Machine Learning. Machine Learning /15-781

Size: px
Start display at page:

Download "Machine Learning. Machine Learning /15-781"

Transcription

1 Machie Learig , 78, Sprig 8 Itroductio ad Desity Estimatio Eric Xig Lecture, Jauary 4, 8 Readig: Chap.,, CB Machie Learig Class webpage:

2 Logistics Tet book Chris Bishop, Patter Recogitio ad Machie Learig required Tom Mitchell, Machie Learig David Mackay, Iformatio Theory, Iferece, ad Learig Algorithms Mailig Lists: To cotact the istructors: Class aoucemets list: TA: Leo Gu, Wea Hall 84, , Office hours: Kyug-Ah Soh, Doherty Hall 43e, 8-39, Office hours: Thursday 3:-4: Class Assistat: Diae Stidle, Wea Hall 46, 8-99 Logistics 5 homework assigmets: 3% of grade Theory eercises Implemetatio eercises Fial project: % of grade Applyig PGM to your research area LP, IR, Computatioal biology, visio, robotics Theoretical ador algorithmic work a more efficiet approimate iferece algorithm a ew samplig scheme for a o-trivial model Two eams: 5% of grade each Theory eercises ador aalysis Policies

3 What is Learig Apoptosis Medicie Machie Learig 3

4 Machie Learig Machie Learig seeks to develop theories ad computer systems for represetig; classifyig, clusterig ad recogizig; reasoig uder ucertaity; predictig; ad reactig to comple, real world data, based o the system's ow eperiece with data, ad hopefully uder a uified model or mathematical framework, that ca be formally characterized ad aalyzed ca take ito accout huma prior kowledge ca geeralize ad adapt across data ad domais ca operate automatically ad autoomously ad ca be iterpreted ad perceived by huma. Where Machie Learig is beig used or ca be useful? Iformatio retrieval Speech recogitio Computer visio Games Robotic cotrol Pedigree Evolutio Plaig 4

5 atural laguage processig ad speech recogitio ow most pocket Speech Recogizers or Traslators are ruig o some sort of learig device --- the more you playuse them, the smarter they become! Object Recogitio Behid a security camera, most likely there is a computer that is learig ador checkig! 5

6 Robotic Cotrol I The best helicopter pilot is ow a computer! it rus a program that lears how to fly ad make acrobatic maeuvers by itself! o taped istructios, joysticks, or thigs like A. g 5 Robotic Cotrol II ow cars ca fid their ow ways! 6

7 Tet Miig We wat: Readig, digestig, ad categorizig a vast tet database is too much for huma! Uderstadig Brai Activities 7

8 cacatcgctgcgtttcggcagctaattgccttttagaaattattttcccatttcgagaaactcgtgtgggatgccggatgcggctttcaatcacttctggcccgggatcggattgggtcacattgtctgcgggctctattgtctcgatccgc ggcgcagttcgcgtgcttagcggtcagaaaggcagagattcggttcggattgatgcgctggcagcagggcacaaagatctaatgactggcaaatcgctacaaataaattaaagtccggcggctaattaatgagcggactgaagccactttgg attaaccaaaaaacagcagataaacaaaaacggcaaagaaaattgccacagagttgtcacgctttgttgcacaaacatttgtgcagaaaagtgaaaagcttttagccattattaagtttttcctcagctcgctggcagcacttgcgaatgta ctgatgttcctcataaatgaaaattaatgtttgctctacgctccaccgaactcgcttgtttgggggattggctggctaatcgcggctagatcccaggcggtataaccttttcgcttcatcagttgtgaaaccagatggctggtgttttggca cagcggactcccctcgaacgctctcgaaatcaagtggctttccagccggcccgctgggccgctcgcccactggaccggtattcccaggccaggccacactgtaccgcaccgcataatcctcgccagactcggcgctgataaggcccaatgtc actccgcaggcgtctatttatgccaaggaccgttcttcttcagctttcggctcgagtatttgttgtgccatgttggttacgatgccaatcgcggtacagttatgcaaatgagcagcgaataccgctcactgacaatgaacggcgtcttgtca tattcatgctgacattcatattcattcctttggttttttgtcttcgacggactgaaaagtgcggagagaaacccaaaaacagaagcgcgcaaagcgccgttaatatgcgaactcagcgaactcattgaagttatcacaacaccatatccata catatccatatcaatatcaatatcgctattattaacgatcatgctctgctgatcaagtattcagcgctgcgctagattcgacagattgaatcgagctcaatagactcaacagactccactcgacagatgcgcaatgccaaggacaattgccg tggagtaaacgaggcgtatgcgcaacctgcacctggcggacgcggcgtatgcgcaatgtgcaattcgcttaccttctcgttgcgggtcaggaactcccagatgggaatggccgatgacgagctgatctgaatgtggaaggcgcccagcaggc Bioiformatics aagattactttcgccgcagtcgtcatggtgtcgttgctgcttttatgttgcgtactccgcactacacggagagttcaggggattcgtgctccgtgatctgtgatccgtgttccgtgggtcaattgcacggttcggttgtgtaaccttcgtgt tctttttttttagggcccaataaaagcgcttttgtggcggcttgatagattatcacttggtttcggtggctagccaagtggctttcttctgtccgacgcacttaattgaattaaccaaacaacgagcgtggccaattcgtattatcgctgtt tacgtgtgtctcagcttgaaacgcaaaagcttgtttcacacatcggtttctcggcaagatgggggagtcagtcggtctagggagaggggcgcccaccagtcgatcacgaaaacggcgaattccaagcgaaacggaaacggagcgagcactat agtactatgtcgaacaaccgatcgcggcgatgtcagtgagtcgtcttcggacagcgctggcgctccacacgtatttaagctctgagatcggctttgggagagcgcagagagcgccatcgcacggcagagcgaaagcggcagtgagcgaaagc gagcggcagcgggtgggggatcgggagccccccgaaaaaaacagaggcgcacgtcgatgccatcggggaattggaacctcaatgtgtgggaatgtttaaatattctgtgttaggtagtgtagtttcatagactatagattctcatacagatt gagtccttcgagccgattatacacgacagcaaaatatttcagtcgcgcttgggcaaaaggcttaagcacgactcccagtccccccttacatttgtcttcctaagcccctggagccactatcaaacttgttctacgcttgcactgaaaataga accaaagtaaacaatcaaaaagaccaaaaacaataacaaccagcaccgagtcgaacatcagtgaggcattgcaaaaatttcaaagtcaagtttgcgtcgtcatcgcgtctgagtccgatcaagccgggcttgtaattgaagttgttgatgag ttactggattgtggcgaattctggtcagcatacttaacagcagcccgctaattaagcaaaataaacatatcaaattccagaatgcgacggcgccatcatcctgtttgggaattcaattcgcgggcagatcgtttaattcaattaaaaggtag aaaagggagcagaagaatgcgatcgctggaatttcctaacatcacggaccccataaatttgataagcccgagctcgctgcgttgagtcagccaccccacatccccaaatccccgccaaaagaagacagctgggttgttgactcgccagattg attgcagtggagtggacctggtcaaagaagcaccgttaatgtgctgattccattcgattccatccgggaatgcgataaagaaaggctctgatccaagcaactgcaatccggatttcgattttctctttccatttggttttgtatttacgtac aagcattctaatgaagacttggagaagacttacgttatattcagaccatcgtgcgatagaggatgagtcatttccatatggccgaaatttattatgtttactatcgtttttagaggtgttttttggacttaccaaaagaggcatttgttttc ttcaactgaaaagatatttaaattttttcttggaccattttcaaggttccggatatatttgaaacacactagctagcagtgttggtaagttacatgtatttctataatgtcatattcctttgtccgtattcaaatcgaatactccacatctc ttgtacttgaggaattggcgatcgtagcgatttcccccgccgtaaagttcctgatcctcgttgtttttgtacatcataaagtccggattctgctcgtcgccgaagatgggaacgaagctgccaaagctgagagtctgcttgaggtgctggtc gtcccagctggataaccttgctgtacagatcggcatctgcctggagggcacgatcgaaatccttccagtggacgaacttcacctgctcgctgggaatagcgttgttgtcaagcagctcaaggagcgtattcgagttgacgggctgcaccacg ctgctccttcgctggggattcccctgcgggtaagcgccgcttgcttggactcgtttccaaatcccatagccacgccagcagaggagtaacagagctcwhereisthegeetgattaaaaatatcctttaagaaagcccatgggtataactt actgcgtcctatgcgaggaatggtctttaggttctttatggcaaagttctcgcctcgcttgcccagccgcggtacgttcttggtgatctttaggaagaatcctggactactgtcgtctgcctggcttatggccacaagacccaccaagagcg aggactgttatgattctcatgctgatgcgactgaagcttcacctgactcctgctccacaattggtggcctttatatagcgagatccacccgcatcttgcgtggaatagaaatgcgggtgactccaggaattagcattatcgatcggaaagtg ataaaactgaactaacctgacctaaatgcctggccataattaagtgcatacatacacattacattacttacatttgtataagaactaaattttatagtacataccacttgcgtatgtaaatgcttgtcttttctcttatatacgttttataa cccagcatattttacgtaaaaacaaaacggtaatgcgaacataacttatttattggggcccggaccgcaaaccggccaaacgcgtttgcacccataaaaacataagggcaacaaaaaaattgttaagctgttgtttatttttgcaatcgaaa cgctcaaatagctgcgatcactcgggagcagggtaaagtcgcctcgaaacaggaagctgaagcatcttctataaatacactcaaagcgatcattccgaggcgagtctggttagaaatttacatggactgcaaaaaggtatagccccacaaac cacatcgctgcgtttcggcagctaattgccttttagaaattattttcccatttcgagaaactcgtgtgggatgccggatgcggctttcaatcacttctggcccgggatcggattgggtcacattgtctgcgggctctattgtctcgatccgc ggcgcagttcgcgtgcttagcggtcagaaaggcagagattcggttcggattgatgcgctggcagcagggcacaaagatctaatgactggcaaatcgctacaaataaattaaagtccggcggctaattaatgagcggactgaagccactttgg attaaccaaaaaacagcagataaacaaaaacggcaaagaaaattgccacagagttgtcacgctttgttgcacaaacatttgtgcagaaaagtgaaaagcttttagccattattaagtttttcctcagctcgctggcagcacttgcgaatgta ctgatgttcctcataaatgaaaattaatgtttgctctacgctccaccgaactcgcttgtttgggggattggctggctaatcgcggctagatcccaggcggtataaccttttcgcttcatcagttgtgaaaccagatggctggtgttttggca cagcggactcccctcgaacgctctcgaaatcaagtggctttccagccggcccgctgggccgctcgcccactggaccggtattcccaggccaggccacactgtaccgcaccgcataatcctcgccagactcggcgctgataaggcccaatgtc actccgcaggcgtctatttatgccaaggaccgttcttcttcagctttcggctcgagtatttgttgtgccatgttggttacgatgccaatcgcggtacagttatgcaaatgagcagcgaataccgctcactgacaatgaacggcgtcttgtca tattcatgctgacattcatattcattcctttggttttttgtcttcgacggactgaaaagtgcggagagaaacccaaaaacagaagcgcgcaaagcgccgttaatatgcgaactcagcgaactcattgaagttatcacaacaccatatccata catatccatatcaatatcaatatcgctattattaacgatcatgctctgctgatcaagtattcagcgctgcgctagattcgacagattgaatcgagctcaatagactcaacagactccactcgacagatgcgcaatgccaaggacaattgccg tggagtaaacgaggcgtatgcgcaacctgcacctggcggacgcggcgtatgcgcaatgtgcaattcgcttaccttctcgttgcgggtcaggaactcccagatgggaatggccgatgacgagctgatctgaatgtggaaggcgcccagcaggc aagattactttcgccgcagtcgtcatggtgtcgttgctgcttttatgttgcgtactccgcactacacggagagttcaggggattcgtgctccgtgatctgtgatccgtgttccgtgggtcaattgcacggttcggttgtgtaaccttcgtgt tctttttttttagggcccaataaaagcgcttttgtggcggcttgatagattatcacttggtttcggtggctagccaagtggctttcttctgtccgacgcacttaattgaattaaccaaacaacgagcgtggccaattcgtattatcgctgtt tacgtgtgtctcagcttgaaacgcaaaagcttgtttcacacatcggtttctcggcaagatgggggagtcagtcggtctagggagaggggcgcccaccagtcgatcacgaaaacggcgaattccaagcgaaacggaaacggagcgagcactat agtactatgtcgaacaaccgatcgcggcgatgtcagtgagtcgtcttcggacagcgctggcgctccacacgtatttaagctctgagatcggctttgggagagcgcagagagcgccatcgcacggcagagcgaaagcggcagtgagcgaaagc Where is the gee? gagcggcagcgggtgggggatcgggagccccccgaaaaaaacagaggcgcacgtcgatgccatcggggaattggaacctcaatgtgtgggaatgtttaaatattctgtgttaggtagtgtagtttcatagactatagattctcatacagatt gagtccttcgagccgattatacacgacagcaaaatatttcagtcgcgcttgggcaaaaggcttaagcacgactcccagtccccccttacatttgtcttcctaagcccctggagccactatcaaacttgttctacgcttgcactgaaaataga accaaagtaaacaatcaaaaagaccaaaaacaataacaaccagcaccgagtcgaacatcagtgaggcattgcaaaaatttcaaagtcaagtttgcgtcgtcatcgcgtctgagtccgatcaagccgggcttgtaattgaagttgttgatgag ttactggattgtggcgaattctggtcagcatacttaacagcagcccgctaattaagcaaaataaacatatcaaattccagaatgcgacggcgccatcatcctgtttgggaattcaattcgcgggcagatcgtttaattcaattaaaaggtag aaaagggagcagaagaatgcgatcgctggaatttcctaacatcacggaccccataaatttgataagcccgagctcgctgcgttgagtcagccaccccacatccccaaatccccgccaaaagaagacagctgggttgttgactcgccagattg attgcagtggagtggacctggtcaaagaagcaccgttaatgtgctgattccattcgattccatccgggaatgcgataaagaaaggctctgatccaagcaactgcaatccggatttcgattttctctttccatttggttttgtatttacgtac aagcattctaatgaagacttggagaagacttacgttatattcagaccatcgtgcgatagaggatgagtcatttccatatggccgaaatttattatgtttactatcgtttttagaggtgttttttggacttaccaaaagaggcatttgttttc ttcaactgaaaagatatttaaattttttcttggaccattttcaaggttccggatatatttgaaacacactagctagcagtgttggtaagttacatgtatttctataatgtcatattcctttgtccgtattcaaatcgaatactccacatctc ttgtacttgaggaattggcgatcgtagcgatttcccccgccgtaaagttcctgatcctcgttgtttttgtacatcataaagtccggattctgctcgtcgccgaagatgggaacgaagctgccaaagctgagagtctgcttgaggtgctggtc gtcccagctggataaccttgctgtacagatcggcatctgcctggagggcacgatcgaaatccttccagtggacgaacttcacctgctcgctgggaatagcgttgttgtcaagcagctcaaggagcgtattcgagttgacgggctgcaccacg ctgctccttcgctggggattcccctgcgggtaagcgccgcttgcttggactcgtttccaaatcccatagccacgccagcagaggagtaacagagctctgaaaacagttcatggtttaaaaatatcctttaagaaagcccatgggtataactt actgcgtcctatgcgaggaatggtctttaggttctttatggcaaagttctcgcctcgcttgcccagccgcggtacgttcttggtgatctttaggaagaatcctggactactgtcgtctgcctggcttatggccacaagacccaccaagagcg aggactgttatgattctcatgctgatgcgactgaagcttcacctgactcctgctccacaattggtggcctttatatagcgagatccacccgcatcttgcgtggaatagaaatgcgggtgactccaggaattagcattatcgatcggaaagtg ataaaactgaactaacctgacctaaatgcctggccataattaagtgcatacatacacattacattacttacatttgtataagaactaaattttatagtacataccacttgcgtatgtaaatgcttgtcttttctcttatatacgttttataa Evolutio acestor? T years Q h Q m A C 8

9 Paradigms of Machie Learig Supervised Learig D { X, Y } f : Y f Give, lear, s.t. i i i X i Usupervised Learig { } f : Y f Give D X i, lear i X i, s.t. ew D { X } { Y } ew D { X } { Y } Reiforcemet Learig Give D { ev, actios, rewards, simulatortracereal game} j j j j lear policy : e, r a utility : a, e r, s.t. { ev,ew real game} a, a, K a 3 Active Learig ew Give ~ G, lear D ~ G' ad f, s.t. all D G', policy, { } D Y j Fuctio Approimatio ad Desity Estimatio 9

10 Fuctio Approimatio Settig: Set of possible istaces X Ukow target fuctio f: X Y Set of fuctio hypotheses H{ h h: X Y } Apoptosis Medicie Give: Traiig eamples {< i,y i >} of ukow target fuctio f Determie: Hypothesis h H that best approimates f Desity Estimatio A Desity Estimator lears a mappig from a set of attributes to a Probability Ofte kow as parameter estimatio if the distributio form is specified Biomial, Gaussia Three importat issues: ature of the data iid, correlated, Objective fuctio E, MAP, Algorithm simple algebra, gradiet methods, EM, Evaluatio scheme likelihood o test data, predictability, cosistecy,

11 Desity Estimatio Schemes Data Lear parameters Algorithm Score param Maimum likelihood Aalytical 5, K,,, K K M, K, M Bayesia Coditioal likelihood Margi Gradiet EM Samplig 3 5 K Parameter Learig from iid Data Goal: estimate distributio parameters from a dataset of idepedet, idetically distributed iid, fully observed, traiig cases D {,..., } Maimum likelihood estimatio E. Oe of the most commo estimators. With iid ad full-observability assumptio, write L as the likelihood of the data: L P,, K, ; P ; P ;, K, P i P i; 3. pick the settig of parameters most likely to have geerated the data we saw: ; * arg ma L arg ma log L

12 Eample: Beroulli model Data: We observed iid coi tossig: D{,,,, } Represetatio: Biary r.v: Model: {, } for P for How to write the likelihood of a sigle observatio i? P i P i i The likelihood of datasetd{,, }: i i i P,,..., P i i i i i i #head #tails Maimum Likelihood Estimatio Objective fuctio: h t l ; D log P D log log log We eed to maimize this w.r.t. Take derivatives wrt h h l h h h E or E i i Sufficiet statistics h, where k i, Frequecy as sample mea The couts, are sufficiet statistics of data D i

13 Overfittig Recall that for Beroulli Distributio, we have head What if we tossed too few times so that we saw zero head? We have head ad we will predict that the probability of, seeig a head et is zero!!! The rescue: "smoothig" head Where ' is kow as the pseudo- imagiary cout head But ca we make this more formal? head tail head ' head tail ' Bayesia Parameter Estimatio Treat the distributio parameters also as a radom variable The a posteriori distributio of after seem the data is: This is Bayes Rule p D p p D p D likelihood prior posterior margial likelihood p D p p D p d The prior p. ecodes our prior kowledge about the domai 3

14 Frequetist Parameter Estimatio Two people with differet priors p will ed up with differet estimates p D. Frequetists dislike this subjectivity. Frequetists thik of the parameter as a fied, ukow costat, ot a radom variable. Hece they have to come up with differet "objective" estimators ways of computig from data, istead of usig Bayes rule. These estimators have differet properties, such as beig ubiased, miimum variace, etc. The maimum likelihood estimator, is oe such estimator. Discussio or p, this is the problem! Bayesias kow it 4

15 5 Bayesia estimatio for Beroulli Beta distributio: Whe is discrete Posterior distributio of : otice the isomorphism of the posterior to the prior, such a prior is called a cojugate prior ad are hyperparameters parameters of the prior ad correspod to the umber of virtual headstails pseudo couts t h t h p p p P,...,,...,,..., Γ Γ Γ,, ; P B! Γ Γ Bayesia estimatio for Beroulli, co'd Posterior distributio of : Maimum a posteriori MAP estimatio: Posterior mea estimatio: Prior stregth: A A ca be iteroperated as the size of a imagiary data set from which we obtai the pseudo-couts t h t h p p p P,...,,...,,..., d C d D p h Bayes t h Bata parameters ca be uderstood as pseudo-couts,..., ma log arg MAP P

16 Effect of Prior Stregth Suppose we have a uiform prior, ad we observe v h, 8 t Weak prior A. Posterior predictio: v v p h h, t 8, '. 5 Strog prior A. Posterior predictio: v v p h h, t 8, '. 4 However, if we have eough data, it washes away the prior. e.g., v h, t 8. The the estimates uder weak ad strog prior are ad, respectively, both of which are close to. Eample : Gaussia desity Data: We observed iid real samples: Model: D{-.,,, -5.,, 3} P Log likelihood: π ep{ } E: take derivative ad set to zero: l ; D log P D log π l E l 4 E 6

17 7 E for a multivariate-gaussia It ca be show that the E for ad Σ is where the scatter matri is The sufficiet statistics are Σ ad Σ T. ote that X T XΣ T may ot be full rak eg. if <D, i which case Σ is ot ivertible S T E E Σ T T T S K M T T T X M Bayesia estimatio ormal Prior: Joit probability: Posterior: { } π ep P ~ ad, ~ where Sample mea { } π π ep ep, P { } π ~ ~ ep ~ P

18 8 Bayesia estimatio: ukow, kow The posterior mea is a cove combiatio of the prior ad the E, with weights proportioal to the relative oise levels. The precisio of the posterior is the precisio of the prior plus oe cotributio of data precisio for each observed data poit. Sequetially updatig the mea.8 ukow,. kow Effect of sigle data poit Uiformative vague flat prior, ~, Summary Machie Learig is Cool ad Useful!! Learig scearios: Data Objective fuctio Frequetist ad Bayesia Desity estimatio Typical discrete distributio Typical cotiuous distributio Cojugate priors

Elementary manipulations of probabilities

Elementary manipulations of probabilities Elemetary maipulatios of probabilities Set probability of multi-valued r.v. {=Odd} = +3+5 = /6+/6+/6 = ½ X X,, X i j X i j Multi-variat distributio: Joit probability: X true true X X,, X X i j i j X X

More information

Machine Learning. Introduction to ML and Density Estimation. Eric Xing , Fall Lecture 1, September 7, Reading: Mitchell: Chap 1,3

Machine Learning. Introduction to ML and Density Estimation. Eric Xing , Fall Lecture 1, September 7, Reading: Mitchell: Chap 1,3 Machie Learig 0-70, Fall 06 Itroductio to ML ad Desity Estimatio Eric Xig Lecture, September 7, 06 Readig: Mitchell: Chap,3 Eric Xig @ CMU, 006-06 Class Registratio IF YOU ARE O THE WAITIG LIST: This class

More information

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model Back to Maximum Likelihood Give a geerative model f (x, y = k) =π k f k (x) Usig a geerative modellig approach, we assume a parametric form for f k (x) =f (x; k ) ad compute the MLE θ of θ =(π k, k ) k=

More information

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead)

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead) Lecture 4 Homework Hw 1 ad 2 will be reoped after class for every body. New deadlie 4/20 Hw 3 ad 4 olie (Nima is lead) Pod-cast lecture o-lie Fial projects Nima will register groups ext week. Email/tell

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Machine Learning.

Machine Learning. 10-701 Machie Learig http://www.cs.cmu.edu/~epxig/class/10701-15f/ Orgaizatioal ifo All up-to-date ifo is o the course web page (follow liks from my page). Istructors - Eric Xig - Ziv Bar-Joseph TAs: See

More information

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018)

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018) NYU Ceter for Data Sciece: DS-GA 003 Machie Learig ad Computatioal Statistics (Sprig 208) Brett Berstei, David Roseberg, Be Jakubowski Jauary 20, 208 Istructios: Followig most lab ad lecture sectios, we

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring Machie Learig Regressio I Hamid R. Rabiee [Slides are based o Bishop Book] Sprig 015 http://ce.sharif.edu/courses/93-94//ce717-1 Liear Regressio Liear regressio: ivolves a respose variable ad a sigle predictor

More information

Read through these prior to coming to the test and follow them when you take your test.

Read through these prior to coming to the test and follow them when you take your test. Math 143 Sprig 2012 Test 2 Iformatio 1 Test 2 will be give i class o Thursday April 5. Material Covered The test is cummulative, but will emphasize the recet material (Chapters 6 8, 10 11, ad Sectios 12.1

More information

Week 1, Lecture 2. Neural Network Basics. Announcements: HW 1 Due on 10/8 Data sets for HW 1 are online Project selection 10/11. Suggested reading :

Week 1, Lecture 2. Neural Network Basics. Announcements: HW 1 Due on 10/8 Data sets for HW 1 are online Project selection 10/11. Suggested reading : ME 537: Learig-Based Cotrol Week 1, Lecture 2 Neural Network Basics Aoucemets: HW 1 Due o 10/8 Data sets for HW 1 are olie Proect selectio 10/11 Suggested readig : NN survey paper (Zhag Chap 1, 2 ad Sectios

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week Lecture: Cocept Check Exercises Starred problems are optioal. Statistical Learig Theory. Suppose A = Y = R ad X is some other set. Furthermore, assume P X Y is a discrete

More information

Pattern Classification

Pattern Classification Patter Classificatio All materials i these slides were tae from Patter Classificatio (d ed) by R. O. Duda, P. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher

More information

Introductory statistics

Introductory statistics CM9S: Machie Learig for Bioiformatics Lecture - 03/3/06 Itroductory statistics Lecturer: Sriram Sakararama Scribe: Sriram Sakararama We will provide a overview of statistical iferece focussig o the key

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

Lecture 9: September 19

Lecture 9: September 19 36-700: Probability ad Mathematical Statistics I Fall 206 Lecturer: Siva Balakrisha Lecture 9: September 9 9. Review ad Outlie Last class we discussed: Statistical estimatio broadly Pot estimatio Bias-Variace

More information

Topic 8: Expected Values

Topic 8: Expected Values Topic 8: Jue 6, 20 The simplest summary of quatitative data is the sample mea. Give a radom variable, the correspodig cocept is called the distributioal mea, the epectatio or the epected value. We begi

More information

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1 Parameter Estimatio Samples from a probability distributio F () are: [,,..., ] T.Theprobabilitydistributio has a parameter vector [,,..., m ] T. Estimator: Statistic used to estimate ukow. Estimate: Observed

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2013 Aat Sahai Lecture 18 Iferece Oe of the major uses of probability is to provide a systematic framework to perform iferece uder ucertaity. A

More information

Overview of Estimation

Overview of Estimation Topic Iferece is the problem of turig data ito kowledge, where kowledge ofte is expressed i terms of etities that are ot preset i the data per se but are preset i models that oe uses to iterpret the data.

More information

STATS 200: Introduction to Statistical Inference. Lecture 1: Course introduction and polling

STATS 200: Introduction to Statistical Inference. Lecture 1: Course introduction and polling STATS 200: Itroductio to Statistical Iferece Lecture 1: Course itroductio ad pollig U.S. presidetial electio projectios by state (Source: fivethirtyeight.com, 25 September 2016) Pollig Let s try to uderstad

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

CSE 527, Additional notes on MLE & EM

CSE 527, Additional notes on MLE & EM CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

ME 539, Fall 2008: Learning-Based Control

ME 539, Fall 2008: Learning-Based Control ME 539, Fall 2008: Learig-Based Cotrol Neural Network Basics 10/1/2008 & 10/6/2008 Uiversity Orego State Neural Network Basics Questios??? Aoucemet: Homework 1 has bee posted Due Friday 10/10/08 at oo

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1 MATH88T Maria Camero Cotets Basic cocepts of statistics Estimators, estimates ad samplig distributios 2 Ordiary least squares estimate 3 3 Maximum lielihood estimator 3 4 Bayesia estimatio Refereces 9

More information

Pattern Classification

Pattern Classification Patter Classificatio All materials i these slides were tae from Patter Classificatio (d ed) by R. O. Duda, P. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Lecture 10: Performance Evaluation of ML Methods

Lecture 10: Performance Evaluation of ML Methods CSE57A Machie Learig Sprig 208 Lecture 0: Performace Evaluatio of ML Methods Istructor: Mario Neuma Readig: fcml: 5.4 (Performace); esl: 7.0 (Cross-Validatio); optioal book: Evaluatio Learig Algorithms

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Statistical Patter Recogitio Fall 5 Prof. Shih-Fu Chag http://www.ee.columbia.edu/~sfchag Lecture 6 (9/8/5 EE6887-Chag 6- Readig EM for Missig Features Textboo, DHS 3.9 Bayesia Parameter Estimatio

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Mathematical Statistics Anna Janicka

Mathematical Statistics Anna Janicka Mathematical Statistics Aa Jaicka Lecture XIV, 5.06.07 BAYESIAN STATISTICS Pla for Today. BayesiaStatistics a priori ad a posteriori distributios Bayesia estimatio: Maximum a posteriori probability(map)

More information

The Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) Algorithm The Expectatio-Maximizatio (EM) Algorithm Readig Assigmets T. Mitchell, Machie Learig, McGraw-Hill, 997 (sectio 6.2, hard copy). S. Gog et al. Dyamic Visio: From Images to Face Recogitio, Imperial College

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 23 Daiel B. Rowe, Ph.D. Departmet of Mathematics, Statistics, ad Computer Sciece Copyright 2017 by D.B. Rowe 1 Ageda: Recap Chapter 9.1 Lecture Chapter 9.2 Review Exam 6 Problem Solvig Sessio. 2

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 90 Itroductio to classifictio Ae Solberg ae@ifiuioo Based o Chapter -6 i Duda ad Hart: atter Classificatio 90 INF 4300 Madator proect Mai task: classificatio You must implemet a classificatio

More information

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis Lecture 10: Factor Aalysis ad Pricipal Compoet Aalysis Sam Roweis February 9, 2004 Whe we assume that the subspace is liear ad that the uderlyig latet variable has a Gaussia distributio we get a model

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019 Outlie CSCI-567: Machie Learig Sprig 209 Gaussia mixture models Prof. Victor Adamchik 2 Desity estimatio U of Souther Califoria Mar. 26, 209 3 Naive Bayes Revisited March 26, 209 / 57 March 26, 209 2 /

More information

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes. Term Test October 3, 003 Name Math 56 Studet Number Directio: This test is worth 50 poits. You are required to complete this test withi 50 miutes. I order to receive full credit, aswer each problem completely

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty Bayes Classificatio Ucertaity & robability Baye's rule Choosig Hypotheses- Maximum a posteriori Maximum Likelihood - Baye's cocept learig Maximum Likelihood of real valued fuctio Bayes optimal Classifier

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

ECE 901 Lecture 13: Maximum Likelihood Estimation

ECE 901 Lecture 13: Maximum Likelihood Estimation ECE 90 Lecture 3: Maximum Likelihood Estimatio R. Nowak 5/7/009 The focus of this lecture is to cosider aother approach to learig based o maximum likelihood estimatio. Ulike earlier approaches cosidered

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Lecture 16. Multiple Random Variables and Applications to Inference

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Lecture 16. Multiple Random Variables and Applications to Inference CS 70 Discrete Mathematics ad Probability Theory Fall 2009 Satish Rao,David Tse Lecture 16 Multiple Radom Variables ad Applicatios to Iferece I may probability problems, we have to deal with multiple r.v.

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

MBACATÓLICA. Quantitative Methods. Faculdade de Ciências Económicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS

MBACATÓLICA. Quantitative Methods. Faculdade de Ciências Económicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS MBACATÓLICA Quatitative Methods Miguel Gouveia Mauel Leite Moteiro Faculdade de Ciêcias Ecoómicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS MBACatólica 006/07 Métodos Quatitativos

More information

Module 1 Fundamentals in statistics

Module 1 Fundamentals in statistics Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

More information

5 : Exponential Family and Generalized Linear Models

5 : Exponential Family and Generalized Linear Models 0-708: Probabilistic Graphical Models 0-708, Sprig 206 5 : Expoetial Family ad Geeralized Liear Models Lecturer: Matthew Gormley Scribes: Yua Li, Yichog Xu, Silu Wag Expoetial Family Probability desity

More information

CSIE/GINM, NTU 2009/11/30 1

CSIE/GINM, NTU 2009/11/30 1 Itroductio ti to Machie Learig (Part (at1: Statistical Machie Learig Shou de Li CSIE/GINM, NTU sdli@csie.tu.edu.tw 009/11/30 1 Syllabus of a Itro ML course ( Machie Learig, Adrew Ng, Staford, Autum 009

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimatig with Cofidece Sectio 8.2 The Practice of Statistics, 4 th editio For AP* STARNES, YATES, MOORE Chapter 8 Estimatig with Cofidece 8.1 Cofidece Itervals: The Basics 8.2 8.3 Estimatig

More information

Chapter 13: Tests of Hypothesis Section 13.1 Introduction

Chapter 13: Tests of Hypothesis Section 13.1 Introduction Chapter 13: Tests of Hypothesis Sectio 13.1 Itroductio RECAP: Chapter 1 discussed the Likelihood Ratio Method as a geeral approach to fid good test procedures. Testig for the Normal Mea Example, discussed

More information

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

More information

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to: STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam Itroductio to Artificial Itelligece CAP 601 Summer 013 Midterm Exam 1. Termiology (7 Poits). Give the followig task eviromets, eter their properties/characteristics. The properties/characteristics of the

More information

Computing Confidence Intervals for Sample Data

Computing Confidence Intervals for Sample Data Computig Cofidece Itervals for Sample Data Topics Use of Statistics Sources of errors Accuracy, precisio, resolutio A mathematical model of errors Cofidece itervals For meas For variaces For proportios

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Lecture 11 October 27

Lecture 11 October 27 STATS 300A: Theory of Statistics Fall 205 Lecture October 27 Lecturer: Lester Mackey Scribe: Viswajith Veugopal, Vivek Bagaria, Steve Yadlowsky Warig: These otes may cotai factual ad/or typographic errors..

More information

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2017 Doug Fowler, GS

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2017 Doug Fowler, GS Lecture 2: Probability, Radom Variables ad Probability Distributios GENOME 560, Sprig 2017 Doug Fowler, GS (dfowler@uw.edu) 1 Course Aoucemets Problem Set 1 will be posted Due ext Thursday before class

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

1 Models for Matched Pairs

1 Models for Matched Pairs 1 Models for Matched Pairs Matched pairs occur whe we aalyse samples such that for each measuremet i oe of the samples there is a measuremet i the other sample that directly relates to the measuremet i

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

More information

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen) Goodess-of-Fit Tests ad Categorical Data Aalysis (Devore Chapter Fourtee) MATH-252-01: Probability ad Statistics II Sprig 2019 Cotets 1 Chi-Squared Tests with Kow Probabilities 1 1.1 Chi-Squared Testig................

More information

Stat 200 -Testing Summary Page 1

Stat 200 -Testing Summary Page 1 Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

More information

Classification with linear models

Classification with linear models Lecture 8 Classificatio with liear models Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square Geerative approach to classificatio Idea:. Represet ad lear the distributio, ). Use it to defie probabilistic

More information

Lecture 10: Universal coding and prediction

Lecture 10: Universal coding and prediction 0-704: Iformatio Processig ad Learig Sprig 0 Lecture 0: Uiversal codig ad predictio Lecturer: Aarti Sigh Scribes: Georg M. Goerg Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved

More information

6. Sufficient, Complete, and Ancillary Statistics

6. Sufficient, Complete, and Ancillary Statistics Sufficiet, Complete ad Acillary Statistics http://www.math.uah.edu/stat/poit/sufficiet.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 6. Sufficiet, Complete, ad Acillary

More information

As stated by Laplace, Probability is common sense reduced to calculation.

As stated by Laplace, Probability is common sense reduced to calculation. Note: Hadouts DO NOT replace the book. I most cases, they oly provide a guidelie o topics ad a ituitive feel. The math details will be covered i class, so it is importat to atted class ad also you MUST

More information

Sample Size Estimation in the Proportional Hazards Model for K-sample or Regression Settings Scott S. Emerson, M.D., Ph.D.

Sample Size Estimation in the Proportional Hazards Model for K-sample or Regression Settings Scott S. Emerson, M.D., Ph.D. ample ie Estimatio i the Proportioal Haards Model for K-sample or Regressio ettigs cott. Emerso, M.D., Ph.D. ample ie Formula for a Normally Distributed tatistic uppose a statistic is kow to be ormally

More information

5. Likelihood Ratio Tests

5. Likelihood Ratio Tests 1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information