoto 1), Y. Muraki 2), S. Shibata 3), and Y. Tanaka 4) 1) Tsukuba Space Centre,

### DETECTORS. I. Charged Particle Detectors

DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

### 2.8.1 Properties of Electron Bremsstrahlung

2.8 Continuous X-Rays 93 2.8.1 Properties of Electron Bremsstrahlung For the production of electron Bremsstrahlung two mechanisms of the electron atom interaction are of importance: Ordinary Bremsstrahlung:

### THE COMPTON EFFECT Last Revised: January 5, 2007

B2-1 THE COMPTON EFFECT Last Revised: January 5, 2007 QUESTION TO BE INVESTIGATED: How does the energy of a scattered photon change after an interaction with an electron? INTRODUCTION: When a photon is

### Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.

Nuclear Physics PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html Periodic table of elements We saw that the periodic table of elements can

### High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

### Calorimeter for detection of the high-energy photons

Calorimeter for detection of the high-energy photons 26.06.2012 1 1. Introduction 2 1. Introduction 2. Theory of Electromagnetic Showers 3. Types of Calorimeters 4. Function Principle of Liquid Noble Gas

### COMPTON SCATTERING OF GAMMA RAYS

COMPTON SCATTERING OF GAMMA RAYS v2.7 Last revised: R. A. Schumacher, January 2017 I. INTRODUCTION Compton scattering is the name given to the scattering of high-energy gamma rays from electrons. The gamma

### Introduction to Nuclear Reactor Physics

Introduction to Nuclear Reactor Physics J. Frýbort, L. Heraltová Department of Nuclear Reactors 19 th October 2017 J. Frýbort, L. Heraltová (CTU in Prague) Introduction to Nuclear Reactor Physics 19 th

### Digital Calorimetry Using Pixel Sensors

Digital Calorimetry Using Pixel Sensors Cover art by Egbert Jonkers. ISBN: 978-94-028-0039-5 Digital Calorimetry Using Pixel Sensors Digitale Calorimetrie door middel van Pixel Sensors (met een samenvatting

### Physics at the Fermilab Tevatron Collider. Darien Wood Northeastern University

Physics at the Fermilab Tevatron Collider Darien Wood Northeastern University 1 Outline Introduction: collider experiments The Tevatron complex (review) Examples of physics studies at the Tevatron jet

### Exam 2 Development of Quantum Mechanics

PHYS40 (Spring 00) Riq Parra Exam # (Friday, April 1 th, 00) Exam Development of Quantum Mechanics Do NOT write your name on this exam. Write your class ID number on the top right hand corner of each problem

### Fluka advanced calculations on stopping power and multiple Coulomb scattering

Fluka advanced calculations on stopping power and multiple Coulomb scattering Andrea Fontana INFN Sezione di Pavia Outline Stopping power Ionization potential Range calculation: which range? Fluka options

Nuclear Fusion and Radiation Lecture 9 (Meetings 23 & 24) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Nuclear Fusion and Radiation p. 1/42 Radiation Interactions

### Physics 161 Homework 2 - Solutions Wednesday August 31, 2011

Physics 161 Homework 2 - s Wednesday August 31, 2011 Make sure your name is on every page, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

### Experiment 6 1. The Compton Effect Physics 2150 Experiment No. 6 University of Colorado

Experiment 6 1 Introduction The Compton Effect Physics 2150 Experiment No. 6 University of Colorado In some situations, electromagnetic waves can act like particles, carrying energy and momentum, which

### Gamma Spectroscopy. References: Objectives:

Gamma Spectroscopy References: G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York, 2000) W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How-to Approach,

### MEASURING THE LIFETIME OF THE MUON

B6-1 MEASURING THE LIFETIME OF THE MUON Last Revised September 19, 2006 QUESTION TO BE INVESTIGATED What is the lifetime τ of a muon? INTRODUCTION AND THEORY Muons are a member of a group of particles

### SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp in BC Science 10) into an

SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp. 286-301 in BC Science 10) Natural background radiation: It has the ability to interact with an

### Ingrid-Maria Gregor, DESY

Particle Detectors Ingrid-Maria Gregor, DESY Thanks to: Frank Simon, Christoph Rembser, Ulrich Koetz, Daniel Pitzl, Christian Joram, Carsten Niehbuhr, Reiner Wiegler, Marc Winter, Laci Andricek, Cinzia

### 1. Why photons? 2. Photons in a vacuum

Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

### There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

### Compton scattering of 662 kev gamma rays proposed by klein-nishina formula

Scientific Research and Essays Vol. 6(30), pp. 6312-6316, 9 December, 2011 Available online at http://www.academicjournals.org/sre DOI: 10.5897/SRE11.1303 ISSN 1992-2248 2011 Academic Journals Full Length

Physics of Radioactive Decay George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To demonstrate qualitatively the various processes by which unstable nuclides

James E. Turner Atoms, Radiation, and Radiation Protection Third, Completely Revised and Enlarged Edition BICENTENNIAL J 0 1 8 0 Q 71 z m z CAVILEY 2007 1 ;Z z ü ; m r B10ENTENNIAL WILEY-VCH Verlag GmbH

### Polarization Correlation in the Gamma- Gamma Decay of Positronium

Polarization Correlation in the Gamma- Gamma Decay of Positronium Bin LI Department of Physics & Astronomy, University of Pittsburgh, PA 56, U.S.A April 5, Introduction Positronium is an unstable bound

### 3.17 Strukturanalyse mit Röntgenstrahlen nach Debye- Scherrer

3.17 Strukturanalyse mit Röntgenstrahlen nach Debye- Scherrer Ausarbeitung (engl.) Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Jan Schupp, Florian Wetzel Versuchsdatum:

### arxiv: v1 [astro-ph] 30 Jul 2008

arxiv:0807.4824v1 [astro-ph] 30 Jul 2008 THE AIR-FLUORESCENCE YIELD F. Arqueros, F. Blanco, D. Garcia-Pinto, M. Ortiz and J. Rosado Departmento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias

### W. L. Lakin and R. E. Baggs Stanford Linear Accelerator Center Stanford University, Stanford, California ABSTRACT

SLAC-PUB-1021 (EXP) and (ACC) March 1972 A SURFACE-BARRER BEAM MONTOR* W. L. Lakin and R. E. Baggs Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT A thin silicon