Plasma Instabilities: Review

Size: px
Start display at page:

Download "Plasma Instabilities: Review"

Transcription

1 Plasma Instabilities: Review Guy Moore, McGill University And Arnold, Yaffe, Mrówczyński, Romatschke, Strickland, Rebhan, Lenaghan, Dumitru, Nara, Bödeker, Rummukainen, Berges, Venugopalan, Ipp, Schenke, Manuel usw Instabilities: general (Abelian) picture Requirements for instabilities to make sense Growth rate, dependence on anisotropy How big do they grow? What do they do? Universität Heidelberg, 12 Dez. 2011: Seite 1 aus 24

2 Suppose two streams of plasma collide: becomes What happens? Universität Heidelberg, 12 Dez. 2011: Seite 2 aus 24

3 Magnetic field growth! Consider the effects of a seed magnetic field ˆB ˆp = 0 and ˆk ˆp = 0 How do the particles deflect? Universität Heidelberg, 12 Dez. 2011: Seite 3 aus 24

4 Positive charges: No net ρ. Net current is induced as indicated. Universität Heidelberg, 12 Dez. 2011: Seite 4 aus 24

5 Negative charges: same-sign current contribution Induced B adds to seed B. Exponential Weibel instability Linearized analysis: B grows until bending angles become large. Universität Heidelberg, 12 Dez. 2011: Seite 5 aus 24

6 Note: particles in other directions are stabilizing Sum of J from two signs weakens seed magnetic field. Isotropy: effects from different directions cancel! Universität Heidelberg, 12 Dez. 2011: Seite 6 aus 24

7 What is B field growth rate? Force, velocity, deflection: F = eb ; v = tf p = ebt p ; v t y = 2 = eb 2p t2. concentration of charges: y/λ B or k y k the B-wavevector J en chg k y e 2 Bt 2 k d 3 p (2π) 3 2p f(p) Define the combination e 2 d 3 p f(p) (2π) 3 m2 Screening p mass squared Universität Heidelberg, 12 Dez. 2011: Seite 7 aus 24

8 From last slide: J (kb)m 2 t 2. Current must compete with field terms in Ampere s law: D B D t E = J For current to really matter, need J D B kb. This occurs when m 2 t 2 1 or t 1/m. Hence growth rate estimate: B B 0 e γt, γ m. Picture is self-consistent IF particles stay in same-sign B field for time scales tγ > 1. Universität Heidelberg, 12 Dez. 2011: Seite 8 aus 24

9 Assumptions I Built In in Proceeding Abelian fields? NO! Nonabelian works too! But: Classical field approximation: need α 1 I use e 2, g 2, α interchangeably Classical particle treatment: λ p,debroglie k 1 B or p m,k inst. Allows HL approx. Must be true in each direction! Former: concepts make no sense at strong coupling (I think) Latter: constraints on occupancies and level of anisotropy of excitations giving rise to instability Universität Heidelberg, 12 Dez. 2011: Seite 9 aus 24

10 Dependence on Occupancy and Anisotropy if typical momentum p Q, m 2 αq 2 f (f typical occupancy): Higher Occupancy: Larger m 2 (red), k inst (black) Universität Heidelberg, 12 Dez. 2011: Seite 10 aus 24

11 Dependence on Occupancy and Anisotropy For high anisotropy, m 2 goes down, k inst goes up! Smaller m 2 : less filled phase space, fewer part. Larger k inst : next! Universität Heidelberg, 12 Dez. 2011: Seite 11 aus 24

12 High anisotropy and larger k inst Modes unstable whenever particles stay in same-sign B for t > 1/m. Narrow momentum distrib: time can be longer! angle δ Dist. δ/m Distance 1/m Time scale t δ/k not 1/k. So k m/δ OK! Universität Heidelberg, 12 Dez. 2011: Seite 12 aus 24

13 High anisotropy m 2 e 2 d 3 p p f(p) δαq2 f (less phase-space) But k inst m/δ δ 1 2 larger. Treatment inconsistent if k inst m/δ > δq p z z = 1 / p z x = 1/p x Wave packet does not fit! Alternate analysis in this regime: k inst mq: more than δq, less than m/δ. Wave Packet Universität Heidelberg, 12 Dez. 2011: Seite 13 aus 24

14 Weak anisotropy What if almost-isotropic, with a few (O(ǫ)) extras? = Isotropic part has no influence on what k s unstable! Repeat treatment using ǫm 2 in place of m 2. k inst ǫ 1 2m. But γ ǫ 3 2m. Universität Heidelberg, 12 Dez. 2011: Seite 14 aus 24

15 What limits B-field growth? Many things can do the job: Large angle change: y < 1/k or B < δmp/g Robust Nielsen-Olesen instability: B < k 2 /g m 2 /(δ 2 g) Robust Nonabelian Nonlinear Interactions: B < k k z /g m 2 /(δg) initial conditions? Whichever works at smallest B-value is relevant. Universität Heidelberg, 12 Dez. 2011: Seite 15 aus 24

16 Large angle change Current stops building when particles bend too much. y > 1/k p > δp, B > δmp/g Universität Heidelberg, 12 Dez. 2011: Seite 16 aus 24

17 Nielsen-Olesen Instability Uniform B field: circular orbits, quantized p : ( to B that is) p 2 = (1 2n)eB. Energies of allowed excitations FOR SPIN-1: E 2 = p 2 p 2 z 2e s B = p 2 z (2n 1 ± 2)eB One mode has negative E 2 ; exp growth, γ N-O gb Uniform B approx is OK if p 2 increments 2eB > k 2 inst. So k inst < eb to avoid instability Universität Heidelberg, 12 Dez. 2011: Seite 17 aus 24

18 Nonabelian Nonlinearities Suppose modes grow with many colors and k s. One color acts to rotate J s due to another color: No Blue Current No Blue Current Universität Heidelberg, 12 Dez. 2011: Seite 18 aus 24

19 Requirement this happens: A in covariant deriv, A m/g or B m 2 /(gδ). Gauge-invariant version: 1/k 1/m Color randomization when Wilson loop shown has O(1) phase. Universität Heidelberg, 12 Dez. 2011: Seite 19 aus 24

20 What do plasma instabilities do? Main thing: angle-change. θ 1 for self-consistency (we saw) Many small independent kicks : describe with ˆq ˆq dp2 dt ( p)2 t coh = F 2 t coh αb 2 t coh Now B m 2 /gδ, t coh 1/m ˆq m3 δ 2 Thermal-like, O(1) anisotropic: g 3 T 3 (elastic: g 4 T 3 ) Enhanced by 1/δ 2 when large anisotropy. Universität Heidelberg, 12 Dez. 2011: Seite 20 aus 24

21 Where are plasma instabilities important? Assume ONE typical momentum scale, eg, Q s Anisotropy δ = α d Occupancy f = α c Occupancy-anisotropy plane. f α c Θ(p Q s )Θ( p z α d Q s ) Universität Heidelberg, 12 Dez. 2011: Seite 21 aus 24

22 slope 9/23 Where are plasma instabilities important? Consider feedback of instab. on hard modes, radiation, merging: Kukela Moore I Anisotropy d=ln( δ)/ln( α) Plasma Instabilities slope 1 Soft Particle Bath Forms c=1/3 d=1/7 d=1/3 d=ln( ε )/ln( α) Scattering c=1 Occupancy c=ln(f)/ln( α) Nielsen Olesen Instabilities Universität Heidelberg, 12 Dez. 2011: Seite 22 aus 24

23 Application: Heavy Ions Kurkela Moore II Anisotropy d=ln( δ)/ln( α) slope 9/23 Plasma Instabilities slope 1 Attractor 1 Initial Condition Soft Particle Bath Forms c=1/3 d=1/7 d=1/3 Attractor 2 d=ln( ε )/ln( α) Scattering c=1 Occupancy c=ln(f)/ln( α) 8: Nielsen Olesen Instabilities Thermal bath dominates: t α 12 5 s equilibration: t α 5 2 s Q 1 s. Q 1 s Universität Heidelberg, 12 Dez. 2011: Seite 23 aus 24

24 Conclusions Plasma instabilities generic in anisotropic, α 1 plasmas Especially important in situations of high anisotropy More phenomena can limit growth in a nonabelian than in an abelian context Should play a pivotal role in the equilibration process in heavy ion collisions (in the toy case of α s 1) To make quantitative predictions we need to understand the weak anisotropy case. Universität Heidelberg, 12 Dez. 2011: Seite 24 aus 24

The Strange Physics of Nonabelian Plasmas

The Strange Physics of Nonabelian Plasmas The Strange Physics of Nonabelian Plasmas Guy Moore, McGill University Review: What does Nonabelian mean? Instability of a Uniform magnetic field Radiation and the LPM effect Plasma instabilities My units:

More information

Longitudinal thermalization via the chromo-weibel instability

Longitudinal thermalization via the chromo-weibel instability Longitudinal thermalization via the chromo-weibel instability Maximilian Attems Frankfurt Institute of Advanced Studies 1207.5795, 1301.7749 Collaborators: Anton Rebhan, Michael Strickland Schladming,

More information

arxiv: v1 [nucl-th] 7 Jan 2019

arxiv: v1 [nucl-th] 7 Jan 2019 arxiv:1901.01924v1 [nucl-th] 7 Jan 2019 E-mail: sigtryggur.hauksson@mail.mcgill.ca Sangyong Jeon E-mail: jeon@physics.mcgill.ca Charles Gale E-mail: gale@physics.mcgill.ca Jets are a promising way to probe

More information

Universality classes far from equilibrium of scalar and gauge theories

Universality classes far from equilibrium of scalar and gauge theories Universality classes far from equilibrium of scalar and gauge theories Ruprecht-Karls University Heidelberg Kirill Boguslavski Talk based on: INT thermalization workshop / week 2 Aug 14, 2015 In collaboration

More information

Instabilities Driven Equilibration in Nuclear Collisions

Instabilities Driven Equilibration in Nuclear Collisions Instabilities Driven Equilibration in Nuclear Collisions Stanisław Mrówczyńsi Świętorzysa Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland 1 Evidence of equilibration success of

More information

Classical YM Dynamics and Turbulence Diffusion

Classical YM Dynamics and Turbulence Diffusion Classical YM Dynamics and Turbulence Diffusion Kenji Fukushima Department of Physics, Keio University 1 Transverse Pattern Formation Central Results g 2 μ t=0.1 g 2 μ t=30 g 2 μ t=10 June 18, 2013g@2 μ

More information

Instabilities in the Quark-Gluon Plasma

Instabilities in the Quark-Gluon Plasma in the Quark-Gluon Maximilian Attems Institute for Theoretical Physics, TU Vienna October 5, 2010 Dans la vie, rien n est à craindre, tout est à comprendre. Marie Curie Vienna Theory Lunch Seminar 2010

More information

Instability in an expanding non-abelian system

Instability in an expanding non-abelian system Instability in an expanding non-abelian system Kenji Fukushima (Department of Physics, Keio University) 1 Why expanding? 2 Relativistic Heavy-Ion Collision RHIC LHC Heavy-ions collide A new state of matter

More information

Preheating in the Higgs as Inflaton Model

Preheating in the Higgs as Inflaton Model Preheating in the Higgs as Inflaton Model Why is preheating interesting? Higgs as inflaton model Relevant physics: nonadiabatic particle production particle decay, thermalization of decay daughters medium

More information

Plasma Processes. m v = ee. (2)

Plasma Processes. m v = ee. (2) Plasma Processes In the preceding few lectures, we ve focused on specific microphysical processes. In doing so, we have ignored the effect of other matter. In fact, we ve implicitly or explicitly assumed

More information

It s a wave. It s a particle It s an electron It s a photon. It s light!

It s a wave. It s a particle It s an electron It s a photon. It s light! It s a wave It s a particle It s an electron It s a photon It s light! What they expected Young s famous experiment using a beam of electrons instead of a light beam. And, what they saw Wave-Particle Duality

More information

Isotropization from Color Field Condensate in heavy ion collisions

Isotropization from Color Field Condensate in heavy ion collisions Isotropization from Color Field Condensate in heavy ion collisions Stefan Flörchinger (CERN) RBRC Workshop on The Approach to Equilibrium in Strongly Interacting Matter, BNL, April 2, 2014. based on: S.

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Module No. # 01 Lecture No. # 22 Adiabatic Invariance of Magnetic Moment and Mirror Confinement Today, we

More information

P- and CP-odd effects in hot quark matter

P- and CP-odd effects in hot quark matter P- and CP-odd effects in hot quark matter Goethe Denkmal, Opernring, Wien Harmen Warringa, Goethe Universität, Frankfurt Collaborators: Kenji Fukushima, Dmitri Kharzeev and Larry McLerran. Kharzeev, McLerran

More information

Let s consider nonrelativistic electrons. A given electron follows Newton s law. m v = ee. (2)

Let s consider nonrelativistic electrons. A given electron follows Newton s law. m v = ee. (2) Plasma Processes Initial questions: We see all objects through a medium, which could be interplanetary, interstellar, or intergalactic. How does this medium affect photons? What information can we obtain?

More information

QCD at finite Temperature

QCD at finite Temperature QCD at finite Temperature II in the QGP François Gelis and CEA/Saclay General outline Lecture I : Quantum field theory at finite T Lecture II : in the QGP Lecture III : Out of equilibrium systems François

More information

The early stages of Heavy Ion Collisions

The early stages of Heavy Ion Collisions The early stages of Heavy Ion Collisions SEWM, Swansea University, July 2012 t z François Gelis IPhT, Saclay Outline 2 1 Initial state factorization 2 Final state evolution In collaboration with : K. Dusling

More information

Instabilities Driven Equilibration of the Quark-Gluon Plasma

Instabilities Driven Equilibration of the Quark-Gluon Plasma Instabilities Driven Equilibration of the Quar-Gluon Plasma Stanisław Mrówczyńsi Świętorzysa Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland 1 - why Mar s favorite formula e -E/T

More information

Nonequilibrium quantum field theory and the lattice. Jürgen Berges Darmstadt University of Technology

Nonequilibrium quantum field theory and the lattice. Jürgen Berges Darmstadt University of Technology Nonequilibrium quantum field theory and the lattice Jürgen Berges Darmstadt University of Technology Content I. Motivation fast thermalization in heavy ion collisions early universe instabilities and prethermalization

More information

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab Meson Radiative Transitions on the Lattice hybrids and charmonium Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab 1 JLab, GlueX and photocouplings GlueX plans to photoproduce mesons

More information

Far-from-equilibrium universality classes In heavy-ion collisions and cosmology

Far-from-equilibrium universality classes In heavy-ion collisions and cosmology Far-from-equilibrium universality classes In heavy-ion collisions and cosmology Kirill Boguslavski J. Berges, KB, S. Schlichting and R. Venugopalan, PRD 92, 096006 (2015); PRL 114, 061601 (2015) Project:

More information

Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice

Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice https://helda.helsinki.fi Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice Kurkela, Aleksi 2018-03 Kurkela, A, Lappi, T & Peuron, J 2018, ' Plasmon mass scale and

More information

Conceptual Understandings for K-2 Teachers

Conceptual Understandings for K-2 Teachers AFK12SE/NGSS Strand Disciplinary Core Ideas PS1: Matter and Its Interactions How can one explain the structure, properties, and interactions of matter? PS1. A: Structure and Properties of Matter How do

More information

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from To Topological charge flucutations, D. Leinweber Tracks in TPC of STAR And back! Harmen Warringa,

More information

Quark-Gluon LHC

Quark-Gluon LHC Quar-Gluon Plasma @ LHC Stanisław Mrówczyńsi Świętorzysa Academy Kielce Poland & Institute for Nuclear Studies Warsaw Poland QGP @ LHC wealy couled strongly collectie unstable equilibrates fast 1 Relatiistic

More information

Nonequilibrium photon production by classical color fields

Nonequilibrium photon production by classical color fields Nonequilibrium photon production by classical color fields Naoto Tanji Heidelberg University arxiv:1506.08442 ECT* Workshop Dec. 04 th 2015 Photons in heavy-ion collisions 1/30 hadron decays thermal hadron

More information

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino Cosmology & CMB Set2: Linear Perturbation Theory Davide Maino Covariant Perturbation Theory Covariant = takes same form in all coordinate systems Invariant = takes the same value in all coordinate systems

More information

Physics 11b Lecture #24. Quantum Mechanics

Physics 11b Lecture #24. Quantum Mechanics Physics 11b Lecture #4 Quantum Mechanics What We Did Last Time Theory of special relativity is based on two postulates: Laws of physics is the same in all reference frames Speed of light is the same in

More information

Physics 598ACC Accelerators: Theory and Applications

Physics 598ACC Accelerators: Theory and Applications Physics 598ACC Accelerators: Theory and Instructors: Fred Mills, Deborah Errede Lecture 6: Collective Effects 1 Summary A. Transverse space charge defocusing effects B. Longitudinal space charge effects

More information

5 Infrared Divergences

5 Infrared Divergences 5 Infrared Divergences We have already seen that some QED graphs have a divergence associated with the masslessness of the photon. The divergence occurs at small values of the photon momentum k. In a general

More information

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Shear viscosity from BAMPS Andrej El Zhe Xu Carsten Greiner Institut für Theoretische Physik

More information

In an electric field R and magnetic field B, the force on an electron (charge e) is given by:

In an electric field R and magnetic field B, the force on an electron (charge e) is given by: Lecture 17 Electric conduction Electrons motion in magnetic field Electrons thermal conductivity Brief review In solid state physics, we do not think about electrons zipping around randomly in real space.

More information

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics c Hans C. Andersen October 1, 2009 While we know that in principle

More information

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12 Strong Interaction Effects of Strong Magnetic Fields Berndt Mueller CPODD Workshop 2012 RIKEN BNL, 25-27 June 2012 Overview Pseudoscalar QED-QCD couplings CME phenomenology Results M. Asakawa, A. Majumder

More information

Photon production in the bottom-up thermalization of heavy-ion collisions

Photon production in the bottom-up thermalization of heavy-ion collisions Photon production in the bottom-up thermalization of heavy-ion collisions Naoto Tanji Institut für Theoretische Physik Heidelberg University arxiv: 1701.05064 collaboration with Jürgen Berges (Heidelberg

More information

Turbulence and Bose-Einstein condensation Far from Equilibrium

Turbulence and Bose-Einstein condensation Far from Equilibrium Turbulence and Bose-Einstein condensation Far from Equilibrium Dénes Sexty Uni Heidelberg Collaborators: Jürgen Berges, Sören Schlichting July 1, 01, Swansea SEWM 01 Non-equilibrium initial state Turbulent

More information

Chiral magnetic effect and anomalous transport from real-time lattice simulations

Chiral magnetic effect and anomalous transport from real-time lattice simulations Chiral magnetic effect and anomalous transport from real-time lattice simulations Niklas Mueller Heidelberg University based on work together with: J. Berges, M. Mace, S. Schlichting, S. Sharma, N. Tanji

More information

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture 18 Basic Laws of Electromagnetics We saw in the earlier lecture

More information

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment Last Time 3-dimensional quantum states and wave functions Decreasing particle size Quantum dots (particle in box) Course evaluations Thursday, Dec. 10 in class Last HW assignment available : for practice

More information

Jet Quenching and Holographic Thermalization

Jet Quenching and Holographic Thermalization Jet Quenching and Holographic Thermalization Di-Lun Yang (Duke University) with Berndt Muller Outline Energy loss in the holographic picture Thermalization and gravitational collapse : The falling mass

More information

Chiral Magnetic Effect

Chiral Magnetic Effect Chiral Magnetic Effect Kenji Fukushima (Yukawa Institute for Theoretical Physics) 1 Strong q Angle, Strong CP Problem and Heavy-Ion Collisions P and CP Violation in the YM Theory Gauge Actions P- and CP-

More information

8.333: Statistical Mechanics I Fall 2007 Test 2 Review Problems

8.333: Statistical Mechanics I Fall 2007 Test 2 Review Problems 8.333: Statistical Mechanics I Fall 007 Test Review Problems The second in-class test will take place on Wednesday 10/4/07 from :30 to 4:00 pm. There will be a recitation with test review on Monday 10//07.

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Module - 4 Time Varying Field Lecture - 30 Maxwell s Equations In the last lecture we had introduced

More information

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Z. Bonaventura, D. Trunec Department of Physical Electronics Faculty of Science Masaryk University Kotlářská 2, Brno, CZ-61137,

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 5, 007 1 Infrared

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA TOWARDS MORE REALISTIC MODELS OF THE QGP THERMALISATION Work with Michał Heller, David Mateos, Jorge Casalderrey, Paul Romatschke, Scott Pratt and Peter

More information

The Ginzburg-Landau Theory

The Ginzburg-Landau Theory The Ginzburg-Landau Theory A normal metal s electrical conductivity can be pictured with an electron gas with some scattering off phonons, the quanta of lattice vibrations Thermal energy is also carried

More information

Lecture 11. Linear Momentum and Impulse. Collisions.

Lecture 11. Linear Momentum and Impulse. Collisions. Lecture 11 Linear Momentum and Impulse. Collisions. Momentum and Newton s Second Law F net = m a= m Δ v Δ t = Δ (m v ) Δ t = Δ p Δ t Linear momentum p = m v Newton s second law in terms of linear momentum:

More information

CHAPTER 5 ATOMIC STRUCTURE SHORT QUESTIONS AND ANSWERS Q.1 Why it is necessary to decrease the pressure in the discharge tube to get the cathode rays? The current does not flow through the gas at ordinary

More information

Rutherford s Gold Foil Experiment. Quantum Theory Max Planck (1910)

Rutherford s Gold Foil Experiment. Quantum Theory Max Planck (1910) Neils Bohr Niels Bohr (1913) developed the planetary model of the atom based upon the following: Rutherford s Gold Foil Experiment E = mc 2 Albert Einstein (1905) Quantum Theory Max Planck (1910) He postulated

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

arxiv:hep-ph/ v1 29 May 2000

arxiv:hep-ph/ v1 29 May 2000 Photon-Photon Interaction in a Photon Gas Markus H. Thoma Theory Division, CERN, CH-1211 Geneva, Switzerland and Institut für Theoretische Physik, Universität Giessen, 35392 Giessen, Germany arxiv:hep-ph/0005282v1

More information

arxiv:nucl-th/ v1 11 Feb 2007

arxiv:nucl-th/ v1 11 Feb 2007 Thermalization of quark-gluon matter by 2-to-2 and 3-to-3 elastic scatterings arxiv:nucl-th/7236v Feb 27. Introduction Xiao-Ming Xu Department of Physics, Shanghai University, Baoshan, Shanghai 2444, China

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Current and Circuits 2017-07-12 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's

More information

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco Bari, 2012 December

More information

Yoctosecond light flashes from the quark gluon plasma

Yoctosecond light flashes from the quark gluon plasma Yoctosecond light flashes from the quark gluon plasma Andreas Ipp Technische Universität Wien Collaborators: Jörg Evers, Christoph H. Keitel (Max-Planck-Institut für Kernphysik, Heidelberg) Vienna Theory

More information

QCD Equation of state in perturbation theory (and beyond... )

QCD Equation of state in perturbation theory (and beyond... ) QCD Equation of state in perturbation theory (and beyond... ) Kari Rummukainen CERN Theory & University of Oulu, Finland Physics of high baryon density K. Rummukainen (Oulu & CERN) EoS in pqcd Trento 06

More information

Chemical composition of the decaying glasma

Chemical composition of the decaying glasma Chemical composition of the decaying glasma Tuomas Lappi BNL tvv@quark.phy.bnl.gov with F. Gelis and K. Kajantie Strangeness in Quark Matter, UCLA, March 2006 Abstract I will present results of a nonperturbative

More information

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Problem 2 has nothing to do with what we have done in class. It introduces somewhat strange coordinates called rapidity and pseudorapidity

More information

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T Modern Physics 11/16 and 11/19/2018 1 Introduction In Chapter 7, we studied the hydrogen atom. What about other elements, e.g.,

More information

Partonic transport simulations of jet quenching

Partonic transport simulations of jet quenching Partonic transport simulations of jet quenching Z. Xu, C. Greiner Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt Outline motivation introduction to the model simulations of Au+Au

More information

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions.

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions. Line Broadening Spectral lines are not arbitrarily sharp. There are a variety of mechanisms that give them finite width, and some of those mechanisms contain significant information. We ll consider a few

More information

Collisions in One Dimension

Collisions in One Dimension Collisions in One Dimension Paul Erlanger November 12, 2017 Date Performed: October 30, 2017 Partner: Alex Song TA: Chris Tiede Abstract In this lab we sought to investigate the conservation of energy

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/29750 holds various files of this Leiden University dissertation Author: Wortel, Geert Title: Granular flows : fluidization and anisotropy Issue Date: 2015-11-19

More information

Anisotropic gluon distributions of a nucleus

Anisotropic gluon distributions of a nucleus Anisotropic gluon distributions of a nucleus Adrian Dumitru Baruch College, CUNY INT Program INT-15-2b Correlations and Fluctuations in p+a and A+A Collisions anisotropy of gluon distribution in CGC formalism

More information

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse Transverse Dynamics E. Wilson - CERN Components of a synchrotron Dipole Bending Magnet Magnetic rigidity Bending Magnet Weak focusing - gutter Transverse ellipse Fields and force in a quadrupole Strong

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular motion Impulse and momentum 08-2 1 Current assignments Reading: Chapter 9 in textbook Prelecture due next Thursday HW#8 due NEXT Friday (extension!)

More information

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision.

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. PHYS1110H, 2011 Fall. Shijie Zhong Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. Linear momentum. For a particle of mass m moving at a velocity v, the linear momentum for the

More information

Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur

Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur Lecture - 5 Semi empirical Mass Formula So, nuclear radius size we talked and

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

PHY492: Nuclear & Particle Physics. Lecture 24. Exam 2 Particle Detectors

PHY492: Nuclear & Particle Physics. Lecture 24. Exam 2 Particle Detectors PHY492: Nuclear & Particle Physics Lecture 24 Exam 2 Particle Detectors Exam 2 April 16, 2007 Carl Bromberg - Prof. of Physics 2 Exam 2 2. Short Answer [4 pts each] a) To describe the QCD color quantum

More information

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1)

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1) Relativistic Weibel Instability Notes from a tutorial at the UCLA Winter School, January 11, 2008 Tom Katsouleas USC Viterbi School of Engineering, LA, CA 90089-0271 Motivation: Weibel instability of relativistic

More information

Chapter 5. Magnetostatics

Chapter 5. Magnetostatics Chapter 5. Magnetostatics 5.1 The Lorentz Force Law 5.1.1 Magnetic Fields Consider the forces between charges in motion Attraction of parallel currents and Repulsion of antiparallel ones: How do you explain

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Outside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak.

Outside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak. Applications of Ampere s Law continued. 2. Field of a solenoid. A solenoid can have many (thousands) of turns, and perhaps many layers of windings. The figure shows a simple solenoid with just a few windings

More information

Plasma Physics Prof. Vijayshri School of Sciences, IGNOU. Lecture No. # 38 Diffusion in Plasmas

Plasma Physics Prof. Vijayshri School of Sciences, IGNOU. Lecture No. # 38 Diffusion in Plasmas Plasma Physics Prof. Vijayshri School of Sciences, IGNOU Lecture No. # 38 Diffusion in Plasmas In today s lecture, we will be taking up the topic diffusion in plasmas. Diffusion, why do you need to study

More information

Chapter 6. Maxwell s Equations, Macroscopic Electromagnetism, Conservation Laws

Chapter 6. Maxwell s Equations, Macroscopic Electromagnetism, Conservation Laws PHYS 532 Lecture 7 Page 1 Chapter 6. Maxwell s Equations, Macroscopic Electromagnetism, Conservation Laws 6.1 Maxwell Displacement Current and Maxwell Equations Differential equations for calculating fields

More information

Turbulence and Transport The Secrets of Magnetic Confinement

Turbulence and Transport The Secrets of Magnetic Confinement Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS

More information

BOHR S THEORY AND PHYSICS OF ATOM CHAPTER

BOHR S THEORY AND PHYSICS OF ATOM CHAPTER BOHR S THEORY AND PHYSICS OF ATOM CHAPTER 3 1. a 1 h A T (ML T ) M L T 3 L me L MLT M(AT) M L T a has dimensions of length.. We know, 1/ 1.1 1 (1/n 1 1/n ) a) n 1, n 3 or, 1/ 1.1 1 (1/ 1/9) 36 or, 6.5

More information

VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras

VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 20 Ion-implantation systems and damages during implantation So, in our discussion

More information

Plasma collisions and conductivity

Plasma collisions and conductivity e ion conductivity Plasma collisions and conductivity Collisions in weakly and fully ionized plasmas Electric conductivity in non-magnetized and magnetized plasmas Collision frequencies In weakly ionized

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

The Quantum Hall Effect

The Quantum Hall Effect The Quantum Hall Effect David Tong (And why these three guys won last week s Nobel prize) Trinity Mathematical Society, October 2016 Electron in a Magnetic Field B mẍ = eẋ B x = v cos!t! y = v sin!t!!

More information

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)

More information

Lecture 2 2D Electrons in Excited Landau Levels

Lecture 2 2D Electrons in Excited Landau Levels Lecture 2 2D Electrons in Excited Landau Levels What is the Ground State of an Electron Gas? lower density Wigner Two Dimensional Electrons at High Magnetic Fields E Landau levels N=2 N=1 N= Hartree-Fock

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism The figure shows the path of a negatively charged particle in a region of a uniform magnetic field. Answer the following questions about this situation (in each case, we revert back

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Module No. # 01 Lecture No. # 02 Plasma Response to Fields: Fluid Equations Well, friends today I am going

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Chapter 6. Quantum Theory of the Hydrogen Atom

Chapter 6. Quantum Theory of the Hydrogen Atom Chapter 6 Quantum Theory of the Hydrogen Atom 1 6.1 Schrodinger s Equation for the Hydrogen Atom Symmetry suggests spherical polar coordinates Fig. 6.1 (a) Spherical polar coordinates. (b) A line of constant

More information

MHS. Physics. Sample Questions. Exam to go from grade 10 to grade 11

MHS. Physics. Sample Questions. Exam to go from grade 10 to grade 11 MHS Physics Exam to go from grade 10 to grade 11 Sample Questions 1. non-luminous source of light is one which: 1. emits light by itself 2. carries light inside 3. reflects light coming from other objects

More information

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays DESY Summer Student Programme, 2016 Olga Lebiga Taras Shevchenko National University of Kyiv, Ukraine Supervisors Reinaldo

More information

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley) The Physics of Collisionless Accretion Flows Eliot Quataert (UC Berkeley) Accretion Disks: Physical Picture Simple Consequences of Mass, Momentum, & Energy Conservation Matter Inspirals on Approximately

More information

Chapter 9. Linear Momentum and Collisions This chapter is about interaction between TWO objects

Chapter 9. Linear Momentum and Collisions This chapter is about interaction between TWO objects Chapter 9 Linear Momentum and Collisions This chapter is about interaction between TWO objects 1 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

3. What type of force is the woman applying to cart in the illustration below?

3. What type of force is the woman applying to cart in the illustration below? Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

More information