CHAPMAN-ENSKOG EXPANSION OF THE BOLTZMANN EQUATION AND ITS DIAGRAMMATIC INTERPRETATION

Size: px
Start display at page:

Download "CHAPMAN-ENSKOG EXPANSION OF THE BOLTZMANN EQUATION AND ITS DIAGRAMMATIC INTERPRETATION"

Transcription

1 CHAPMAN-ENSKOG EXPANSION OF THE BOLTZMANN EQUATION AND ITS DIAGRAMMATIC INTERPRETATION M.E. CARRINGTON A,B,HOUDEFU A,B,C AND R. KOBES B,D a Department of Physics, Brandon University, Brandon, MB,R7A 6A9 Canada b Winnipeg Institute for Theoretical Physics, Winnipeg, Canada c Institute of Particle Physics, Huazhong Normal University, Wuhan, China d University of Winnipeg, Winnipeg, Manitoba, R3B E9 Canada We perform a Chapman-Enskog expansion of the Boltzmann equation keeping up to quadratic contributions. We obtain a generalized nonlinear Kubo formula, and a set of integral equations which resum ladder and extended ladder diagrams. We show that these two equations have exactly the same structure, and thus provide a diagrammatic interpretation of the Chapman-Enskog expansion of the Boltzmann equation, up to quadratic order. Fluctuations occur in a system perturbed slightly away from equilibrium. The responses to these fluctuations are described by transport coefficients. The investigation of transport coefficients in high temperature gauge theories is important in cosmological applications such as electroweak baryogenesis and in the context of heavy ion collisions. There are two basic methods to calculate transport coefficients: transport theory and linear response theory,3,4. To date, most calculations of transport coefficients have been done to the order of linear response. In many physical situations however nonlinear response can be important. In this talk, we study nonlinear response using transport theory quantum field theory, and explain the connection between these approaches. In a system that is out of equilibrium, the existence of gradients in thermodynamic parameters give rise to thermodynamic forces which lead to deviations from the equilibrium expectation value of the viscous shear stress: δ π µν = η () H µν + η () Hµν T + () H µν = µ u ν + ν u ν 3 µν ρσ ρ u σ, H T µν := H µρh ρ ν 3 µνh ρσ H ρσ where u µ (x) is the four dimensional four-velocity field which satisfies u µ (x)u µ (x) =. The first coefficient is the usual shear viscosity. The second has has not been widely discussed in the literature we will call it the quadratic shear viscous response. The Boltzmann equation can be used to calculate transport properties for weak coupling λφ 4 theory with zero chemical potential 5. We introduce 0446: submitted to World Scientific on December 4, 00

2 a phase space distribution function f(x, k) (the underlined momenta are on shell). The form of f(x, k) in local equilibrium is, f (0) = e β(x)uµ(x)kµ := n k ; N k := + n k. () We expand f around f 0 using a gradient expansion in the local rest frame where u(x) = 0. We keep only linear terms that contain one power of H µν and quadratic terms that contain two powers of H µν,. We write, f = f (0) + f () + f () +. The viscous shear stress tensor is given by d 3 k π ij = (π) 3 f (k i k j ω k 3 δ ijk ). (3) Using the gradient expansion of f to calculate π ij and comparing with () we have, η () = β d 3 k 5 (π) 3 n k ( + n k )k B(k) (4) ω k η () = β d 3 k 05 (π) 3 [n k ( + n k )N k ]k C(k). (5) ω k We show that B(k) andc(k) can be obtained from the first two equations in the hierarchy of equations obtained from the Enskog expansion of the Boltzmann equation. The first order equation can be cast into 5,9, I ij (k) = d Γ 3k d n [B ij (p )+B ij (p ) B ij (k) B ij (p 3 )] (6) 3 where d n =(+n )(+n )n 3 /(+n k ). The second order Bolzmann equation leads to 9, N k I ij (k)b lm (k) = d Γd n {[N C ijlm (p )+N C ijlm (p ) N k C ijlm (k) 3 N 3 C ijlm (p 3 )] + [N B ij (p )B lm (p ) N k3 B ij (p 3 )B lm (k)+ñ3b ij (p )B lm (p 3 ) +ÑkB ij (p )B lm (k)+ñ3b ij (p 3 )B lm (p )+ÑkB ij (k)b lm (p )]} whereweusedn ij = N i + N j, Ñ ij = N i N j (i, j =,, 3,k). This equation can be solved self consistently for the quantity C ijlm (k) using the result for B ij (k) from (6). Now we turn to response calculation 4. We work with the density matrix in the Heisenberg representation which satisfies ρ t = 0 and write ρ = e A+B /Tre A+B where A = d 3 xf ν T 0ν and B(t) = d 3 x t dt e ɛ(t t) T µν (x, t ) µ F ν (x, t )withf µ = βu µ and ɛ to be taken 0446: submitted to World Scientific on December 4, 00

3 to zero at the end. Here A is the equilibrium part of the Hamiltonian and B is a perturbative contribution. We expand the density matrix in B and find the shear viscosity η () = d Im[lim D R (Q)] q0=0. (7) 0 dq 0 q 0 This is the well known Kubo formula 3,4. The quadratic shear viscous result can be written as a retarded three-point correlator 8 : η () = 3 d 70 dq 0 d dq 0 Re [lim q 0 G R ( Q Q,Q,Q )] q0=q 0 =0 We have obtained a type of nonlinear Kubo formula that allows us to obtain the quadratic shear viscous response from a retarded three-point function using equilibrium quantum field theory. Next we obtain a perturbative expansion for the correlation functions of composite operators D R (x, y) and G R (x, y, z) which appear in (7) and (8). We use the CTP formulation and work in the Keldysh representation. We define the vertices Γ ij and M ijlm by truncating external legs from the following connected vertices: Γ C ij = T cπ ij (x)φ(y)φ(z), Mijlm C = T cπ ij (x)π lm (y)φ(z)φ(w) where π ij (x) = i φ(x) j φ(x) 3 δ ij( m φ(x))( m φ(x)). These definitions allow us to write the two- and threepoint correlation functions as integrals of those vertices. Using the Kubo formulea above we obtain 9, η () = β [ ] dk k ReΓR (K) ρ k n k ( + n k ) (8) 5 [ ] η () = β dk k ReMR (K) ρ k n k ( + n k )N k. (9) 05 Comparing with (4) and (5) we see that the results are identical if we identify B(k) = ReΓ R(k), C(k) = ReM R(k) (0) with the momentum K on the shifted mass shell: δ(k m th )wherem th = m +ReΣ K. It is well known that ladder diagrams give the dominate contributions to the vertex Γ ij. They contribute to the viscosity to the same order in perturbation theory as the bare one loop graph and thus need to be included in a resummation. The integral equation that one obtains from resumming ladder contributions to the three-point vertex has exactly the same form as the 0446: submitted to World Scientific on December 4, 00 3

4 equation obtained from the linearized Boltzmann equation (6) with a shifted mass shell describing effective thermal excitations 5,9. Following the pinch effect argument 5,8, one can show that an infinite set of ladder graphs and some other contributions which we will call extended ladder graph contribute to the same order to vertex M ijlm as the tree diagram. Therefore, for consistent calculation, we consider an integral equation which resums all of these diagrams, as shown in Fig / ( a ) ( b ) ( c ) Fig. : Integral equation for an extended-ladder resummation. This Integral equation can be cast into 8 : N k I ij Γ lm R (K) + N km ijlm R (K) = λ 3 N p M ijlm R (P ) ImΣ p + {N Γ ij R (P ) Γ lm R (P ) ImΣ p ImΣ p (π) 4 δ 4 3Kd n ρ ρ ρ 3 [ N p 3 M ijlm R (P 3) ImΣ p3 () N p M ijlm R (P ) ImΣ p Γ ij R N (K) Γ lm R (P 3 ) Γ ij k3 + ImΣ Ñ3 R (P ) Γ lm R (P 3 ) p3 ImΣ p ImΣ p3 Γ ij R (P ) Γ lm R (K) Γ ij +Ñk + ImΣ p ImΣ Ñ3 R (P 3) Γ lm R (P ) Γ ij + k ImΣ p3 ImΣ Ñk R (K) Γ lm R (P ) }] p ImΣ p Note that once again we have obtained an integral equation that is decoupled: it only involves M R and Γ R.WithΓ R determined from the integral equation for the ladder resummation, () can be solved to obtain M R. Finally, comparing (9) and () with (5) and (7) we see that calculating the quadratic shear viscous response using transport theory describing effective thermal excitations and keeping terms that are quadratic in the gradient of the four-velocity field in the expansion of the Boltzmann equation is equivalent to calculating the same response coefficient from quantum field theory at finite temperature using the next-to-linear response Kubo formula with a vertex given by a specific integral equation. This integral equation shows that the complete set of diagrams that need to be resummed includes the standard 0446: submitted to World Scientific on December 4, 00 4

5 ladder graphs, and an additional set of extended ladder graphs. Some of the diagrams that contribute to the viscosity are shown in Fig.. Fig. : Some of the ladder and extended ladder diagrams that contribute to quadratic shear viscous response. This result provides a diagrammatic interpretation of the Chapman- Enskog expansion of Boltzmann equation, up to quadratic order. Acknowledgments This work was partly supported by NSFC and NSERC References. S.R. de Groot, W.A. van Leeuwen, and Ch.G. van Weert, Relativistic Kinetic Theory, (North-Holland Publishing, 980).. G. Baym, et al, Phys. Rev. Lett. 64, 867 (990). 3. D.N. Zubarev, Nonequilibrium Statistical Thermodynamics, (Plenum, New York, 974). 4. A. Hosoya, M. Sakagami, and M. Takao, Ann. of Phys. (NY) 54, 9 (984), and references therein. 5. S. Jeon, Phys. Rev. D5, 359 (995); S. Jeon and L. Yaffe, Phys. Rev. D 53, 5799 (996). 6. R.D. Pisarski, Phys. Rev. Lett. 63, 9 (989) 7. P. Arnold, D. T. Son and L. G. Yaffe, Phys. Rev. D59, 0500 (999). 8. M.E. Carrington, Hou Defu and R. Kobes, Phys. Rev. D64, 0500 (00) 9. M.E. Carrington, Hou Defu and R. Kobes, Phys. Rev. D6, 0500 (000). 0446: submitted to World Scientific on December 4, 00 5

arxiv:hep-ph/ v1 30 Nov 2001

arxiv:hep-ph/ v1 30 Nov 2001 CHAPMAN-ENSKOG EXPANSION OF THE BOLTZMANN EQUATION AND ITS DIAGRAMMATIC INTERPRETATION arxiv:hep-ph/0446v 30 Nov 00 M.E. CARRINGTON A,B, HOU DEFU A,B,C AND R. KOBES B,D a Department of Physics, Brandon

More information

arxiv: v1 [nucl-th] 9 Jun 2008

arxiv: v1 [nucl-th] 9 Jun 2008 Dissipative effects from transport and viscous hydrodynamics arxiv:0806.1367v1 [nucl-th] 9 Jun 2008 1. Introduction Denes Molnar 1,2 and Pasi Huovinen 1 1 Purdue University, Physics Department, 525 Northwestern

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

arxiv:hep-ph/ v1 15 Aug 1997

arxiv:hep-ph/ v1 15 Aug 1997 Equilibrium and Non-Equilibrium Hard Thermal Loop Resummation in the Real Time Formalism Margaret E. Carrington 1, Hou Defu 2, and Markus H. Thoma 3,4 1 Department of Physics and Winnipeg Institute of

More information

arxiv:hep-ph/ v1 29 May 2000

arxiv:hep-ph/ v1 29 May 2000 Photon-Photon Interaction in a Photon Gas Markus H. Thoma Theory Division, CERN, CH-1211 Geneva, Switzerland and Institut für Theoretische Physik, Universität Giessen, 35392 Giessen, Germany arxiv:hep-ph/0005282v1

More information

TTK Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretisc

TTK Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretisc TTK-10-34 Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

arxiv: v1 [nucl-th] 7 Jan 2019

arxiv: v1 [nucl-th] 7 Jan 2019 arxiv:1901.01924v1 [nucl-th] 7 Jan 2019 E-mail: sigtryggur.hauksson@mail.mcgill.ca Sangyong Jeon E-mail: jeon@physics.mcgill.ca Charles Gale E-mail: gale@physics.mcgill.ca Jets are a promising way to probe

More information

Hydrodynamics and QCD Critical Point in Magnetic Field

Hydrodynamics and QCD Critical Point in Magnetic Field Hydrodynamics and QCD Critical Point in Magnetic Field University of Illinois at Chicago May 25, 2018 INT Workshop Multi Scale Problems Using Effective Field Theories Reference: Phys.Rev. D97 (2018) no.5,

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

arxiv:hep-ph/ v1 6 Apr 1998

arxiv:hep-ph/ v1 6 Apr 1998 UGI-98-17 Interpretation and resolution of pinch singularities in non-equilibrium quantum field theory arxiv:hep-ph/9804239v1 6 Apr 1998 Carsten Greiner and Stefan Leupold Institut für Theoretische Physik,

More information

From spectral functions to viscosity in the QuarkGluon Plasma

From spectral functions to viscosity in the QuarkGluon Plasma From spectral functions to viscosity in the QuarkGluon Plasma N.C., Haas, Pawlowski, Strodthoff: Phys. Rev. Lett. 115.112002, 2015 Hirschegg 21.1.2016 Outline Introduction Framework for transport coefficients

More information

RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW. FINN RAVNDAL a. Institute of Physics, University of Oslo, N-0316 Oslo, Norway

RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW. FINN RAVNDAL a. Institute of Physics, University of Oslo, N-0316 Oslo, Norway RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW FINN RAVNDAL a Institute of Physics, University of Oslo, N-0316 Oslo, Norway Abstract Photons in blackbody radiation have non-zero interactions due to

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Dynamics of Resonances in Strongly Interacting Matter

Dynamics of Resonances in Strongly Interacting Matter in Strongly Interacting Matter (Resonance transport) J. Knoll 1, F. Riek 1, Yu.B. Ivanov 1,2, D. Voskresensky 1,3 1 GSI 2 Kurchatov Inst. (Moscow) 3 Moscow Ins. for Physics and Engineering Outline 1 2

More information

Resummation methods in cosmological perturbation theory: next-to-leading computations

Resummation methods in cosmological perturbation theory: next-to-leading computations Resummation methods in cosmological perturbation theory: next-to-leading computations Stefano Anselmi email: stefano.anselmi@pd.infn.it Padova University Paris, September 20th, 2011 Contents Motivations:

More information

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.3 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 010 Lecture Firstly, we will summarize our previous results. We start with a bare Lagrangian, L [ 0, ϕ] = g (0)

More information

Energy-momentum tensor correlators in hot Yang-Mills theory

Energy-momentum tensor correlators in hot Yang-Mills theory Energy-momentum tensor correlators in hot Yang-Mills theory Aleksi Vuorinen University of Helsinki Micro-workshop on analytic properties of thermal correlators University of Oxford, 6.3.017 Mikko Laine,

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

Chiral Magnetic and Vortical Effects at Weak Coupling

Chiral Magnetic and Vortical Effects at Weak Coupling Chiral Magnetic and Vortical Effects at Weak Coupling University of Illinois at Chicago and RIKEN-BNL Research Center June 19, 2014 XQCD 2014 Stonybrook University, June 19-20, 2014 Chiral Magnetic and

More information

Concistency of Massive Gravity LAVINIA HEISENBERG

Concistency of Massive Gravity LAVINIA HEISENBERG Universite de Gene ve, Gene ve Case Western Reserve University, Cleveland September 28th, University of Chicago in collaboration with C.de Rham, G.Gabadadze, D.Pirtskhalava What is Dark Energy? 3 options?

More information

FYS 3120: Classical Mechanics and Electrodynamics

FYS 3120: Classical Mechanics and Electrodynamics FYS 3120: Classical Mechanics and Electrodynamics Formula Collection Spring semester 2014 1 Analytical Mechanics The Lagrangian L = L(q, q, t), (1) is a function of the generalized coordinates q = {q i

More information

Thermal Quantum Field Theory in Real and Imaginary Time. Daniele Teresi

Thermal Quantum Field Theory in Real and Imaginary Time. Daniele Teresi Thermal Quantum Field Theory in Real and Imaginary Time daniele.teresi@hep.manchester.ac.uk University of Manchester 42nd BUSSTEPP - Durham University WHAT IS THERMAL QFT? ORDINARY VACUUM QFT few in and

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 1

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Workshop on Hot and dense matter in the RHIC-LHC era, TIFR, Mumbai, February 2008 - p. 1 Outline

More information

QCD at finite Temperature

QCD at finite Temperature QCD at finite Temperature II in the QGP François Gelis and CEA/Saclay General outline Lecture I : Quantum field theory at finite T Lecture II : in the QGP Lecture III : Out of equilibrium systems François

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Factorization in high energy nucleus-nucleus collisions

Factorization in high energy nucleus-nucleus collisions Factorization in high energy nucleus-nucleus collisions ISMD, Kielce, September 2012 François Gelis IPhT, Saclay 1 / 30 Outline 1 Color Glass Condensate 2 Factorization in Deep Inelastic Scattering 3 Factorization

More information

Viscosity in strongly coupled gauge theories Lessons from string theory

Viscosity in strongly coupled gauge theories Lessons from string theory Viscosity in strongly coupled gauge theories Lessons from string theory Pavel Kovtun KITP, University of California, Santa Barbara A.Buchel, (University of Western Ontario) C.Herzog, (University of Washington,

More information

Three Point Functions at Finite. T.S. Evans. Theoretical Physics Institute. Department of Physics. University of Alberta.

Three Point Functions at Finite. T.S. Evans. Theoretical Physics Institute. Department of Physics. University of Alberta. Three Point Functions at Finite Temperature T.S. Evans Theoretical Physics Institute Department of Physics University of Alberta Edmonton, Alberta T6G 2J1, Canada Bitnet: usero12n@ualtamts February 1990

More information

TASI lectures: Holography for strongly coupled media

TASI lectures: Holography for strongly coupled media TASI lectures: Holography for strongly coupled media Dam T. Son Below is only the skeleton of the lectures, containing the most important formulas. I. INTRODUCTION One of the main themes of this school

More information

Lattice Boltzmann Method for Moving Boundaries

Lattice Boltzmann Method for Moving Boundaries Lattice Boltzmann Method for Moving Boundaries Hans Groot March 18, 2009 Outline 1 Introduction 2 Moving Boundary Conditions 3 Cylinder in Transient Couette Flow 4 Collision-Advection Process for Moving

More information

Nonrenormalizability of nonequilibrium quantum field theory in the classical approximation

Nonrenormalizability of nonequilibrium quantum field theory in the classical approximation Nonrenormalizability of nonequilibrium quantum field theory in the classical approximation Bin Wu IPhT, CEA/Saclay RPP 2015, Institut Henri Poincare Jan 16, 2015 T. Epelbaum, F. Gelis and B. Wu, Phys.

More information

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS 1 REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS HENNING STRUCHTRUP ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland (on leave from University of Victoria,

More information

14. Energy transport.

14. Energy transport. Phys780: Plasma Physics Lecture 14. Energy transport. 1 14. Energy transport. Chapman-Enskog theory. ([8], p.51-75) We derive macroscopic properties of plasma by calculating moments of the kinetic equation

More information

Three Point Functions at Finite Temperature

Three Point Functions at Finite Temperature Three Point Functions at Finite Temperature T.S. Evans Theoretical Physics Institute Department of Physics University of Alberta Edmonton, Alberta T6G 2J1, Canada Bitnet: usero12n@ualtamts February 1990

More information

Universality classes far from equilibrium of scalar and gauge theories

Universality classes far from equilibrium of scalar and gauge theories Universality classes far from equilibrium of scalar and gauge theories Ruprecht-Karls University Heidelberg Kirill Boguslavski Talk based on: INT thermalization workshop / week 2 Aug 14, 2015 In collaboration

More information

arxiv: v1 [nucl-th] 5 Aug 2008

arxiv: v1 [nucl-th] 5 Aug 2008 EPJ manuscript No. (will be inserted by the editor) From Kadanoff-Baym dynamics to off-shell parton transport arxiv:88.715v1 [nucl-th] 5 Aug 8 W. Cassing 1,a Institut für Theoretische Physik, Universität

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

arxiv:hep-ph/ v1 6 Oct 1998

arxiv:hep-ph/ v1 6 Oct 1998 Self-consistent Study on Color Transport in the Quark Gluon Plasma at Finite Chemical Potential arxiv:hep-ph/980256v 6 Oct 998 Hou Defu, Stefan Ochs, Li Jiarong February, 2008 Institute of Particle Physics,

More information

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25 2017 8 28 30 @ Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: 1606.07742, 1708.05657 1/25 1. Introduction 2/25 Ultra-relativistic heavy-ion collisions and the Bjorken

More information

Instabilities Driven Equilibration in Nuclear Collisions

Instabilities Driven Equilibration in Nuclear Collisions Instabilities Driven Equilibration in Nuclear Collisions Stanisław Mrówczyńsi Świętorzysa Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland 1 Evidence of equilibration success of

More information

Trans-series & hydrodynamics far from equilibrium

Trans-series & hydrodynamics far from equilibrium Trans-series & hydrodynamics far from equilibrium Michal P. Heller Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Germany National Centre for Nuclear Research, Poland many

More information

Bulk and shear viscosities for the Gribov-Zwanziger plasma

Bulk and shear viscosities for the Gribov-Zwanziger plasma EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 215 Bulk and shear viscosities for the Gribov-Zwanziger plasma Wojciech

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

arxiv:quant-ph/ v1 16 Jun 2005

arxiv:quant-ph/ v1 16 Jun 2005 Black-body radiation in extra dimensions Haavard Alnes, Finn Ravndal 2 and Ingunn Kathrine Wehus 3 Institute of Physics, University of Oslo, N-036 Oslo, Norway. arxiv:quant-ph/05063 v 6 Jun 2005 Abstract

More information

Chiral kinetic theory and magnetic effect. Yoshimasa Hidaka (RIKEN)

Chiral kinetic theory and magnetic effect. Yoshimasa Hidaka (RIKEN) Chiral kinetic theory and magnetic effect Yoshimasa Hidaka (RIKEN) What is chiral kinetic theory? Relativistic Boltzmann equation (v µ @ µ + v µ F µ @ p )f = C[f] widely used in plasma physics Transport

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Saha Equation for Partially Ionized Relativistic Hydrogen Plasma in Rindler Space

Saha Equation for Partially Ionized Relativistic Hydrogen Plasma in Rindler Space Open Access Journal of Physics Volume, Issue 3, 018, PP 5-9 Saha Equation for Partially Ionized Relativistic Hydrogen Plasma in Rindler Space Sanchita Das 1, Somenath Chakrabarty 1 Department of physics,visva

More information

Introduction to Relativistic Hydrodynamics

Introduction to Relativistic Hydrodynamics Introduction to Relativistic Hydrodynamics Heavy Ion Collisions and Hydrodynamics modified from B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett. 106, 042301 (2011), http://www.physics.mcgill.ca/ schenke/,

More information

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) 1 Problem Sheet 7: Interacting Quantum Field Theory: λφ 4 Comments on these questions are always welcome. For instance if you spot any typos or

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

S, T and U parameters

S, T and U parameters S, T and U parameters Karamitros Dimitrios Physics Department, Division of Theoretical Physics, University of Ioannina, GR-45110, Greece 19/04/2013, Crete Motivation For light external fermions we only

More information

Geometric responses of Quantum Hall systems

Geometric responses of Quantum Hall systems Geometric responses of Quantum Hall systems Alexander Abanov December 14, 2015 Cologne Geometric Aspects of the Quantum Hall Effect Fractional Quantum Hall state exotic fluid Two-dimensional electron gas

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

arxiv:nucl-th/ v2 28 Nov 2000

arxiv:nucl-th/ v2 28 Nov 2000 THERMODYNAMICS OF EXPLOSIONS arxiv:nucl-th/0009009v2 28 Nov 2000 G. NEERGAARD Niels Bohr Institute, Blegdamsvej 17, DK - 2100 Copenhagen, Denmark and Institute of Physics and Astronomy, University of Aarhus,

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Resonances in Hadronic Transport

Resonances in Hadronic Transport Resonances in Hadronic Transport Steffen A. Bass Duke University The UrQMD Transport Model Infinite Matter Resonances out of Equilibrium Transport Coefficients: η/s work supported through grants by 1 The

More information

The existence of Burnett coefficients in the periodic Lorentz gas

The existence of Burnett coefficients in the periodic Lorentz gas The existence of Burnett coefficients in the periodic Lorentz gas N. I. Chernov and C. P. Dettmann September 14, 2006 Abstract The linear super-burnett coefficient gives corrections to the diffusion equation

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF)

Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF) Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF) arxiv:1608.07869, arxiv:1711.01657, arxiv:1709.06644 Frankfurt University 1.February.2018 Preview

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

On the double-counting problem in Boltzmann equations and real-intermediate state subtraction

On the double-counting problem in Boltzmann equations and real-intermediate state subtraction On the double-counting problem in Boltzmann equations and real-intermediate state subtraction Mcgill University, Nov. 2017 Outline 1 Introduction Baryogenesis 2 History S.Wolfram and E.Kolb (1980) Issues

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

Mean Field Theory for Gravitation (MFTG)

Mean Field Theory for Gravitation (MFTG) Mean Field Theory for Gravitation (MFTG) M. Bustamante, C. Chevalier, F. Debbasch,Y. Ollivier Miami 2015, 16 December 2015 The problem Every experiment or observation is finite Testing fundamental theories

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

Equilibration of Scalar Fields in an Expanding System

Equilibration of Scalar Fields in an Expanding System Equilibration of Scalar Fields in an Expanding System Akihiro Nishiyama (Kyoto Sangyo University Collaboration with Yoshitaka Hatta (University of Tsukuba Aug 22nd, 2012. arxiv:1206.4743 Relativistic Heavy

More information

Microscopic derivation of (non-)relativistic second-order hydrodynamics from Boltzmann Equation

Microscopic derivation of (non-)relativistic second-order hydrodynamics from Boltzmann Equation Microscopic derivation of (non-)relativistic second-order hydrodynamics from Boltzmann Equation Teiji Kunihiro Dep. Physics, Kyoto U. based on work done with S. Ei, K. Fujii, and K. Ohnishi, K.Tsumura

More information

EXPANSION VERSUS INTERACTION:

EXPANSION VERSUS INTERACTION: EXPANSION VERSUS INTERACTION: BOOST-INVARIANT DYNAMICS FROM THE 2PI EFFECTIVE ACTION Gert Aarts Physics Department Swansea University INT, September 6 p.1 QUESTIONS EXPANDING SYSTEMS interactions: equilibration

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

Generalized Local Equilibrium in the Cascaded Lattice Boltzmann Method. Abstract

Generalized Local Equilibrium in the Cascaded Lattice Boltzmann Method. Abstract Accepted for publication on Physical Review E (R), code ERR1034 Generalized Local Equilibrium in the Cascaded Lattice Boltzmann Method Pietro Asinari Department of Energetics, Politecnico di Torino, Corso

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Probing Universality in AdS/CFT

Probing Universality in AdS/CFT 1 / 24 Probing Universality in AdS/CFT Adam Ritz University of Victoria with P. Kovtun [0801.2785, 0806.0110] and J. Ward [0811.4195] Shifmania workshop Minneapolis May 2009 2 / 24 Happy Birthday Misha!

More information

Causal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases

Causal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases Causal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases Heinrich Freistühler and Blake Temple Proceedings of the Royal Society-A May 2017 Culmination of a 15 year project: In this we propose:

More information

Two recent works on molecular systems out of equilibrium

Two recent works on molecular systems out of equilibrium Two recent works on molecular systems out of equilibrium Frédéric Legoll ENPC and INRIA joint work with M. Dobson, T. Lelièvre, G. Stoltz (ENPC and INRIA), A. Iacobucci and S. Olla (Dauphine). CECAM workshop:

More information

Diagramology Types of Feynman Diagram

Diagramology Types of Feynman Diagram 1. Pieces of Diagrams Diagramology Types of Feynman Diagram Tim Evans (2nd January 2018) Feynman diagrams 1 have four types of element:- Internal Vertices represented by a dot with some legs coming out.

More information

The lattice gluon propagator in numerical stochastic perturbation theory

The lattice gluon propagator in numerical stochastic perturbation theory The lattice gluon propagator in numerical stochastic perturbation theory E.-M. Ilgenfritz 1, H. Perlt 2 and A. Schiller 2 1 Humboldt-Universität zu Berlin, 2 Universität Leipzig 8th Leipzig Workshop on

More information

Toward a unified description of equilibrium and dynamics of neutron star matter

Toward a unified description of equilibrium and dynamics of neutron star matter Toward a unified description of equilibrium and dynamics of neutron star matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

arxiv:cond-mat/ v1 5 Nov 1997

arxiv:cond-mat/ v1 5 Nov 1997 Hydrodynamic damping in trapped Bose gases T. Nikuni Department of Physics, Tokyo Institute of Technology, Oh-okayama, Tokyo, 152 Japan and Department of Physics, University of Toronto, Toronto, Ontario,

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Hendrik van Hees in collaboration with Jörn Knoll Contents Schwinger-Keldysh real-time formalism

More information

CTP Approach to Leptogenesis

CTP Approach to Leptogenesis CTP Approach to Leptogenesis Matti Herranen a in collaboration with Martin Beneke a Björn Garbrecht a Pedro Schwaller b Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University a

More information

Physics 127b: Statistical Mechanics. Lecture 2: Dense Gas and the Liquid State. Mayer Cluster Expansion

Physics 127b: Statistical Mechanics. Lecture 2: Dense Gas and the Liquid State. Mayer Cluster Expansion Physics 27b: Statistical Mechanics Lecture 2: Dense Gas and the Liquid State Mayer Cluster Expansion This is a method to calculate the higher order terms in the virial expansion. It introduces some general

More information

Shear Viscosity of a strongly interacting system: Green-Kubo versus Chapman-Enskog and Relaxation Time Approximations

Shear Viscosity of a strongly interacting system: Green-Kubo versus Chapman-Enskog and Relaxation Time Approximations arxiv:208.048v2 [nucl-th] 3 Aug 205 Shear Viscosity of a strongly interacting system: Green-Kubo versus Chapman-Enskog and Relaxation Time Approximations S. Plumari a,b, A. Puglisi b, F. Scardina b and

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions. 1. Quantum Mechanics (Spring 2007) Consider a hydrogen atom in a weak uniform magnetic field B = Bê z. (a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron,

More information

A path integral approach to the Langevin equation

A path integral approach to the Langevin equation A path integral approach to the Langevin equation - Ashok Das Reference: A path integral approach to the Langevin equation, A. Das, S. Panda and J. R. L. Santos, arxiv:1411.0256 (to be published in Int.

More information

Spacetime foam and modified dispersion relations

Spacetime foam and modified dispersion relations Institute for Theoretical Physics Karlsruhe Institute of Technology Workshop Bad Liebenzell, 2012 Objective Study how a Lorentz-invariant model of spacetime foam modify the propagation of particles Spacetime

More information

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino Cosmology & CMB Set2: Linear Perturbation Theory Davide Maino Covariant Perturbation Theory Covariant = takes same form in all coordinate systems Invariant = takes the same value in all coordinate systems

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

WIMP Dark Matter and the QCD Equation of State

WIMP Dark Matter and the QCD Equation of State Doktoratskolleg Graz Karl-Franzens-Universität, May 2006 WIMP Dark Matter and the QCD Equation of State Owe Philipsen Universität Münster Motivation + overview Cosmology I: expansion and contents of the

More information

Viscosity Correlators in Improved Holographic QCD

Viscosity Correlators in Improved Holographic QCD Bielefeld University October 18, 2012 based on K. Kajantie, M.K., M. Vepsäläinen, A. Vuorinen, arxiv:1104.5352[hep-ph]. K. Kajantie, M.K., A. Vuorinen, to be published. 1 Motivation 2 Improved Holographics

More information