Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty

Size: px
Start display at page:

Download "Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty"

Transcription

1 Bayes Classificatio Ucertaity & robability Baye's rule Choosig Hypotheses- Maximum a posteriori Maximum Likelihood - Baye's cocept learig Maximum Likelihood of real valued fuctio Bayes optimal Classifier Joit distributios Naive Bayes Classifier 1

2 Ucertaity Our mai tool is the probability theory, which assigs to each setece umerical degree of belief betwee 0 ad 1 It provides a way of summarizig the ucertaity Variables Boolea radom variables: cavity might be true or false Discrete radom variables: weather might be suy, raiy, cloudy, sow Weather=suy Weather=raiy Weather=cloudy Weather=sow Cotiuous radom variables: the temperature has cotiuous values 2

3 Where do probabilities come from? Frequets: From experimets: form ay fiite sample, we ca estimate the true fractio ad also calculate how accurate our estimatio is likely to be Subjective: Aget s believe Objectivist: True ature of the uiverse, that the probability up heads with probability 0.5 is a probability of the coi Before the evidece is obtaied; prior probability a the prior probability that the propositio is true cavity=0.1 After the evidece is obtaied; posterior probability ab The probability of a give that all we kow is b cavitytoothache=0.8 3

4 Axioms of robability Kolmogorov s axioms, first published i Germa 1933 All probabilities are betwee 0 ad 1. For ay propositio a 0 a 1 true=1, false=0 The probability of disjuctio is give by a b = a + b a b roduct rule a b = a b b a b = b a a 4

5 Theorem of total probability If evets A 1,..., A are mutually exclusive with the Bayes s rule Reveret Thomas Bayes He set dow his fidigs o probability i "Essay Towards Solvig a roblem i the Doctrie of Chaces" 1763, published posthumously i the hilosophical Trasactios of the Royal Society of Lodo b a = a bb a 5

6 How ca we arrive at Bayes s rule? For ay fiite sample, we ca estimate the true fractio ad also calculate how accurate our estimatio is likely to be. By usig samples, as i most physical measuremets, we estimate the values. This approach is called frequetist. We approach the true value by coutig the frequecy of a evet. Coditioal probability If Ω is the set of all possible evets, Ω = 1, the a Ω. The cardiality determies the umber of elemets of a set, cardω is the umber of elemets of the set Ω, carda is the umber of elemets of the set a 6

7 Baye s rule 7

8 8 Diagosis What is the probability of meigitis i the patiet with stiff eck? A doctor kows that the disease meigitis causes the patiet to have a stiff eck i 50% of the time -> sm rior robabilities: That the patiet has meigitis is 1/ > m That the patiet has a stiff eck is 1/20 -> s m s = 0.5* = m s = s mm s Normalizatio x y y x x y x y y x x y = = 0.6, ,0.08, 1 = = + = α α α x y x y Y Y X X Y x y x y

9 Bayes Theorem h = prior probability of hypothesis h D = prior probability of traiig data D hd = probability of h give D Dh = probability of D give h Choosig Hypotheses Geerally wat the most probable hypothesis give the traiig data Maximum a posteriori hypothesis h MA : 9

10 If assume h i =h j for all h i ad h j, the ca further simplify, ad choose the Maximum likelihood ML hypothesis 10

11 Example Does patiet have cacer or ot? A patiet takes a lab test ad the result comes back positive. The test returs a correct positive result + i oly 98% of the cases i which the disease is actually preset, ad a correct egative result - i oly 97% of the cases i which the disease is ot preset Furthermore, of the etire populatio have this cacer Suppose a positive result + is retured... 11

12 Normalizatio cacer + = = cacer + = = The result of Bayesia iferece depeds strogly o the prior probabilities, which must be available i order to apply the method Brute-Force Bayes Cocept Learig For each hypothesis h i H, calculate the posterior probability Output the hypothesis h MA with the highest posterior probability 12

13 Give o prior kowledge that oe hypothesis is more likely tha aother, what values should we specify for h? What choice shall we make for Dh? Hypothesis geerates data... Choose h to be uiform distributio for all h i H how ofte is h preset? Frequecy... Dh=1 if h cosistet with D Dh=0 otherwise 13

14 D D = D = D h i h i h i H 1 1 H H h i VS H,D D = VS H,D H h i VS H,D Versio space VS H,D is the subset of cosistet Hypotheses from H with the traiig examples i D Hypothesis geerates this data... if h is icosistet with D h D = 1 1 H VS H,D H = 1 VS H,D if h is cosistet with D 14

15 Hypothesis geerates this data... Maximum Likelihood of real valued fuctio.. see EM Clusterig 15

16 Maximize atural log of this istead... Bayes optimal Classifier A weighted majority classifier What is the most probable classificatio of the ew istace give the traiig data? The most probable classificatio of the ew istace is obtaied by combiig the predictio of all hypothesis, weighted by their posterior probabilities If the classificatio of ew example ca take ay value v j from some set V, the the probability v j D that the correct classificatio for the ew istace is v j, is just remember, have to calculate h i D : 16

17 Bayes optimal classificatio: Gibbs Algorithm Bayes optimal classifier provides best result, but ca be expesive if may hypotheses we have to compute the posterior probability for every hypothesis Gibbs algorithm: Choose oe hypothesis at radom, accordig to hd Use this to classify ew istace Surprisigly its expected error o worse tha twice Bayes optimal Haussler et al

18 Joit distributio A joit distributio for toothache, cavity, catch, detist s probe catches i my tooth :- We eed to kow the coditioal probabilities of the cojuctio of toothache ad cavity What ca a detist coclude if the probe catches i the achig tooth? toothache catch cavitycavity cavity toothache catch = toothache cavity For possible variables there are 2 possible combiatios Coditioal Idepedece Oce we kow that the patiet has cavity we do ot expect the probability of the probe catchig to deped o the presece of toothache catch cavity toothache = catch cavity toothache cavity catch = toothache cavity Idepedece betwee a ad b a b = a b a = b 18

19 a b = a b toothache, catch, cavity, Weather = cloudy = = Weather = cloudy toothache, catch, cavity The decompositio of large probabilistic domais ito weakly coected subsets via coditioal idepedece is oe of the most importat developmets i the recet history of AI This ca work well, eve the assumptio is ot true! A sigle cause directly ifluece a umber of effects, all of which are coditioally idepedet cause, effect1, effect2,... effect = cause effecti cause i= 1 19

20 Naive Bayes Classifier Alog with decisio trees, eural etworks, earest eighbor, oe of the most practical learig methods Whe to use: Moderate or large traiig set available Attributes that describe istaces are coditioally idepedet give classificatio Successful applicatios: Diagosis Classifyig text documets Naive Bayes Classifier Assume target fuctio f: X è V, where each istace x described by attributes a 1, a 2.. a Most probable value of fx is: 20

21 v NB Naive Bayes assumptio: which gives Naive Bayes Algorithm For each target value v j ç estimate v j For each attribute value a i of each attribute a ç estimate a i v j 21

22 Traiig dataset Class: C1:buys_computer= yes C2:buys_computer= o Data sample: X = age<=30, Icome=medium, Studet=yes Credit_ratig=Fair age icome studet credit_ratig buys_computer <=30 high o fair o <=30 high o excellet o high o fair yes >40 medium o fair yes >40 low yes fair yes >40 low yes excellet o low yes excellet yes <=30 medium o fair o <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellet yes medium o excellet yes high yes fair yes >40 medium o excellet o Naïve Bayesia Classifier: Example Compute XC i for each class age= <30 buys_computer= yes = 2/9=0.222 age= <30 buys_computer= o = 3/5 =0.6 icome= medium buys_computer= yes = 4/9 =0.444 icome= medium buys_computer= o = 2/5 = 0.4 studet= yes buys_computer= yes= 6/9 =0.667 studet= yes buys_computer= o = 1/5=0.2 credit_ratig= fair buys_computer= yes =6/9=0.667 credit_ratig= fair buys_computer= o =2/5=0.4 buys_computer= yes =9/14 buys_computer= o =5/14 X=age<=30,icome =medium, studet=yes,credit_ratig=fair XC i : Xbuys_computer= yes = x x x =0.044 Xbuys_computer= o = 0.6 x 0.4 x 0.2 x 0.4 =0.019 XC i *C i : Xbuys_computer= yes * buys_computer= yes =0.028 Xbuys_computer= o * buys_computer= o =0.007 X belogs to class buys_computer=yes 22

23 Coditioal idepedece assumptio is ofte violated...but it works surprisigly well ayway Estimatig robabilities We have estimated probabilities by the fractio of times the evet is observed to c occur over the total umber of opportuities It provides poor estimates whe c is very small If oe of the traiig istaces with target value v j have attribute value a i? c is 0 23

24 Whe c is very small: is umber of traiig examples for which v=v j c umber of examples for which v=v j ad a=a i p is prior estimate m is weight give to prior i.e. umber of ``virtual'' examples Naïve Bayesia Classifier: Commets Advatages : Easy to implemet Good results obtaied i most of the cases Disadvatages Assumptio: class coditioal idepedece, therefore loss of accuracy ractically, depedecies exist amog variables E.g., hospitals: patiets: rofile: age, family history etc Symptoms: fever, cough etc., Disease: lug cacer, diabetes etc Depedecies amog these caot be modeled by Naïve Bayesia Classifier How to deal with these depedecies? Bayesia Belief Networks 24

Bayesian Belief Network

Bayesian Belief Network Bayesia Belief Network Ucertaity & Probability Baye's rule Choosig Hypotheses- Maximum a posteriori Maximum Likelihood - Baye's cocept learig Maximum Likelihood of real valued fuctio Bayes optimal Classifier

More information

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty Bayes Classification n Uncertainty & robability n Baye's rule n Choosing Hypotheses- Maximum a posteriori n Maximum Likelihood - Baye's concept learning n Maximum Likelihood of real valued function n Bayes

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

As stated by Laplace, Probability is common sense reduced to calculation.

As stated by Laplace, Probability is common sense reduced to calculation. Note: Hadouts DO NOT replace the book. I most cases, they oly provide a guidelie o topics ad a ituitive feel. The math details will be covered i class, so it is importat to atted class ad also you MUST

More information

Elementary manipulations of probabilities

Elementary manipulations of probabilities Elemetary maipulatios of probabilities Set probability of multi-valued r.v. {=Odd} = +3+5 = /6+/6+/6 = ½ X X,, X i j X i j Multi-variat distributio: Joit probability: X true true X X,, X X i j i j X X

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

Bayesian Belief Network

Bayesian Belief Network Bayesia Belief Network a b) = a) b) toothache, catch, cavity, Weather = cloudy) = = Weather = cloudy) toothache, catch, cavity) The decompositio of large probabilistic domais ito weakly coected subsets

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

CS 2750 Machine Learning. Lecture 23. Concept learning. CS 2750 Machine Learning. Concept Learning

CS 2750 Machine Learning. Lecture 23. Concept learning. CS 2750 Machine Learning. Concept Learning Lecture 3 Cocept learig Milos Hauskrecht milos@cs.pitt.edu Cocept Learig Outlie: Learig boolea fuctios Most geeral ad most specific cosistet hypothesis. Mitchell s versio space algorithm Probably approximately

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Outline. L7: Probability Basics. Probability. Probability Theory. Bayes Law for Diagnosis. Which Hypothesis To Prefer? p(a,b) = p(b A) " p(a)

Outline. L7: Probability Basics. Probability. Probability Theory. Bayes Law for Diagnosis. Which Hypothesis To Prefer? p(a,b) = p(b A)  p(a) Outlie L7: Probability Basics CS 344R/393R: Robotics Bejami Kuipers. Bayes Law 2. Probability distributios 3. Decisios uder ucertaity Probability For a propositio A, the probability p(a is your degree

More information

CS 2750 Machine Learning. Lecture 22. Concept learning. CS 2750 Machine Learning. Concept Learning

CS 2750 Machine Learning. Lecture 22. Concept learning. CS 2750 Machine Learning. Concept Learning Lecture 22 Cocept learig Milos Hauskrecht milos@cs.pitt.edu 5329 Seott Square Cocept Learig Outlie: Learig boolea fuctios Most geeral ad most specific cosistet hypothesis. Mitchell s versio space algorithm

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019 Outlie CSCI-567: Machie Learig Sprig 209 Gaussia mixture models Prof. Victor Adamchik 2 Desity estimatio U of Souther Califoria Mar. 26, 209 3 Naive Bayes Revisited March 26, 209 / 57 March 26, 209 2 /

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model Back to Maximum Likelihood Give a geerative model f (x, y = k) =π k f k (x) Usig a geerative modellig approach, we assume a parametric form for f k (x) =f (x; k ) ad compute the MLE θ of θ =(π k, k ) k=

More information

What is Probability?

What is Probability? Quatificatio of ucertaity. What is Probability? Mathematical model for thigs that occur radomly. Radom ot haphazard, do t kow what will happe o ay oe experimet, but has a log ru order. The cocept of probability

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2017 Doug Fowler, GS

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2017 Doug Fowler, GS Lecture 2: Probability, Radom Variables ad Probability Distributios GENOME 560, Sprig 2017 Doug Fowler, GS (dfowler@uw.edu) 1 Course Aoucemets Problem Set 1 will be posted Due ext Thursday before class

More information

Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight)

Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight) Tests of Hypotheses Based o a Sigle Sample Devore Chapter Eight MATH-252-01: Probability ad Statistics II Sprig 2018 Cotets 1 Hypothesis Tests illustrated with z-tests 1 1.1 Overview of Hypothesis Testig..........

More information

Machine Learning 4771

Machine Learning 4771 Machie Learig 4771 Istructor: Toy Jebara Topic 14 Structurig Probability Fuctios for Storage Structurig Probability Fuctios for Iferece Basic Graphical Models Graphical Models Parameters as Nodes Structurig

More information

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population A quick activity - Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2015 Doug Fowler, GS

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2015 Doug Fowler, GS Lecture 2: Probability, Radom Variables ad Probability Distributios GENOME 560, Sprig 2015 Doug Fowler, GS (dfowler@uw.edu) 1 Course Aoucemets Problem Set 1 will be posted Due ext Thursday before class

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments:

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments: Recall: STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Commets:. So far we have estimates of the parameters! 0 ad!, but have o idea how good these estimates are. Assumptio: E(Y x)! 0 +! x (liear coditioal

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Sieve Estimators: Consistency and Rates of Convergence

Sieve Estimators: Consistency and Rates of Convergence EECS 598: Statistical Learig Theory, Witer 2014 Topic 6 Sieve Estimators: Cosistecy ad Rates of Covergece Lecturer: Clayto Scott Scribe: Julia Katz-Samuels, Brado Oselio, Pi-Yu Che Disclaimer: These otes

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimatig with Cofidece Sectio 8.2 The Practice of Statistics, 4 th editio For AP* STARNES, YATES, MOORE Chapter 8 Estimatig with Cofidece 8.1 Cofidece Itervals: The Basics 8.2 8.3 Estimatig

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Pattern Classification, Ch4 (Part 1)

Pattern Classification, Ch4 (Part 1) Patter Classificatio All materials i these slides were take from Patter Classificatio (2d ed) by R O Duda, P E Hart ad D G Stork, Joh Wiley & Sos, 2000 with the permissio of the authors ad the publisher

More information

Machine Learning. Ilya Narsky, Caltech

Machine Learning. Ilya Narsky, Caltech Machie Learig Ilya Narsky, Caltech Lecture 4 Multi-class problems. Multi-class versios of Neural Networks, Decisio Trees, Support Vector Machies ad AdaBoost. Reductio of a multi-class problem to a set

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9

BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9 BIOS 4110: Itroductio to Biostatistics Brehey Lab #9 The Cetral Limit Theorem is very importat i the realm of statistics, ad today's lab will explore the applicatio of it i both categorical ad cotiuous

More information

GG313 GEOLOGICAL DATA ANALYSIS

GG313 GEOLOGICAL DATA ANALYSIS GG313 GEOLOGICAL DATA ANALYSIS 1 Testig Hypothesis GG313 GEOLOGICAL DATA ANALYSIS LECTURE NOTES PAUL WESSEL SECTION TESTING OF HYPOTHESES Much of statistics is cocered with testig hypothesis agaist data

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week Lecture: Cocept Check Exercises Starred problems are optioal. Statistical Learig Theory. Suppose A = Y = R ad X is some other set. Furthermore, assume P X Y is a discrete

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

More information

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen) Goodess-of-Fit Tests ad Categorical Data Aalysis (Devore Chapter Fourtee) MATH-252-01: Probability ad Statistics II Sprig 2019 Cotets 1 Chi-Squared Tests with Kow Probabilities 1 1.1 Chi-Squared Testig................

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

More information

Information-based Feature Selection

Information-based Feature Selection Iformatio-based Feature Selectio Farza Faria, Abbas Kazeroui, Afshi Babveyh Email: {faria,abbask,afshib}@staford.edu 1 Itroductio Feature selectio is a topic of great iterest i applicatios dealig with

More information

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter 2 & Teachig

More information

Discrete Mathematics and Probability Theory Fall 2016 Walrand Probability: An Overview

Discrete Mathematics and Probability Theory Fall 2016 Walrand Probability: An Overview CS 70 Discrete Mathematics ad Probability Theory Fall 2016 Walrad Probability: A Overview Probability is a fasciatig theory. It provides a precise, clea, ad useful model of ucertaity. The successes of

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 22 Comparig Two Proportios Copyright 2010, 2007, 2004 Pearso Educatio, Ic. Comparig Two Proportios Read the first two paragraphs of pg 504. Comparisos betwee two percetages are much more commo

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Machine Learning.

Machine Learning. 10-701 Machie Learig http://www.cs.cmu.edu/~epxig/class/10701-15f/ Orgaizatioal ifo All up-to-date ifo is o the course web page (follow liks from my page). Istructors - Eric Xig - Ziv Bar-Joseph TAs: See

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

Last Lecture. Wald Test

Last Lecture. Wald Test Last Lecture Biostatistics 602 - Statistical Iferece Lecture 22 Hyu Mi Kag April 9th, 2013 Is the exact distributio of LRT statistic typically easy to obtai? How about its asymptotic distributio? For testig

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Math F215: Induction April 7, 2013

Math F215: Induction April 7, 2013 Math F25: Iductio April 7, 203 Iductio is used to prove that a collectio of statemets P(k) depedig o k N are all true. A statemet is simply a mathematical phrase that must be either true or false. Here

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 90 Itroductio to classifictio Ae Solberg ae@ifiuioo Based o Chapter -6 i Duda ad Hart: atter Classificatio 90 INF 4300 Madator proect Mai task: classificatio You must implemet a classificatio

More information

PROBABILITY LOGIC: Part 2

PROBABILITY LOGIC: Part 2 James L Bec 2 July 2005 PROBABILITY LOGIC: Part 2 Axioms for Probability Logic Based o geeral cosideratios, we derived axioms for: Pb ( a ) = measure of the plausibility of propositio b coditioal o the

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

Department of Mathematics

Department of Mathematics Departmet of Mathematics Ma 3/103 KC Border Itroductio to Probability ad Statistics Witer 2017 Lecture 19: Estimatio II Relevat textbook passages: Larse Marx [1]: Sectios 5.2 5.7 19.1 The method of momets

More information

Topic 4. Representation and Reasoning with Uncertainty

Topic 4. Representation and Reasoning with Uncertainty Toic 4 Reresetatio ad Reasoig with Ucertaity Cotets 4.0 Reresetig Ucertaity 4. Probabilistic methods Bayesia PART III 4.2 Certaity Factors CFs 4.3 Demster-Shafer theory 4.4 Fuzzy Logic 4. Probabilistic

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

CSE 527, Additional notes on MLE & EM

CSE 527, Additional notes on MLE & EM CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Introductory statistics

Introductory statistics CM9S: Machie Learig for Bioiformatics Lecture - 03/3/06 Itroductory statistics Lecturer: Sriram Sakararama Scribe: Sriram Sakararama We will provide a overview of statistical iferece focussig o the key

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Chapter 13, Part A Analysis of Variance and Experimental Design

Chapter 13, Part A Analysis of Variance and Experimental Design Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Because it tests for differences between multiple pairs of means in one test, it is called an omnibus test.

Because it tests for differences between multiple pairs of means in one test, it is called an omnibus test. Math 308 Sprig 018 Classes 19 ad 0: Aalysis of Variace (ANOVA) Page 1 of 6 Itroductio ANOVA is a statistical procedure for determiig whether three or more sample meas were draw from populatios with equal

More information

Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc.

Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc. Chapter 22 Comparig Two Proportios Copyright 2010 Pearso Educatio, Ic. Comparig Two Proportios Comparisos betwee two percetages are much more commo tha questios about isolated percetages. Ad they are more

More information

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1 MATH88T Maria Camero Cotets Basic cocepts of statistics Estimators, estimates ad samplig distributios 2 Ordiary least squares estimate 3 3 Maximum lielihood estimator 3 4 Bayesia estimatio Refereces 9

More information

Lecture 10: Universal coding and prediction

Lecture 10: Universal coding and prediction 0-704: Iformatio Processig ad Learig Sprig 0 Lecture 0: Uiversal codig ad predictio Lecturer: Aarti Sigh Scribes: Georg M. Goerg Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved

More information

Pixel Recurrent Neural Networks

Pixel Recurrent Neural Networks Pixel Recurret Neural Networks Aa ro va de Oord, Nal Kalchbreer, Koray Kavukcuoglu Google DeepMid August 2016 Preseter - Neha M Example problem (completig a image) Give the first half of the image, create

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machie learig Mid-term exam October, ( poits) Your ame ad MIT ID: Problem We are iterested here i a particular -dimesioal liear regressio problem. The dataset correspodig to this problem has examples

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

More information

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 23 Daiel B. Rowe, Ph.D. Departmet of Mathematics, Statistics, ad Computer Sciece Copyright 2017 by D.B. Rowe 1 Ageda: Recap Chapter 9.1 Lecture Chapter 9.2 Review Exam 6 Problem Solvig Sessio. 2

More information

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency Math 152. Rumbos Fall 2009 1 Solutios to Review Problems for Exam #2 1. I the book Experimetatio ad Measuremet, by W. J. Youde ad published by the by the Natioal Sciece Teachers Associatio i 1962, the

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01 ENGI 44 Cofidece Itervals (Two Samples) Page -0 Two Sample Cofidece Iterval for a Differece i Populatio Meas [Navidi sectios 5.4-5.7; Devore chapter 9] From the cetral limit theorem, we kow that, for sufficietly

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

Lecture Overview. 2 Permutations and Combinations. n(n 1) (n (k 1)) = n(n 1) (n k + 1) =

Lecture Overview. 2 Permutations and Combinations. n(n 1) (n (k 1)) = n(n 1) (n k + 1) = COMPSCI 230: Discrete Mathematics for Computer Sciece April 8, 2019 Lecturer: Debmalya Paigrahi Lecture 22 Scribe: Kevi Su 1 Overview I this lecture, we begi studyig the fudametals of coutig discrete objects.

More information

Lecture 8: Non-parametric Comparison of Location. GENOME 560, Spring 2016 Doug Fowler, GS

Lecture 8: Non-parametric Comparison of Location. GENOME 560, Spring 2016 Doug Fowler, GS Lecture 8: No-parametric Compariso of Locatio GENOME 560, Sprig 2016 Doug Fowler, GS (dfowler@uw.edu) 1 Review What do we mea by oparametric? What is a desirable locatio statistic for ordial data? What

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to: STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

More information

Exercises Advanced Data Mining: Solutions

Exercises Advanced Data Mining: Solutions Exercises Advaced Data Miig: Solutios Exercise 1 Cosider the followig directed idepedece graph. 5 8 9 a) Give the factorizatio of P (X 1, X 2,..., X 9 ) correspodig to this idepedece graph. P (X) = 9 P

More information