Chiral Magnetic and Vortical Effects at Weak Coupling

Size: px
Start display at page:

Download "Chiral Magnetic and Vortical Effects at Weak Coupling"

Transcription

1 Chiral Magnetic and Vortical Effects at Weak Coupling University of Illinois at Chicago and RIKEN-BNL Research Center June 19, 2014 XQCD 2014 Stonybrook University, June 19-20, 2014

2 Chiral Magnetic and Vortical Effects of Chiral Weyl Fermion Chiral Magnetic Effect (Fukushima-Kharzeev-Warringa, Son-Zhitnitsky, Vilenkin) J = 1 4π 2 µ B Chiral Vortical Effect (Erdmenger.et al, Banerjee.et al, Vilenkin) J = 1 4π 2 ( µ 2 + π2 3 T 2 ) ω, ω = 1 2 v

3 They are robust and protected by triangle anomaly They have been checked at strong coupling (HUY, Rebhan-Schmitt-Stricker, Gynther.et al) in hydrodynamics (Son-Surowka) on lattices (Buividovich.et al, Abramczyk.et al, Yamamoto, Bali.et al)

4 We will see that the weak coupling picture is a bit more subtle

5 Quasi-particle picture of CME (Kharzeev-Warringa) Quantized Weyl particles (p) and anti-particles ( p) S = ± 1 2 p, p µ M = ± S = 1 p p 2 p 2

6 Quasi-particle picture of CME (Kharzeev-Warringa) Energy shift in a magnetic field: E = µ M B = 1 p B 2 p 2 It gives rise to a tendency to align the momentum along the magnetic field direction

7 Let s try to be more quantitative The energy shift E = 1 p B will modify the 2 p 2 equilibrium distribution of particles (f eq + ) and anti-particles (f eq f eq ± = from ) f (0) ± ( exp[β( p µ)] + 1 ) 1 ( to exp[β( p 1 2 p B ) 1 p µ)] f (0) ± + βf (0) ± (1 f (0) ± ) p B 2 p 2 + O(B2 )

8 The net current is d 3 p d 3 J = x (f eq (2π) 3 + f eq p p ) = (f eq (2π) 3 + f eq ) p = β d 3 p p p B ( ) f (0) 2 (2π) 3 p p 2 + (1 f (0) + ) f (0) (1 f (0) ) = ( ) B β dp p f (0) 4π 2 + (1 f (0) + ) f (0) (1 f (0) ) 0 = 1 3 µ B 4π 2 where β ( ) dp p f (0) 0 + (1 f (0) + ) f (0) (1 f (0) ) = µ independent of temperature

9 This contribution from the energy shift explains only of the full result 1 3 Identifying the remaining 2 contribution to the CME 3 needs a complete picture of microscopic motions of fermions under a magnetic field

10 Berry Phase in Momentum Space (Son-Yamamoto, Stephanov-Yin, Zahed) The motion of Weyl particle is described by the action ( S + = dt p x + A x + A 0 E A p p ) where the last term is the Berry s connection coming from the chiral spinor wave-function A p = iψ ( p) p ψ( p), ( σ p)ψ( p) = p ψ( p) whose curvature is of the monopole form b Ap = p 2 p 3

11 Picture of Berry s Phase in Momentum Space

12 Picture of Berry s Phase in Momentum Space

13 Motion of Weyl Particle in a Magnetic Field Using the relativistic energy E = p 1 2 p B p 2 the equation of motion from the action gives G x = E ( ) p + B E p b = p p + p( p B) + O(B 2 ) p 4 where G = (1 + B b) is the modified phase space measure The second term is the new velocity from triangle anomaly (Stephanov-Yin)

14 The current from this new velocity is d 3 p ( ) J = G x f (0) (2π) 3 + f (0) d 3 p p( p = B) ( ) f (0) (2π) 3 p 4 + f (0) = ( ) B dp f (0) 4π 2 + f (0) 0 = 2 3 µ B 4π 2 where ( ) dp f (0) 0 + f (0) = µ independent of temperature

15 Breaking Up The Equilibrium CME Value comes from the modification of equilibrium distribution due to energy shift Let s call it energetic contribution comes from a new component of velocity due to anomaly, which is more kinematic Let s call it kinematic contribution The point: In out-of-equilibrium conditions, the energetic contribution is expected to be lost, while the kinematic contribution always exists Prediction: At weak coupling, the out-of-equilibrium CME should be roughly 2 of equilibrium CME 3

16 A Similar Story for Chiral Vortical Effect (Chen-Son-Stephanov-HUY-Yin)

17 Derivation of equilibrium distribution in the presence of vorticity ω = 1 2 v Detailed balance in the Boltzmann equation dictates M i f 2 f eq ( x i, p i ) ( ( )) 1 f eq x f, p f i f = M f i 2 f f eq ( x f, p f ) i ( 1 f eq ( x i, p i ))

18 In a time-reversal invariant theory, we have M i f 2 = M f i 2, and i f eq ( x i, p i ) ( 1 f eq ( x i, p i )) = f f eq ( x f, p f ) ( 1 f eq ( x f, p f )) This is satisfied if [ f eq ( x, p) ( ( 1 f eq x, p )) = exp ] β l Q l ( x, p) l where Q l ( x, p) are additive conserved charges carried by a particle at ( x, p), and β l are arbitrary constants Possible Q l ( x, p) are: Energy E( p), Momentum p, and Angular momentum L = x p + 1 p 2 p

19 We have [ ( exp β E v 0 p α L )] [ ( ( = exp β E v 0 p α x p + 1 ))] p 2 p [ ( = exp β E ( v 0 + α x ) p 1 )] 2 α p p [ ( = exp β E v( x) p 1 )] 2 α p p where v( x) v 0 + α x can be interpreted as the fluid velocity, now depending on the position x. Computing 1 2 v = α, we see that α is in fact the vorticity ω of the fluid.

20 Local Equilibrium Distribution With a Vorticity In the presence of vorticity ω, the local equilibrium distribution at rest is shifted from f (0) ± = (exp[β(u µ P µ µ)] + 1) 1 = ( exp[β( p µ)] + 1 ) 1 f eq ± = to ( exp[β( p µ 1 p ω 2 p )] + 1 ) 1 f (0) ± ± βf (0) ± (1 f (0) ± ) p ω 2 p + O(ω2 )

21 The net current from equilibrium distribution shift is d 3 p d 3 J = x (f eq (2π) 3 + f eq p p ) = (f eq (2π) 3 + f eq ) p = β d 3 p p p ω ( ) f (0) 2 (2π) 3 + (1 f (0) + ) + f (0) (1 f (0) ) p p = ( ) 4π ω β dp p 2 f (0) 2 + (1 f (0) + ) + f (0) (1 f (0) ) 0 = 1 ) 3 1 (µ 2 + π2 4π 2 3 T 2 ω where β ( ) dp 0 p2 f (0) + (1 f (0) + ) + f (0) (1 f (0) ) = µ 2 + π2 3 T 2 Again, this is precisely 1 3 of the full result

22 Kinematic Contribution to CVE There exists a kinematic term in the current (Son-Yamamoto, Chen-Son-Stephanov-HUY-Yin) J d 3 p (2π) 3 ( ) p 2 p (f f ) Using f ± = ( exp[β( p v( x) p µ)] + 1 ) 1 with 1 v = ω, 2 a short computation shows that this kinematic contribution gives the remaining 2 of the full CVE 3 Prediction: Out-of equilibrium CVE should be roughly of the equilibrium CVE 2 3

23 Let s Change the Topic to Chiral Magnetic Effect at Weak Coupling with Relaxation Dynamics (Satow-HUY)

24 Chiral Magnetic Conductivity at Finite (ω, k) (Kharzeev-Warringa) Chiral Magnetic Effect is a response of the current to an external magnetic field J(ω, k) = σχ (ω, k) B(ω, k) The chiral magnetic conductivity σ χ (ω, k) is computed from the P-odd retarded function G ij R = iθ(t t ) [ J i (t), J j (t ) ] iσ χ (ω, k)ɛ ijl k l We would expect lim k 0 lim ω 0 σ χ (ω, k) = µ 4π 2

25 A Puzzle in Free Fermion Computations (Kharzeev-Warringa) One loop computation with free fermion

26 A Puzzle in Free Fermion Computations (Kharzeev-Warringa) lim lim σ χ(ω, k) lim lim σ χ (ω, k) k 0 ω 0 ω 0 k 0 lim lim σ χ(ω, k) = µ k 0 ω 0 4π 2 but lim lim σ χ(ω, k) = 1 ω 0 k 0 3 µ 4π 2

27 We show that this issue disappears with finite interactions (as originally suggested by Kharzeev-Warringa) in the kinetic theory with finite collision term in the diagrammatic computation with resummed damping rate

28 Result from Chiral Kinetic Theory with a Finite Relaxation Time τ F(ω, k) = ω k σ χ (ω, k) = µ (1 F(ω, k)) 4π2 (( ) ω + i τ k where ( k 2 ( ω + i τ 2k 2 ) 2 ) log ( )) ω k + i τ ω + k + i τ lim lim σ χ(ω, k) = lim lim σ χ (ω, k) = µ k 0 ω 0 ω 0 k 0 4π 2 No Non-Commutativity

29 1 F Ω,k Ω τ = 1 (dashed), τ = 10 (dotted), τ = 100 (solid)

30 Diagrammatic Computation We compute the P-odd part of the real-time retarded current-current correlation function, G ra, in the Swinger-Keldysh contour j µ (k) = ( 1)ie 2 A ν(k) d 4 p (2π) 4 tr [σµ S ra(p + k)σ ν S rr (p) + σ µ S rr (p)σ ν S ar (p k)]

31 Fermion Propagators with Damping Rate Included S ra(p) θ(x 0 y 0 ) {ψ(x), ψ (y)} = s=± i p 0 s p + iζ/2 Ps( p) S ar (p) θ(y 0 x 0 ) {ψ(x), ψ (y)} = i p 0 s p iζ/2 Ps( p) s=± S rr (p) 1 ( ) 1 2 [ψ(x), ψ (y)] = 2 n+(p0 ) ρ(p) where the spectral density ρ is ρ(p) = t=± ζ (p 0 t p ) 2 + (ζ/2) 2 Pt( p) The projection operators P ±( p) are defined as P ±( p) 1 ( ) σ p 1 ± 2 p

32 Absence of Pinch Singularity in P-odd Part In the longitudinal P-even part responsible for electric conductivity, we see the Pinch singularity as expected j 3 (k) iω e2 χ 3ζ A 3(k) as (ω, k) 0, where χ susceptibility ( T µ2 2π 2 ) is the Since ζ g 2 log(1/g), this changes the normal power counting scheme, and a re-summation of infinitely many ladder diagrams is necessary (Jeon-Yaffe)

33 Absence of Pinch Singularity in P-odd Part However, in the transverse P-odd part responsible for CME, the Pinch singularity cancels between the two Feynman diagrams The first diagram gives ( ) J i µ 4ik 0 (p) = i 8π 2 ɛijk A j (p)p k 3ζ O ( p 0, p 3) The second diagram gives J i µ (p) = i 8π 2 ɛijk A j (p)p k ( 4ik ) 0 3ζ O ( p 0, p 3)

34 Absence of Pinch Singularity in P-odd Part The sum of the two gives the right magnitude of the Chiral Magnetic Effect J i µ (p) = i 4π 2 ɛijk A j (p)p k Questions: Does this feature persist in higher loops? There may appear a diffusive pole if we include the coupling to the energy-momentum sector (Chiral Shear Wave) (Sahoo-HUY, Matsuo-Sin-Takeuchi-Tsukioka). How do we see it diagrammatically?

35 Thank You Very Much for Listening

Transport Properties in Magnetic Field

Transport Properties in Magnetic Field University of Illinois at Chicago/ RIKEN-BNL Research Center The Phases of Dense Matter, July 11-Aug 12 INT, July 28, 2016 The magnetic field in heavy-ion collisions In heavy-ion collisions, two magnetic

More information

arxiv: v1 [hep-ph] 22 Apr 2015

arxiv: v1 [hep-ph] 22 Apr 2015 RBRC-9 IFT-UAM/CSIC-5-035 Second Order Transport Coefficient from Chiral Anomaly at Weak Coupling: Diagrammatic Resummation arxiv:504.05866v [hep-ph] Apr 05 Amadeo Jimenez-Alba and Ho-Ung Yee,3 Instituto

More information

Chiral kinetic theory and magnetic effect. Yoshimasa Hidaka (RIKEN)

Chiral kinetic theory and magnetic effect. Yoshimasa Hidaka (RIKEN) Chiral kinetic theory and magnetic effect Yoshimasa Hidaka (RIKEN) What is chiral kinetic theory? Relativistic Boltzmann equation (v µ @ µ + v µ F µ @ p )f = C[f] widely used in plasma physics Transport

More information

Chiral kinetic theory

Chiral kinetic theory Chiral kinetic theory. 1/12 Chiral kinetic theory M. Stehanov U. of Illinois at Chicago with Yi Yin Chiral kinetic theory. 2/12 Motivation Interesting alications of chiral magnetic/vortical effect involve

More information

Hydrodynamics and QCD Critical Point in Magnetic Field

Hydrodynamics and QCD Critical Point in Magnetic Field Hydrodynamics and QCD Critical Point in Magnetic Field University of Illinois at Chicago May 25, 2018 INT Workshop Multi Scale Problems Using Effective Field Theories Reference: Phys.Rev. D97 (2018) no.5,

More information

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Xu-Guang Huang Fudan University, Shanghai November 03, 2016 Outline Introduction Electromagnetic (EM) fields and

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

No-drag frame for anomalous chiral fluid

No-drag frame for anomalous chiral fluid No-drag frame for anomalous chiral fluid M. Stephanov University of Illinois at Chicago M. Stephanov (UIC) No-drag frame UCLA 2016 1 / 15 Based on arxiv:1508.02396 with Ho-Ung Yee. M. Stephanov (UIC) No-drag

More information

Anisotropic Hydrodynamics, Chiral Magnetic Effect and Holography

Anisotropic Hydrodynamics, Chiral Magnetic Effect and Holography ` Kalaydzhyan, I.K., PRL 106 (2011) 211601, Gahramanov, Kalaydzhyan, I.K. (PRD (2012)) Anisotropic Hydrodynamics, Chiral Magnetic Effect and Holography Ingo Kirsch DESY Hamburg, Germany Based on work with

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington) Anomalous hydrodynamics and gravity Dam T. Son (INT, University of Washington) Summary of the talk Hydrodynamics: an old theory, describing finite temperature systems The presence of anomaly modifies hydrodynamics

More information

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov Strong magnetic fields in lattice gluodynamics P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov arxiv:1011.3001, arxiv:1011.3795, arxiv:1003.180,

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

arxiv: v1 [nucl-th] 7 Dec 2016

arxiv: v1 [nucl-th] 7 Dec 2016 Study of chiral vortical and magnetic effects in the anomalous transport model Yifeng Sun 1, and Che Ming Ko 1, 1 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College

More information

Probing QCD Matter with QED Fields

Probing QCD Matter with QED Fields XQCD2014, Stony Brook, June 21, 2014 Probing QCD Matter with QED Fields Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center Research Supported by NSF Outline * Brief Introduction

More information

arxiv: v1 [hep-ph] 11 Apr 2019

arxiv: v1 [hep-ph] 11 Apr 2019 Non-static Analysis of the Anomalous Chiral Conductivities arxiv:1904.05520v1 [hep-ph] 11 Apr 2019 Miklós Horváth 1, Defu Hou 1 and Hai-cang Ren 2,1 1 Institute of Particle Physics and Key Laboratory of

More information

Chiral Magnetic Effect

Chiral Magnetic Effect Chiral Magnetic Effect Kenji Fukushima (Yukawa Institute for Theoretical Physics) 1 Strong q Angle, Strong CP Problem and Heavy-Ion Collisions P and CP Violation in the YM Theory Gauge Actions P- and CP-

More information

Schwinger s formula and the axial Ward identity for chirality production

Schwinger s formula and the axial Ward identity for chirality production Schwinger s formula and the axial Ward identity for chirality production Patrick Copinger, Kenji Fukushima, and Shi Pu New Frontiers in QCD 2018 June 18, 2018 Outline 1 Background Motivation: Chiral Magnetic

More information

Classical-statistical simulations and the Chiral Magnetic Effect

Classical-statistical simulations and the Chiral Magnetic Effect Classical-statistical simulations and the Chiral Magnetic Effect Niklas Mueller Heidelberg University based on work together with: J. Berges, M. Mace, S. Schlichting, S. Sharma, N. Tanji, R. Venugopalan

More information

Photons in the Chiral Magnetic Effect

Photons in the Chiral Magnetic Effect Photons in the Chiral Magnetic Effect Kenji Fukushima Department of Physics, Keio University June 25, 2012 @ CPODD 1 Current from the Quantum Anomaly Anomaly Relation j = N c i=flavor Q i 2 e 2 μ 5 2π

More information

arxiv: v2 [hep-ph] 21 Oct 2016

arxiv: v2 [hep-ph] 21 Oct 2016 Quantized chiral magnetic current from reconnections of magnetic flux Yuji Hirono, 1 Dmitri E. Kharzeev, 1, 2, 3 and Yi Yin 1 1 Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000

More information

The lattice Boltzmann method for contact line dynamics

The lattice Boltzmann method for contact line dynamics The lattice Boltzmann method for contact line dynamics Sudhir Srivastava, J.H.M. ten Thije Boonkkamp, Federico Toschi April 13, 2011 Overview 1 Problem description 2 Huh and Scriven model 3 Lattice Boltzmann

More information

Viscosity in strongly coupled gauge theories Lessons from string theory

Viscosity in strongly coupled gauge theories Lessons from string theory Viscosity in strongly coupled gauge theories Lessons from string theory Pavel Kovtun KITP, University of California, Santa Barbara A.Buchel, (University of Western Ontario) C.Herzog, (University of Washington,

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

P- and CP-odd effects in hot quark matter

P- and CP-odd effects in hot quark matter P- and CP-odd effects in hot quark matter Goethe Denkmal, Opernring, Wien Harmen Warringa, Goethe Universität, Frankfurt Collaborators: Kenji Fukushima, Dmitri Kharzeev and Larry McLerran. Kharzeev, McLerran

More information

(Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions. Thomas Schaefer North Carolina State University

(Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions. Thomas Schaefer North Carolina State University (Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions Thomas Schaefer North Carolina State University Outline I. Conformal hydrodynamics II. Observations (3d) III.

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li Institute) Slide_04 1 / 44 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination is the covariant derivative.

More information

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12 Strong Interaction Effects of Strong Magnetic Fields Berndt Mueller CPODD Workshop 2012 RIKEN BNL, 25-27 June 2012 Overview Pseudoscalar QED-QCD couplings CME phenomenology Results M. Asakawa, A. Majumder

More information

Lecture 11: Long-wavelength expansion in the Neel state Energetic terms

Lecture 11: Long-wavelength expansion in the Neel state Energetic terms Lecture 11: Long-wavelength expansion in the Neel state Energetic terms In the last class we derived the low energy effective Hamiltonian for a Mott insulator. This derivation is an example of the kind

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/ Statistical physics and light-front quantization Jörg Raufeisen (Heidelberg U.) JR and S.J. Brodsky, Phys. Rev. D70, 085017 (2004) and hep-th/0409157 Introduction: Dirac s Forms of Hamiltonian Dynamics

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Hydrodynamics and quantum anomalies. Dam Thanh Son (University of Chicago) EFI Colloquium (April 25, 2016)

Hydrodynamics and quantum anomalies. Dam Thanh Son (University of Chicago) EFI Colloquium (April 25, 2016) Hydrodynamics and quantum anomalies Dam Thanh Son (University of Chicago) EFI Colloquium (April 25, 2016) Plan of the talk Hydrodynamics Anomalies Gauge/gravity duality Hydrodynamics with anomalies (a

More information

Chemical composition of the decaying glasma

Chemical composition of the decaying glasma Chemical composition of the decaying glasma Tuomas Lappi BNL tvv@quark.phy.bnl.gov with F. Gelis and K. Kajantie Strangeness in Quark Matter, UCLA, March 2006 Abstract I will present results of a nonperturbative

More information

Green s functions: calculation methods

Green s functions: calculation methods M. A. Gusmão IF-UFRGS 1 FIP161 Text 13 Green s functions: calculation methods Equations of motion One of the usual methods for evaluating Green s functions starts by writing an equation of motion for the

More information

arxiv: v2 [nucl-th] 15 Aug 2017

arxiv: v2 [nucl-th] 15 Aug 2017 Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τ π calculation Alina Czajka Department of Physics, McGill University, 3600 rue University, Montreal, Quebec,

More information

Instantons and Sphalerons in a Magnetic Field

Instantons and Sphalerons in a Magnetic Field Stony Brook University 06/27/2012 GB, G.Dunne & D. Kharzeev, arxiv:1112.0532, PRD 85 045026 GB, D. Kharzeev, arxiv:1202.2161, PRD 85 086012 Outline Motivation & some lattice results General facts on Dirac

More information

Past, Present, and Future of the QGP Physics

Past, Present, and Future of the QGP Physics Past, Present, and Future of the QGP Physics Masayuki Asakawa Department of Physics, Osaka University November 8, 2018 oward Microscopic Understanding In Condensed Matter Physics 1st Macroscopic Properties

More information

Quantum Quenches in Extended Systems

Quantum Quenches in Extended Systems Quantum Quenches in Extended Systems Spyros Sotiriadis 1 Pasquale Calabrese 2 John Cardy 1,3 1 Oxford University, Rudolf Peierls Centre for Theoretical Physics, Oxford, UK 2 Dipartimento di Fisica Enrico

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

CHAPMAN-ENSKOG EXPANSION OF THE BOLTZMANN EQUATION AND ITS DIAGRAMMATIC INTERPRETATION

CHAPMAN-ENSKOG EXPANSION OF THE BOLTZMANN EQUATION AND ITS DIAGRAMMATIC INTERPRETATION CHAPMAN-ENSKOG EXPANSION OF THE BOLTZMANN EQUATION AND ITS DIAGRAMMATIC INTERPRETATION M.E. CARRINGTON A,B,HOUDEFU A,B,C AND R. KOBES B,D a Department of Physics, Brandon University, Brandon, MB,R7A 6A9

More information

HUGS Dualities and QCD. Josh Erlich LECTURE 5

HUGS Dualities and QCD. Josh Erlich LECTURE 5 HUGS 2012 Dualities and QCD Josh Erlich LECTURE 5 Outline The meaning of duality in physics (Example: The Ising model) Quark-Hadron duality (experimental and theoretical evidence) Electric-Magnetic Duality

More information

Lattice Boltzmann Method

Lattice Boltzmann Method 3 Lattice Boltzmann Method 3.1 Introduction The lattice Boltzmann method is a discrete computational method based upon the lattice gas automata - a simplified, fictitious molecular model. It consists of

More information

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

!onformali Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009 !onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K arxiv:0905.4752 Phys.Rev.D80:125005,2009 Motivation: QCD at LARGE N c and N f Colors Flavors Motivation: QCD at LARGE N c and N f Colors Flavors

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Chirality and Macroscopic Helicities

Chirality and Macroscopic Helicities Chirality and Macroscopic Helicities Andrey V. Sadofyev MIT UCLA, March, 2017 Andrey V. Sadofyev (MIT) Chirality and Macroscopic Helicities UCLA, March, 2017 1 / 29 Introduction µ ψγ µ γ 5 ψ = 1 2π 2E

More information

Wigner Distributions and Orbital Angular Momentum of Quarks

Wigner Distributions and Orbital Angular Momentum of Quarks Wigner Distributions and Orbital Angular Momentum of Quarks Asmita Mukherjee Indian Institute of Technology, Mumbai, India Wigner distribution for the quarks Reduced wigner distributions in position and

More information

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from To Topological charge flucutations, D. Leinweber Tracks in TPC of STAR And back! Harmen Warringa,

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Theoretical outlook. D. Kharzeev

Theoretical outlook. D. Kharzeev High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 QCD Workshop on Chirality, Vorticity, and Magnetic Field In Heavy Ion Collisions, UCLA, January 21-23, 2015 Theoretical outlook D. Kharzeev Supported

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Lecture 1: The Equilibrium Green Function Method

Lecture 1: The Equilibrium Green Function Method Lecture 1: The Equilibrium Green Function Method Mark Jarrell April 27, 2011 Contents 1 Why Green functions? 2 2 Different types of Green functions 4 2.1 Retarded, advanced, time ordered and Matsubara

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Electric Dipole Moment of Magnetic Monopole

Electric Dipole Moment of Magnetic Monopole 479 Progress of Theoretical Physics, Vol. 117, No. 3, March 27 Electric Dipole Moment of Magnetic Monopole Makoto Kobayashi High Energy Accelerator Research Organization (KEK, Tsukuba 35-81, Japan and

More information

Geometric responses of Quantum Hall systems

Geometric responses of Quantum Hall systems Geometric responses of Quantum Hall systems Alexander Abanov December 14, 2015 Cologne Geometric Aspects of the Quantum Hall Effect Fractional Quantum Hall state exotic fluid Two-dimensional electron gas

More information

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are; Lecture 4 - Relativistic wave equations Postulates Relativistic wave equations must satisfy several general postulates. These are;. The equation is developed for a field amplitude function, ψ 2. The normal

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

arxiv: v1 [nucl-th] 7 Jan 2019

arxiv: v1 [nucl-th] 7 Jan 2019 arxiv:1901.01924v1 [nucl-th] 7 Jan 2019 E-mail: sigtryggur.hauksson@mail.mcgill.ca Sangyong Jeon E-mail: jeon@physics.mcgill.ca Charles Gale E-mail: gale@physics.mcgill.ca Jets are a promising way to probe

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR 1 ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR R. L. Merlino Department of Physics and Astronomy University of Iowa Iowa City, IA 52242 December 21, 2001 ABSTRACT Using a fluid treatment,

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

3.15. Some symmetry properties of the Berry curvature and the Chern number.

3.15. Some symmetry properties of the Berry curvature and the Chern number. 50 Phys620.nb z M 3 at the K point z M 3 3 t ' sin 3 t ' sin (3.36) (3.362) Therefore, as long as M 3 3 t ' sin, the system is an topological insulator ( z flips sign). If M 3 3 t ' sin, z is always positive

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

Physics 505 Homework No. 8 Solutions S Spinor rotations. Somewhat based on a problem in Schwabl.

Physics 505 Homework No. 8 Solutions S Spinor rotations. Somewhat based on a problem in Schwabl. Physics 505 Homework No 8 s S8- Spinor rotations Somewhat based on a problem in Schwabl a) Suppose n is a unit vector We are interested in n σ Show that n σ) = I where I is the identity matrix We will

More information

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25 2017 8 28 30 @ Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: 1606.07742, 1708.05657 1/25 1. Introduction 2/25 Ultra-relativistic heavy-ion collisions and the Bjorken

More information

arxiv: v1 [nucl-th] 9 Jun 2008

arxiv: v1 [nucl-th] 9 Jun 2008 Dissipative effects from transport and viscous hydrodynamics arxiv:0806.1367v1 [nucl-th] 9 Jun 2008 1. Introduction Denes Molnar 1,2 and Pasi Huovinen 1 1 Purdue University, Physics Department, 525 Northwestern

More information

Fluid dynamics for the unitary Fermi gas. Thomas Schaefer, North Carolina State University

Fluid dynamics for the unitary Fermi gas. Thomas Schaefer, North Carolina State University Fluid dynamics for the unitary Fermi gas Thomas Schaefer, North Carolina State University Non-relativistic fermions in unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ

More information

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Thomas Schaefer North Carolina State University Fluids: Gases, Liquids, Plasmas,... Hydrodynamics: Long-wavelength, low-frequency dynamics

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 5 I. REPRESENTING STATES IN THE FULL HILBERT SPACE Given a representation of the states that span the spin Hilbert space, we now need to consider the problem

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

η = shear viscosity η s 1 s = entropy density 4π ( = k B = 1)

η = shear viscosity η s 1 s = entropy density 4π ( = k B = 1) s 1 = shear viscosity s = entropy density 4π ( = k B = 1) = shear viscosity s 1 4π s = shear viscosity s water 380 1 4π 1 4π s Liquid Helium 9 1 4π 1 4π Experimental Data KSS Quark-Gluon Plasma Kovtun

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

Electromagnetic and spin polarisabilities from lattice QCD

Electromagnetic and spin polarisabilities from lattice QCD Lattice Hadron Physics 2006 Electromagnetic and spin polarisabilities from lattice QCD William Detmold [ WD, BC Tiburzi and A Walker-Loud, PRD73, 114505] I: How to extract EM and spin polarisabilities

More information

Mandl and Shaw reading assignments

Mandl and Shaw reading assignments Mandl and Shaw reading assignments Chapter 2 Lagrangian Field Theory 2.1 Relativistic notation 2.2 Classical Lagrangian field theory 2.3 Quantized Lagrangian field theory 2.4 Symmetries and conservation

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Hendrik van Hees in collaboration with Jörn Knoll Contents Schwinger-Keldysh real-time formalism

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State Ë Ë Ë³ Gerry and Fermi Liquid Theory Thomas Schaefer North Carolina State Introduction I learned about Fermi liquid theory (FLT from Gerry. I was under the imression that the theory amounted to the oeration

More information

Landau-Fermi liquid theory

Landau-Fermi liquid theory Landau-Fermi liquid theory Shreyas Patankar Chennai Mathematical Institute Abstract We study the basic properties of Landau s theory of a system of interacting fermions (a Fermi liquid). The main feature

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Discrete symmetry breaking and restoration at finite temperature in 3D Gross-Neveu model

Discrete symmetry breaking and restoration at finite temperature in 3D Gross-Neveu model 1 Discrete symmetry breaking and restoration at finite temperature in 3D Gross-Neveu model arxiv:hep-th/981199v1 11 Nov 1998 Bang-Rong Zhou Department of Physics, Graduate School at Beijing University

More information

NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS. based on [ ] and [ ] Hannover, August 1, 2011

NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS. based on [ ] and [ ] Hannover, August 1, 2011 NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS based on [1104.3986] and [1105.3935] Hannover, August 1, 2011 WHAT IS WRONG WITH NONINTEGER FLUX? Quantization of Dirac monopole

More information

Topological insulator part II: Berry Phase and Topological index

Topological insulator part II: Berry Phase and Topological index Phys60.nb 11 3 Topological insulator part II: Berry Phase and Topological index 3.1. Last chapter Topological insulator: an insulator in the bulk and a metal near the boundary (surface or edge) Quantum

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

Goldstone Bosons and Chiral Symmetry Breaking in QCD

Goldstone Bosons and Chiral Symmetry Breaking in QCD Goldstone Bosons and Chiral Symmetry Breaking in QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Before reading this handout, carefully read Peskin and Schroeder s

More information

The Feynman Propagator and Cauchy s Theorem

The Feynman Propagator and Cauchy s Theorem The Feynman Propagator and Cauchy s Theorem Tim Evans 1 (1st November 2018) The aim of these notes is to show how to derive the momentum space form of the Feynman propagator which is (p) = i/(p 2 m 2 +

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information