induced _ electric _ field = = = = σ V

Size: px
Start display at page:

Download "induced _ electric _ field = = = = σ V"

Transcription

1 The Figure shows that the open-circuit voltage V (an hence the fiel strength ) is proportional to compressive stress T up to a maximum of 5 kv, which occurs at a stress of 50 MPa. Inuce electrical fiel 5000 V V. m 0.0m g inuce _ electric _ fiel mechanical _ stress _ applie g V. m Pa V Pa m

2 The piezoelectric charge constant, (), polarization generate per unit of mechanical stress (irect), or, mechanical strain experience by a piezoelectric per unit of electric fiel applie (converse). The piezoelectric voltage constant, (g), is the electric fiel generate by a piezoelectric material per unit of mechanical stress applie or, alternatively, is the mechanical strain experience by a piezoelectric material per unit of electric isplacement applie. Definitions of frequent use g P g D Inuce _ Polarization Mechanical _ Stress _ applie mechanical _ strain _ obtaine electric _ fiel _ applie inuce _ electric _ fiel mechanical _ stress _ applie mechanical _ strain obtaine electric _ isplacement _ applie g r O

3 xample (Piezoelectric) The piezoelectric spark generator as use in various applications such as lighters an car ignitions, operates by stressing a piezoelectric crystal to generate a high voltage which is ischarge through a spark gap in air (see (a) F figure below). The breakown fiel for air is 3x10 6 V.m -1. If you consier a gap of 1mm it is about 3000V. L A F Piezoelectric V Piezoelectric Piezoelectric F F (b) Fig. 7.39: The piezoelectric spark generator From Principles of lectronic Materials an Devices, Secon ition, S.O. Kasap ( McGraw-Hill, 00)

4 Aitional Notes The ratio of strain to electric fiel is calle the constant for a piezoelectric. The ratio of electric fiel generate to stress applie is calle the g constant (piezoelectric voltage coefficient) for a piezoelectric, where (V/m) is the electric fiel, is the strain, is the stress (Pa) The g an are relate to the ielectric constant as follows: where r is the ielectric constant an O is the permittivity uner vacuum (8.85x10-1 F/m). g strain electric _ fiel _ generate electric _ fiel _ generate stress g r O

5 Consier a piezoelectric sample in the form of a cyliner (see figure). Suppose that the piezoelectric coefficient 50x10-1 m.v -1 an r The piezoelectric has a length of 10mm an a iameter of 3mm. The spark gap is in air an has a breakown voltage of about 3.5kV. What is the force require to spark the gap? Is this a realistic force? Solution g r O m. V 1 ( ) ( F. m ) A F g m.( V. F) 1 L Piezoelectric V V V. m L 0. 01m 3500 V 5 1 F

6 g g V. F. m Force Area F N V. m ( V. F) F A F m N. m A Fara F units (kg -1 m - s 4 A ) VoltsV units (kg m s -3 A -1 ) NewtonN units (kg m s -) π This force (about 9kg-f) can be applie by squeezing by han an appropriate lever arrangement. The force must be applie quickly because the piezoelectric charge generate will leak away (become neutralize). The voltage generate can be increase (or the force neee reuce) by using two piezoelectric crystals back to back.

7 Piezoelectric Constants Because a piezoelectric is anisotropic, its physical constants (elasticity, permittivity, etc.) are tensor quantities an relate to both the irection of the applie stress or electric fiel an the irections perpenicular to these. ach constant generally has two subscripts that inicate the irections of the two relate quantities, such as stress an strain for elasticity. Piezoelectric Ceramics: The irection of positive polarization is mae to coincie with the Z-axis of a orthogonal system of X, Y, an Z axes. Direction X, Y, or Z is represente by the subscript 1,, or 3, respectively, an shear about one of these axes is represente by the subscript 4, 5, or 6, respectively.

8 Piezoelectric Charge Constant (): ab xample: P Inuce Mechanical Polarization Stress _ applie a inicates the irection of inuce polarization of the material when the electric fiel is zero or the irection of the applie electric fiel b inicates the irection of the applie stress or the irection of the strain. 13 inuce polarization voltage measure in the irection 1 (perpenicular to the poling irection) when a stress is applie in a irection 3 or or inuce strain in the irection 3 when an electric fiel is applie in the irection 1 (perpenicular to the poling irection). mechanical _ strain _ obtaine electric _ fiel _ applie

9 ab 33 inuce polarization in irection 3 (parallel to irection in which ceramic element is polarize) per unit stress applie in irection 3 or inuce strain in irection 3 per unit electric fiel applie in irection 3 15 inuce polarization in irection 1 (perpenicular to irection in which ceramic element is polarize) per unit shear stress applie about irection (irection perpenicular to irection in which ceramic element is polarize) or inuce shear strain about irection per unit electric fiel applie in irection 1

10 Piezoelectric Voltage Constant (g) g ab g g D inuce _ electric _ fiel mechanical _ stress _ applie mechanical _ strain obtaine electric _ isplacement _ applie a inicates the irection of the inuce electric fiel on the material or the irection of the applie electric isplacement. b inicates the irection of the applie stress or the irection of the obtaine strain. xample: g 31 inuce electric fiel in irection 3 (parallel to irection in which ceramic element is polarize) per unit stress applie in irection 1 (perpenicular to irection in which ceramic element is polarize) or inuce strain in irection 1 per unit electric isplacement applie in irection 3.

11 g ab g 33 inuce electric fiel in irection 3 (parallel to irection in which ceramic element is polarize) per unit stress applie in irection 3 or inuce strain in irection 3 per unit electric isplacement applie in irection 3 g 15 inuce electric fiel in irection 1 (perpenicular to irection in which ceramic element is polarize) per unit shear stress applie about irection (irection perpenicular to irection in which ceramic element is polarize) or inuce shear strain about irection per unit electric isplacement applie in irection 1

12 If T j is the applie mechanical stress along some j irection an P i is the inuce polarization along some i irection, we relate them via P i ij T j where ij are calle piezoelectric coefficients an T can represent either tensile or shear stresses. An equivalent relation between the strain S j along the j irection an the electric fiel i along the i irection is given by S j ij i

13 ffect of Stress on Tetraheral groups in Piezoelectrics (e.g. Quartz)

14 Piezoelectric crystals are essentially electromechanical transucers as they convert electrical signals to mechanical signals, strain or vice versa. Typical engineering applications: ultrasonic transucers, microphones, sonar etectors, accelerometers, frequency control of oscillators an filters, monitoring of thin film eposition. g. In phonographic pick-ups; stylus traverses grooves of recor pressure variation impose on a piezoelectric material locate in cartrige transforme into electrical signal amplifie an broacaste through speaker. fficiency of conversion between electrical an mechanical energy is given by the electromechanical conversion factor K efine in terms of K by K mechaniucal _( electrical) _ energy _ output electrical _( mechanical) _ energy _ input

15 Characteristics: Light weight an compact. Inexpensive Relative linear fiel-strain relations at low rive levels. Broaban rive capabilities Very high set-point accuracy Actuator an sensor capabilities Due to the non-centrosymmetric nature of ferroelectric materials they exhibit hysteresis an constitutive non-linearities at all rive levels. For low rive regimes these effects can be mitigate through feeback mechanisms. For high rive regimes, it is necessary to employ charge or current control. lectrostatic transucers constructe from relaxors ferroelectric materials are avantageous ue to the fact that they exhibit minimal hysteresis. Unlike piezoelectric materials, electrostrictive compouns are not pole an hence exhibit few aging effects.

16 Direct piezoelectric effect: In this effect an electric polarization P arises as a result of an applie stress. The applie stress is in reality a stress tensor given by Then, the polarization in the i irection (axis), is relate to the stress jk by the coefficient ijk. For example: τ τ P xx xy xz τ τ yx yy yz τ τ i ijk jk P P P zx zy zz D (C/m ) Ε ο (electric fiel V/m) D Ε ο P Dielectric isplacement jk The 7 ijk are the piezoelectric mouli an form a thir rank tensor. As ijk ikj, there are up to 18 inepenent mouli.

17 P P P P

18 Converse piezoelectric effect: In this effect a strain arises as a result of an applie electric fiel. The mouli are the same as for the irect effect jk i ijk i

19 In a matrix form

20 Crystal Orientation The irection in which tension or compression evelops polarization parallel to the strain is calle the piezoelectric axis. In quartz, this axis is knows as the "Xaxis", an in pole ceramic materials such as PZT the piezoelectric axis is referre to as the "Z-axis". From ifferent combinations of the irection of the applie fiel an orientation of the crystal it is possible to prouce various stresses an strains in the crystal. For example, an electric fiel applie perpenicular to the piezoelectric axis will prouce elongation along the axis as shown. If, however, the electric fiel is applie parallel to the piezoelectric axis, a shear motion is inuce.

21

22 Neumann s Principle This is the most important concept in crystal physics. It states;... the symmetry of any physical property of a crystal must inclue the symmetry elements of the point group of the crystal. This means that measurements mae in symmetry-relate irections will give the same property coefficients. xample: NaCl belongs to the m3m group. The [100] an [010] irections are equivalent. Since these irections are physically the same, it shoul be expecte that measurements of permittivity, elasticity or any other physical property will be the same in these two irections.

23 Piezoelectric Symmetry Groups In 0 out of the 1 acentric point groups (only the 43 is exclue) the application of a stress ( hk ) along a suitable irection generates an electric ipole (P).

24 The relationship between the ipole Pi an the stress ( hk ) is P i ihk h, k hk The ihk are the components of a thir rank tensor known as piezoelectric tensor. 7 components are expecte for a thir rank tensor ihk. However, the stress tensor is symmetrical so ihk ikh an the number of components reuces to 18 (triclinic crystals). Crystal symmetry constrain the 18 components in triclinic crystals to 10 or 8 in monoclinic crystals, 9 in orthorhombic, 7-6 in tetragonal, 6-4 or in trigonal, 4- or 1 in hexagonal an 1 in cubic.

25 Quartz (Point Group 3)

26

27

28 Applications of ferroelectrics The worl market for ferroelectric materials an evices is in the range $0-30billion per annum. Capacitors The wiest application of ferroelectrics (not making use of ferroelectricity but simply the high ielectric constant) is in capacitors. BaTiO 3 has cornere more than 50% of the ceramic capacitor market. For a given volume, a BaTiO 3 capacitor has times the capacitance of a linear ielectric. Ferroelectric memories (FeRAM) Ferroelectrics exhibit bi-stable polarization (±Pr when Ε 0). Hence, binary memory systems can be esigne base on the ifferent polarization states, Pr 0, -Pr 1. e.g. computer RAM. In FeRAM ata (in the form of polarization state Pr 0, -Pr 1) is recore on the material an is non-volatile (NV-RAM) it is retaine when the voltage is turne off.

29 Square hysteresis loops are require for memory evices since it is easier to istinguish between the remanent polarization states of the material ± Pr. Hysteresis loops have ifferent shapes. Psat Ps for a strongly sigmoial loop, whereas Psat Ps Pr for a square loop.

30 The applie fiel (i.e. rea / write operations) is controlle by fiel effect transistors (millions on a chip). They aress the ferroelectric cells an isolate them from their neighbors. Switching occurs by omain wall motion must be fast to compete with Si-base memories where switching occurs by electron motion. The materials requirements for FeRAM are high κ, high Psat (an Pr), small an high Tc (operable at RT an slightly above). xamples are LiNbO 3, PbTiO 3, Pb(ZrxTi 1-x )O 3 (PZT) SrBi Ta O 9 (SBT). The materials nee to be mae in thin film form (few hunre nm) in orer to minimize switching voltage. The wie scale application of FeRAM evices will epen on the successful materials science, namely optimization of composition, microstructure, interface quality with the electroes, an controlling the nano-scale omain wall pinning efects. Target applications of FeRAM inclue cell phones, smart cars, vieo games.

Classification of Dielectrics & Applications

Classification of Dielectrics & Applications Classification of Dielectrics & Applications DIELECTRICS Non-Centro- Symmetric Piezoelectric Centro- Symmetric Pyroelectric Non- Pyroelectric Ferroelectrics Non-Ferroelectric Piezoelectric Effect When

More information

UNIT 4:Capacitors and Dielectric

UNIT 4:Capacitors and Dielectric UNIT 4:apacitors an Dielectric SF7 4. apacitor A capacitor is a evice that is capable of storing electric charges or electric potential energy. It is consist of two conucting plates separate by a small

More information

CAPACITANCE: CHAPTER 24. ELECTROSTATIC ENERGY and CAPACITANCE. Capacitance and capacitors Storage of electrical energy. + Example: A charged spherical

CAPACITANCE: CHAPTER 24. ELECTROSTATIC ENERGY and CAPACITANCE. Capacitance and capacitors Storage of electrical energy. + Example: A charged spherical CAPACITANCE: CHAPTER 24 ELECTROSTATIC ENERGY an CAPACITANCE Capacitance an capacitors Storage of electrical energy Energy ensity of an electric fiel Combinations of capacitors In parallel In series Dielectrics

More information

Last lecture. Today s menu. Capacitive sensing elements. Capacitive sensing elements (cont d...) Examples. General principle

Last lecture. Today s menu. Capacitive sensing elements. Capacitive sensing elements (cont d...) Examples. General principle Last lecture esistive sensing elements: Displacement sensors (potentiometers). Temperature sensors. Strain gauges. Deflection briges. Toay s menu Capacitive sensing elements. Inuctive sensing elements.

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 7-1 Transduction Based on Changes in the Energy Stored in an Electrical Field - Electrostriction The electrostrictive effect is a quadratic dependence of strain or stress on the polarization P

More information

PARALLEL-PLATE CAPACITATOR

PARALLEL-PLATE CAPACITATOR Physics Department Electric an Magnetism Laboratory PARALLEL-PLATE CAPACITATOR 1. Goal. The goal of this practice is the stuy of the electric fiel an electric potential insie a parallelplate capacitor.

More information

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR. THE PARALLEL-PLATE CAPACITOR. The Parallel plate capacitor is a evice mae up by two conuctor parallel plates with total influence between them (the surface

More information

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1 Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters. Initially the electrostatic force

More information

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE. Define electric potential at a point. *Electric potential at a point is efine as the work one to bring a unit positive charge from infinity to that point.

More information

V q.. REASONING The potential V created by a point charge q at a spot that is located at a

V q.. REASONING The potential V created by a point charge q at a spot that is located at a 8. REASONING The electric potential at a istance r from a point charge q is given by Equation 9.6 as kq / r. The total electric potential at location P ue to the four point charges is the algebraic sum

More information

Piezo materials. Actuators Sensors Generators Transducers. Piezoelectric materials may be used to produce e.g.: Piezo materials Ver1404

Piezo materials. Actuators Sensors Generators Transducers. Piezoelectric materials may be used to produce e.g.:  Piezo materials Ver1404 Noliac Group develops and manufactures piezoelectric materials based on modified lead zirconate titanate (PZT) of high quality and tailored for custom specifications. Piezoelectric materials may be used

More information

Piezo Theory: Chapter 1 - Physics & Design

Piezo Theory: Chapter 1 - Physics & Design Piezoelectric effect inverse piezoelectric effect The result of external forces to a piezoelectric material is positive and negative electrical charges at the surface of the material. If electrodes are

More information

Q1. A) 3F/8 B) F/4 C) F/2 D) F/16 E) F The charge on A will be Q 2. Ans: The charge on B will be 3 4 Q. F = k a Q r 2. = 3 8 k Q2 r 2 = 3 8 F

Q1. A) 3F/8 B) F/4 C) F/2 D) F/16 E) F The charge on A will be Q 2. Ans: The charge on B will be 3 4 Q. F = k a Q r 2. = 3 8 k Q2 r 2 = 3 8 F Phys10 Secon Major-1 Zero Version Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters.

More information

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics. PHYS 220, Engineering Physics, Chapter 24 Capacitance an Dielectrics Instructor: TeYu Chien Department of Physics an stronomy University of Wyoming Goal of this chapter is to learn what is Capacitance,

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Capacitors Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 12 Capacitors are evices that can store electrical energy Capacitors are use in many every-ay applications Heart efibrillators

More information

Creation of DIPOLE (two poles) (distortion of crystal structure by the small displacement of the ion in direction of electric field)

Creation of DIPOLE (two poles) (distortion of crystal structure by the small displacement of the ion in direction of electric field) Dielectricity Dielectric materials: Materials which is generally insulators. Under applied electric field, there is a tiny movement of charge inside the material. Electric field Creation of DIPOLE (two

More information

1. Chapter 1: Introduction

1. Chapter 1: Introduction 1. Chapter 1: Introduction Non-volatile memories with ferroelectric capacitor materials are also known as ferroelectric random access memories (FRAMs). Present research focuses on integration of ferroelectric

More information

Recommendations: Part 7: Transient Creep for service and accident conditions

Recommendations: Part 7: Transient Creep for service and accident conditions Materials an Structures/Matériaux et Constructions, Vol. 31, June 1998, pp 290-295 RILEM TECHNICAL COMMITTEES RILEM TC 129-MHT: TEST METHODS FOR MECHANICAL PROPERTIES OF CONCRETE AT HIGH TEMPERATURES Recommenations:

More information

A-level PHYSICS A PHYA4/1. Unit 4 Fields and Further Mechanics. Section A. Monday 20 June 2016 Morning

A-level PHYSICS A PHYA4/1. Unit 4 Fields and Further Mechanics. Section A. Monday 20 June 2016 Morning Please write clearly in block capitals. entre number aniate number Surname Forename(s) aniate signature -level PHYSIS Unit 4 Fiels an Further Mechanics Section Monay 20 June 2016 Morning Materials In aition

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 9 Chapter 24 sec. 3-5 Fall 2017 Semester Professor Koltick Parallel Plate Capacitor Area, A C = ε 0A Two Parallel Plate Capacitors Area, A 1 C 1 = ε 0A 1 Area,

More information

PHYS 221 General Physics II

PHYS 221 General Physics II PHYS 221 General Physics II Capacitance, Dielectrics, Lightning Spring 2015 Assigne Reaing: 18.4 18.6 Lecture 5 Recap: PHYS 221 Last Lecture Electric force is conservative Electric potential energy Potential

More information

PIEZOELECTRIC TECHNOLOGY PRIMER

PIEZOELECTRIC TECHNOLOGY PRIMER PIEZOELECTRIC TECHNOLOGY PRIMER James R. Phillips Sr. Member of Technical Staff CTS Wireless Components 4800 Alameda Blvd. N.E. Albuquerque, New Mexico 87113 Piezoelectricity The piezoelectric effect is

More information

LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR

LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR 5 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR Tatsunori Kaneko* an Yasuto Asano* * Department of Mechanical Engineering,

More information

SENSORS and TRANSDUCERS

SENSORS and TRANSDUCERS SENSORS and TRANSDUCERS Tadeusz Stepinski, Signaler och system The Mechanical Energy Domain Physics Surface acoustic waves Silicon microresonators Variable resistance sensors Piezoelectric sensors Capacitive

More information

Unit IV State of stress in Three Dimensions

Unit IV State of stress in Three Dimensions Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength

More information

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 7

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 7 MSE 21A Thermodynamics and Phase Transformations Fall, 28 Problem Set No. 7 Problem 1: (a) Show that if the point group of a material contains 2 perpendicular 2-fold axes then a second-order tensor property

More information

Characterization of lead zirconate titanate piezoceramic using high frequency ultrasonic spectroscopy

Characterization of lead zirconate titanate piezoceramic using high frequency ultrasonic spectroscopy JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 1 15 JUNE 1999 Characterization of lea zirconate titanate piezoceramic using high frequency ultrasonic spectroscopy Haifeng Wang, Wenhua Jiang, a) an Wenwu

More information

Testing and analysis of high frequency electroelastic characteristics of piezoelectric transformers

Testing and analysis of high frequency electroelastic characteristics of piezoelectric transformers Arch. Mech., 59, 2, pp. 119 131, Warszawa 2007 Testing and analysis of high frequency electroelastic characteristics of piezoelectric transformers F. NARITA, Y. SHINDO, F. SAITO, M. MIKAMI Department of

More information

Capacitance and Dielectrics

Capacitance and Dielectrics 6 Capacitance an Dielectrics CHAPTER OUTLINE 6. Definition of Capacitance 6. Calculating Capacitance 6.3 Combinations of Capacitors 6.4 Energy Store in a Charge Capacitor 6.5 Capacitors with Dielectrics

More information

An inductance lookup table application for analysis of reluctance stepper motor model

An inductance lookup table application for analysis of reluctance stepper motor model ARCHIVES OF ELECTRICAL ENGINEERING VOL. 60(), pp. 5- (0) DOI 0.478/ v07-0-000-y An inuctance lookup table application for analysis of reluctance stepper motor moel JAKUB BERNAT, JAKUB KOŁOTA, SŁAWOMIR

More information

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: Chapter 24: ELECTRIC POTENTIAL 1 An electron moves from point i to point f, in the irection of a uniform electric fiel During this isplacement: i f E A the work one by the fiel is positive an the potential

More information

Ferroelectricity. Phase transition. Material properties. 4/12/2011 Physics 403 Spring

Ferroelectricity. Phase transition. Material properties. 4/12/2011 Physics 403 Spring Ferroelectricity. Phase transition. Material properties 4/12/211 Physics 43 Spring 211 1 Ferroelectricity. outline Ferroelectricity. Definition Discovery Main properties Phenomenological theory Some materials

More information

Introduction Basic principles Finite element formulation Nonlinear algorithms Validation & examples Oofelie::MEMS, driven by SAMCEF Field Perspectives

Introduction Basic principles Finite element formulation Nonlinear algorithms Validation & examples Oofelie::MEMS, driven by SAMCEF Field Perspectives Non linear behavior of electrostatically actuate micro-structures Dr. Ir. Stéphane Paquay, Open Engineering SA Dr. Ir. Véronique Rochus, ULg (LTAS-VIS) Dr. Ir. Stefanie Gutschmit, ULg (LTAS-VIS) Outline

More information

Solid State Physics (condensed matter): FERROELECTRICS

Solid State Physics (condensed matter): FERROELECTRICS Solid State Physics (condensed matter): FERROELECTRICS Prof. Igor Ostrovskii The University of Mississippi Department of Physics and Astronomy Oxford, UM: May, 2012 1 People: Solid State Physics Condensed

More information

A capcitor is a divice which stores electric energy. It is also named as condenser.

A capcitor is a divice which stores electric energy. It is also named as condenser. PITNE PITNE. capcitor is a ivice which stores electric energy. It is also name as conenser. When charge is given to a conuctor, its potential increases in the ratio of given charge. The charge given to

More information

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Guigen Zhang Department of Bioengineering Department of Electrical and Computer Engineering Institute for Biological Interfaces of Engineering

More information

Extinction, σ/area. Energy (ev) D = 20 nm. t = 1.5 t 0. t = t 0

Extinction, σ/area. Energy (ev) D = 20 nm. t = 1.5 t 0. t = t 0 Extinction, σ/area 1.5 1.0 t = t 0 t = 0.7 t 0 t = t 0 t = 1.3 t 0 t = 1.5 t 0 0.7 0.9 1.1 Energy (ev) = 20 nm t 1.3 Supplementary Figure 1: Plasmon epenence on isk thickness. We show classical calculations

More information

Piezoelectric and Ferroelectric materials. Zaahir Salam

Piezoelectric and Ferroelectric materials. Zaahir Salam Piezoelectric and Ferroelectric materials Zaahir Salam Some Basic Terms Dielectric Material- The Cumulative effect of microscopic displacements (charges,ions,electrons) results in Net Polarization due

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

( ) Energy storage in CAPACITORs. q C

( ) Energy storage in CAPACITORs. q C Energy storage in CAPACITORs Charge capacitor by transferring bits of charge q at a time from bottom to top plate. Can use a battery to o this. Battery oes work which increase potential energy of capacitor.

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors Piezoelectric Force Sensors 2 Piezoelectric Effect and Materials Piezoelectric

More information

SYNCHRONOUS SEQUENTIAL CIRCUITS

SYNCHRONOUS SEQUENTIAL CIRCUITS CHAPTER SYNCHRONOUS SEUENTIAL CIRCUITS Registers an counters, two very common synchronous sequential circuits, are introuce in this chapter. Register is a igital circuit for storing information. Contents

More information

Solid State Theory Physics 545

Solid State Theory Physics 545 olid tate Theory hysics 545 Mechanical properties of materials. Basics. tress and strain. Basic definitions. Normal and hear stresses. Elastic constants. tress tensor. Young modulus. rystal symmetry and

More information

Bridging to the Continuum Scale for Ferroelectric Applications

Bridging to the Continuum Scale for Ferroelectric Applications Bridging to the Continuum Scale for Ferroelectric Applications Shanfu Zheng and Alberto Cuitiño Mechanical and Aerospace Engineering, Rutgers University Alejandro Strachan Materials Engineering, Purdue

More information

Piezoelectricity: Basics and applications. Friday Morning Meeting, Technical Talk Petar Jurcevic

Piezoelectricity: Basics and applications. Friday Morning Meeting, Technical Talk Petar Jurcevic Piezoelectricity: Basics and applications Friday Morning Meeting, 30.07.2010 Technical Talk Petar Jurcevic 1 Overview -A simple molecular model -Mathematical modelling -Some general notes -Overview Motors

More information

Electrical material properties

Electrical material properties Electrical material properties U = I R Ohm s law R = ρ (l/a) ρ resistivity l length σ = 1/ρ σ conductivity A area σ = n q μ n conc. of charge carriers q their charge μ their mobility μ depends on T, defects,

More information

Chap. 7. Dielectric Materials and Insulation

Chap. 7. Dielectric Materials and Insulation Chap. 7. Dielectric Materials and Insulation - The parallel plate capacitor with free space as an insulator: - The electric dipole moment for a pair of opposite changes +Q and -Q separated by a finite

More information

Low Frequency Properties of Dielectric Crystals

Low Frequency Properties of Dielectric Crystals Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series I Editor in Chief: O. Madelung Group III: Solid State Physics Volume 29 Low Frequency Properties of Dielectric

More information

User s Manual. STUDY OF DIELECTRIC CONSTANT Model: DEC-01

User s Manual. STUDY OF DIELECTRIC CONSTANT Model: DEC-01 User s Manual STUDY OF DIELECTRIC CONSTANT Model: DEC-01 Manufactured by.. Scientific Equipment & Services 358/1, New Adarsh Nagar, Roorkee - 247 667, UA, INDIA Ph.: +91-1332-272852, 277118 Fax: +91-1332-274831

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

Structure Design and Fabrication of Silicon Resonant Micro-accelerometer Based on Electrostatic Rigidity

Structure Design and Fabrication of Silicon Resonant Micro-accelerometer Based on Electrostatic Rigidity Proceeings of the Worl Congress on Engineering 9 Vol I WCE 9, July 1 -, 9, Lonon, U.K. Structure Design an Fabrication of Silicon Resonant Micro-accelerometer Base on Electrostatic Rigiity ZHANG Feng-tian,

More information

TEST 2 (PHY 250) Figure Figure P26.21

TEST 2 (PHY 250) Figure Figure P26.21 TEST 2 (PHY 250) 1. a) Write the efinition (in a full sentence) of electric potential. b) What is a capacitor? c) Relate the electric torque, exerte on a molecule in a uniform electric fiel, with the ipole

More information

Experimental Studies and Parametric Modeling of Ionic Flyers

Experimental Studies and Parametric Modeling of Ionic Flyers 1 Experimental Stuies an Parametric Moeling of Ionic Flyers Chor Fung Chung an Wen J. Li* Centre for Micro an Nano Systems, Faculty of Engineering The Chinese University of Hong Kong *Contact Author: wen@mae.cuhk.eu.hk

More information

Technische Universität Graz. Institute of Solid State Physics. 22. Crystal Physics

Technische Universität Graz. Institute of Solid State Physics. 22. Crystal Physics Technische Universität Graz Institute of Solid State Physics 22. Crystal Physics Jan. 7, 2018 Hall effect / Nerst effect Technische Universität Graz Institute of Solid State Physics Crystal Physics Crystal

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10 Some vector algebra an the generalize chain rule Ross Bannister Data Assimilation Research Centre University of Reaing UK Last upate 10/06/10 1. Introuction an notation As we shall see in these notes the

More information

Where A is the plate area and d is the plate separation.

Where A is the plate area and d is the plate separation. DIELECTRICS Dielectrics an the parallel plate capacitor When a ielectric is place between the plates of a capacitor is larger for the same value of voltage. From the relation C = /V it can be seen that

More information

NUMERICAL EVALUATION OF A TEFLON BASED PIEZOELECTRIC SENSOR EFFECTIVITY FOR THE MONITORING OF EARLY AGE COCRETE STRENGTHING

NUMERICAL EVALUATION OF A TEFLON BASED PIEZOELECTRIC SENSOR EFFECTIVITY FOR THE MONITORING OF EARLY AGE COCRETE STRENGTHING NUMERICAL EVALUATION OF A TEFLON BASED PIEZOELECTRIC SENSOR EFFECTIVITY FOR THE MONITORING OF EARLY AGE COCRETE STRENGTHING Evangelos V. Liarakos Postdoctoral researcher School of Architecture, Technical

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Elasticity M.P. Vaughan Overview Overview of elasticity Classical description of elasticity Speed of sound Strain Stress Young s modulus Shear modulus Poisson ratio

More information

qq 1 1 q (a) -q (b) -2q (c)

qq 1 1 q (a) -q (b) -2q (c) 1... Multiple Choice uestions with One Correct Choice A hollow metal sphere of raius 5 cm is charge such that the potential on its surface to 1 V. The potential at the centre of the sphere is (a) zero

More information

Ferroelectricity. Phase transition. Material properties

Ferroelectricity. Phase transition. Material properties Ferroelectricity. Phase transition. Material properties BaTiO 3 DKDP KDP PZN-PT(9%) PMN-PT(30%) PMN-PT(40%) 4/1/2016 Physics 403 Spring 2016 1 Ferroelectricity. outline Ferroelectricity. Definition Discovery

More information

A simple model for the small-strain behaviour of soils

A simple model for the small-strain behaviour of soils A simple moel for the small-strain behaviour of soils José Jorge Naer Department of Structural an Geotechnical ngineering, Polytechnic School, University of São Paulo 05508-900, São Paulo, Brazil, e-mail:

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Piezoactuators. Jiří Tůma

Piezoactuators. Jiří Tůma Piezoactuators Jiří Tůma 1 Domain Piezoelectric effect Direct piezoelectric effect discovered the brothers Pierre and Jacques Curie. They found that certain crystalline materials (ceramics) having the

More information

ELECTRON DIFFRACTION

ELECTRON DIFFRACTION ELECTRON DIFFRACTION Electrons : wave or quanta? Measurement of wavelength an momentum of electrons. Introuction Electrons isplay both wave an particle properties. What is the relationship between the

More information

Microelectromechanical systems (MEMS) have become an increasingly important area of

Microelectromechanical systems (MEMS) have become an increasingly important area of 1 Chapter 1 Introduction 1.1 Background Microelectromechanical systems (MEMS) have become an increasingly important area of technology. This is due to the premise that the efficiencies of high volume production

More information

Lecture 7. Properties of Materials

Lecture 7. Properties of Materials MIT 3.00 Fall 2002 c W.C Carter 55 Lecture 7 Properties of Materials Last Time Types of Systems and Types of Processes Division of Total Energy into Kinetic, Potential, and Internal Types of Work: Polarization

More information

ELASTICITY (MDM 10203)

ELASTICITY (MDM 10203) LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering

More information

Non-Equilibrium Continuum Physics TA session #10 TA: Yohai Bar Sinai Dislocations

Non-Equilibrium Continuum Physics TA session #10 TA: Yohai Bar Sinai Dislocations Non-Equilibrium Continuum Physics TA session #0 TA: Yohai Bar Sinai 0.06.206 Dislocations References There are countless books about islocations. The ones that I recommen are Theory of islocations, Hirth

More information

G. Ravichandran Aeronautics & Mechanical Engineering Graduate Aeronautical Laboratories California Institute of Technology

G. Ravichandran Aeronautics & Mechanical Engineering Graduate Aeronautical Laboratories California Institute of Technology Multi-Disciplinary University Initiative Army Research Office Engineering Microstructural Complexity in Ferroelectric Devices Mechanical Characterization G. Ravichandran Aeronautics & Mechanical Engineering

More information

Module 5 Couplings. Version 2 ME, IIT Kharagpur

Module 5 Couplings. Version 2 ME, IIT Kharagpur Moule 5 Couplings Version ME, IIT Kharagpur Lesson Design proceures for rigi an flexible rubber-bushe couplings Version ME, IIT Kharagpur Instructional Objectives At the en of this lesson, the stuents

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

PD Controller for Car-Following Models Based on Real Data

PD Controller for Car-Following Models Based on Real Data PD Controller for Car-Following Moels Base on Real Data Xiaopeng Fang, Hung A. Pham an Minoru Kobayashi Department of Mechanical Engineering Iowa State University, Ames, IA 5 Hona R&D The car following

More information

ESO 205 Nature and Properties of Materials

ESO 205 Nature and Properties of Materials Dielectric Materials Topics to discuss Principles of dielectrics Dielectrics Loss and Breakdown Polarizations Frequency dependence Ferro-, Piezo- and Pyro- electrics ESO 205 Nature and Properties of Materials

More information

APPENDIX A Landau Free-Energy Coefficients

APPENDIX A Landau Free-Energy Coefficients APPENDIX A Landau Free-Energy Coefficients Long-Qing Chen Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 180 USA The thermodynamics of

More information

Continuum mechanism: Stress and strain

Continuum mechanism: Stress and strain Continuum mechanics deals with the relation between forces (stress, σ) and deformation (strain, ε), or deformation rate (strain rate, ε). Solid materials, rigid, usually deform elastically, that is the

More information

EE1320: Measurement Science Lecture 2: Sensors

EE1320: Measurement Science Lecture 2: Sensors EE1320: Measurement Science Lecture 2: Sensors Dr. ir. Michiel Pertijs, Electronic Instrumentation Laboratory April 26, 2013 Delft University of Technology Challenge the future Course program 2013 week

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

(3-3) = (Gauss s law) (3-6)

(3-3) = (Gauss s law) (3-6) tatic Electric Fiels Electrostatics is the stuy of the effects of electric charges at rest, an the static electric fiels, which are cause by stationary electric charges. In the euctive approach, few funamental

More information

Short Intro to Coordinate Transformation

Short Intro to Coordinate Transformation Short Intro to Coorinate Transformation 1 A Vector A vector can basically be seen as an arrow in space pointing in a specific irection with a specific length. The following problem arises: How o we represent

More information

Ferroelectric materials contain one or more polar axes along which a spontaneous

Ferroelectric materials contain one or more polar axes along which a spontaneous Chapter 3 Ferroelectrics 3.1 Definition and properties Ferroelectric materials contain one or more polar axes along which a spontaneous polarization can be developed below the material s Curie temperature.

More information

arxiv:physics/ v4 [physics.class-ph] 9 Jul 1999

arxiv:physics/ v4 [physics.class-ph] 9 Jul 1999 AIAA-99-2144 PROPULSION THROUGH ELECTROMAGNETIC SELF-SUSTAINED ACCELERATION arxiv:physics/9906059v4 [physics.class-ph] 9 Jul 1999 Abstract As is known the repulsion of the volume elements of an uniformly

More information

1/7/2018. A model of the mechanism for electrostatic interactions. GRAVITATIONAL FORCE vs. ELECTROSTATCS FORCE OBJECT WITH MASS

1/7/2018. A model of the mechanism for electrostatic interactions. GRAVITATIONAL FORCE vs. ELECTROSTATCS FORCE OBJECT WITH MASS UNIT 3 Electrostatics: electric force, electric fiel, an electric potential. CHAPTER 15 THE ELECTRIC FIELD AP PHYSICS A moel of the mechanism for electrostatic interactions A moel for electric interactions,

More information

Alpha Particle scattering

Alpha Particle scattering Introuction Alpha Particle scattering Revise Jan. 11, 014 In this lab you will stuy the interaction of α-particles ( 4 He) with matter, in particular energy loss an elastic scattering from a gol target

More information

ECE341 Test 2 Your Name: Tue 11/20/2018

ECE341 Test 2 Your Name: Tue 11/20/2018 ECE341 Test Your Name: Tue 11/0/018 Problem 1 (1 The center of a soli ielectric sphere with raius R is at the origin of the coorinate. The ielectric constant of the sphere is. The sphere is homogeneously

More information

Moving Charges And Magnetism

Moving Charges And Magnetism AIND SINGH ACADEMY Moving Charges An Magnetism Solution of NCET Exercise Q -.: A circular coil of wire consisting of turns, each of raius 8. cm carries a current of. A. What is the magnitue of the magnetic

More information

Introduction, Basic Mechanics 2

Introduction, Basic Mechanics 2 Computational Biomechanics 18 Lecture : Introduction, Basic Mechanics Ulli Simon, Lucas Engelhardt, Martin Pietsch Scientific Computing Centre Ulm, UZWR Ulm University Contents Mechanical Basics Moment

More information

1 Stress and Strain. Introduction

1 Stress and Strain. Introduction 1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may

More information

Maxwell s Equations 5/9/2016. EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations for static fields. Review Electrostatics and Magnetostatics

Maxwell s Equations 5/9/2016. EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations for static fields. Review Electrostatics and Magnetostatics Generate by Foxit PDF Creator Foxit oftware 5/9/216 3332 lectromagnetic II Chapter 9 Maxwell s quations Islamic University of Gaza lectrical ngineering Department Prof. Dr. Hala J l-khozonar 216 1 2 Review

More information

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics anubhavclasses.worpress.com CBSE Solve Test Papers PHYSICS Class XII Chapter : Electrostatics anubhavclasses.worpress.com CBSE TEST PAPER-05 CLASS - XII PHYSICS (Unit Electrostatics). The Plates of a charge

More information

3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects IOP Conference Series: Materials Science an Engineering 3-D FEM Moeling of fiber/matrix interface eboning in UD composites incluing surface effects To cite this article: A Pupurs an J Varna 2012 IOP Conf.

More information

Piezoresistive pressure sensors. Electronics and Cybernetics 1

Piezoresistive pressure sensors. Electronics and Cybernetics 1 Piezoresistive pressure sensors Electronics an Cybernetics Two sensing principles Piezoresistive measure mechanical stress in ope resistor-area iaphragm pressure sensor bening beam ue to volume forces

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

Exploring Piezoelectric Properties of Wood and Related Issues in Mathematical Description. Igor Dobovšek

Exploring Piezoelectric Properties of Wood and Related Issues in Mathematical Description. Igor Dobovšek Exploring Piezoelectric Properties of Wood and Related Issues in Mathematical Description Igor Dobovšek University of Ljubljana Faculty of Mathematics and Physics Institute of Mathematics Physics and Mechanics

More information

DETC THE EFFECT OF HIGH ORDER NON-LINEARITIES ON SUB-HARMONIC EXCITATION WITH PARALLEL PLATE CAPACITIVE ACTUATORS

DETC THE EFFECT OF HIGH ORDER NON-LINEARITIES ON SUB-HARMONIC EXCITATION WITH PARALLEL PLATE CAPACITIVE ACTUATORS Proceeings of the ASME 27 International Design Engineering Technical Conferences & Computers an Information in Engineering Conference IDETC/CIE 27 September 4-7, 27, Las Vegas, Nevaa, USA DETC27-34996

More information

Chapter 6. Electromagnetic Oscillations and Alternating Current

Chapter 6. Electromagnetic Oscillations and Alternating Current hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

More information

Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems

Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems Bishakh Bhattacharya & Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 19 Analysis of an Orthotropic Ply References

More information