Structure Design and Fabrication of Silicon Resonant Micro-accelerometer Based on Electrostatic Rigidity

Size: px
Start display at page:

Download "Structure Design and Fabrication of Silicon Resonant Micro-accelerometer Based on Electrostatic Rigidity"

Transcription

1 Proceeings of the Worl Congress on Engineering 9 Vol I WCE 9, July 1 -, 9, Lonon, U.K. Structure Design an Fabrication of Silicon Resonant Micro-accelerometer Base on Electrostatic Rigiity ZHANG Feng-tian, HE Xiao-ping, SHI Zhi-gui, ZHOU Wu Abstract The structure characteristics an working principle of silicon resonant micro-accelerometer base on electrostatic rigiity are presente. Dynamic characteristics of ouble-ene tuning fork (DETF) in the sensor are analyze. Force equilibrium equations of mass an DETF are built respectively for with or without acceleration, through which the relationship between DETF resonant frequency an acceleration is obtaine. The influences of fole supporting beams linke with proof mass an gap between capacitive parallel plates on the sensor sensitivity are analyze, an finally a resonant micro accelerometer with sensitivity of 6Hz/g is esigne an fabricate with bulk-silicon issolve processes. Inex Terms Electrostatic rigiity; Resonance; Accelerometer; Bulk-silicon issolve processes. I. INTRODUCTION Resonant principle has been wiely use for measuring physical parameters such as mass, acceleration, force, flow or pressure. The main avantage of a resonant sensor over other sensing principles is its quasi-igital output, which implies goo resistance to noise or electrical interference an simple interface to a igital system. Resonant accelerometer has been prouce an wiely use for many years, for example, RBA5 of Honeywell Company. Most resonant accelerometers use quartz material for its excellent piezoelectric performance, but the quartz fabrication is expensive an not compatible with IC (integrate circuits) fabrication technology, which makes it impossible to integrate the sensor an its interface circuits on one chip. Resonant accelerometers base on the silicon micromachining technology become very attractive ue to low cost, small size, compatibility with IC fabrication processes, an potential application in the fiels where size an high precision are require. Most silicon resonant accelerometers etect resonant frequency of the vibrating beam subjecte to axial loaing which relates to inertial force Manuscript receive February 7, 9. Zhang Feng-tian is with the Institute of Electronic Engineering, China Acaemy of Engineering Physics, Mianyang, Sichuan, China. (Phone: , fax: , zftstuart@sohu.com). He Xiao-ping is with the Institute of Electronic Engineering, China Acaemy of Engineering Physics, Mianyang, Sichuan, China ( hxp@xlea.com). SHI Zhi-gui is with the Institute of Electronic Engineering, China Acaemy of Engineering Physics, Mianyang, Sichuan, China (szg@xlea.com).. Zhou Wu is with the Southwest Jiaotong University, Chengu, Sichuan, China( zhouwu916@yahoo.com.cn). on the proof mass. The vibrating beam is excite by alternating electrostatic or electrothermal force, an the frequency change is sense by capacitors or piezoresistive resistors respectively [1-6]. In a relatively new concept of resonant accelerometer, inertial force of the proof mass pushes or pulls one electroe as one part of the proof mass, an changes the gap istance of the parallel-plate capacitor, then the electrostatic force between parallel plate electroes changes with the gap istance, an equivalently changes the efficient mechanical rigiity of the vibrating beam [7-8]. In the previous work of other research groups, the accelerometer was fabricate an showe excellent performances. But the movement an ynamic characteristics of the vibrating beam were not presente, which is very important for unerstaning the working principle an the sensor structure esign. Therefore, in this stuy, the movement an ynamic characteristics are analyze with mechanical ynamic theory. The relationship between resonant frequency of the vibrating beam an acceleration is obtaine in theory. Finally, a resonant accelerometer with sensitivity of 6Hz/g is esigne an fabricate with bulk-silicon issolve processes. II. OPERATING PRINCIPLE The concept of the resonant accelerometer is shown in Fig.1. It consists of ouble-ene tuning fork (DETF), riving capacitors, sensing capacitors, proof mass, an supporting springs. The fixe comb electroes of riving capacitors are excite by an AC voltage with DC bias, DETF is connecte to groun, an the proof mass incluing the electroe of sensing capacitor is connecte to a DC voltage. In the horizontal plane, each clampe-clampe beam of DETF vibrates 18 out of phase with its natural frequency to cancel reaction forces at the ens when there is no acceleration. The sensing capacitors can etect the vibrating frequency of DETF through interface circuits. When there is acceleration, the proof mass moves near or away from the electroe of DETF uner inertial force an changes the gap istance of sensing capacitor. The electrostatic force between sensing electroes inuces an aitional electrostatic rigiity, which results in the variation of DETF resonant frequency with acceleration. Therefore, etecting the resonant frequency of DETF can measure acceleration. ISBN: WCE 9

2 Proceeings of the Worl Congress on Engineering 9 Vol I WCE 9, July 1 -, 9, Lonon, U.K. Fig.1. Principle schematic of a resonant accelerometer III. THEORY ANALYSIS Due to the symmetry of sensor structure, one half of the structure shown as in Fig. is analyze. The supporting spring in Fig.1 is realize with four fole beams which not only support the proof mass but also make it capable of moving freely along x axis. The DC voltage of the proof mass is V, the clampe-clampe beam of DETF is connecte to GND, an the riving voltage is V c Sin (ωt) with DC bias voltage V 1. The forces applie to the clampe-clampe beam inclue inertial force, amping force, elastic force, riving an sensing electrostatic forces. The mechanical ynamic equation of the vibrating beam can be written as AV N1 h( V 1 V sin( t)) my ε ε + c ω + cy + κy ( g x Y ) g (1) Where m is the effective mass of the vibrating beam, c amping coefficient, κ the effective spring constant of vibrating beam, ε the permittivity of free space ( F/m), A the efficient area of the sensing capacitor, V the sensing voltage, g the gap istance of riving capacitor an sensing capacitor, x an Y are respectively the isplacement of proof mass or vibrating beam relative to initial position when no voltages are applie, an N 1 is number of riving comb finger pairs, h is the structure thickness, ω is the frequency of AC voltage. The first part on the right in (1) is sensing electrostatic forces, while the secon part is riving electrostatic forces. In (1), it assumes that the amping force is proportional to velocity. Fig.. Schematic of the half structure From (1), we can see that electrostatic forces of the vibrating beam inclue fixe an alternate parts. We can think that the vibrating beam moves to some position by one fixe electrostatic force an vibrates harmonically about this equilibrium position. So Y in (1) can be expresse as y 1 +y, an yy sin(ωt+φ), where y 1 is the isplacement of vibrating beam by the fixe electrostatic force an y is the isplacement amplitue by harmonic force. If V 1 >>V c, with Taylor expansion, (1) can be rewritten as my + cy + κ( y1 + y) ( g () Vc sin( ωt) + y ( g g g Equivalently, we can obtain κy1 + ( g g () V c sin( ωt) m y + cy + ( κ ) y ( g g (4) Equation () escribes the isplacement of vibrating beam by fixe force. We can see that y 1 is etermine by the riving or sensing DC voltage in aition to the sensor structure an size. Equation (4) is the harmonic oscillation equation. It shows that there is an aitional force proportional to the vibrating amplitue in (4), equivalently an aitional rigiity cause by electrostatic force between parallel plates of sensing capacitor. The rigiity name electrostatic rigiity κ e can be written as εav κ e ( g (5) Then, the resonant frequency of vibrating beam is as follows 1 κ κ e f n π m (6) When there is acceleration which irection shown as in Fig., the isplacement of proof mass cause by inertial force is x. The electrostatic force between parallel plates of sensing capacitor will change an result in isplacement variation y 1 of the electroe on the vibrating beam. Thus, the gap istance of sensing parallel-plate capacitor change x+ y 1. The electrostatic rigiity inuce by sensing parallel-plate capacitor will vary an alter resonant frequency of the vibrating beam shown as κ 1 ( g ( x Δx) Δy1)) fn π m (7) Due to that the natural frequency of vibrating beam is greatly higher than that of proof mass-spring system, the electrostatic force frequency applie to the proof mass by beam vibrating is also largely higher than that of proof mass-string system. So the isplacement of proof mass cause by beam vibrating can be neglecte. When there is no acceleration, the elastic force an electrostatic force applie to the proof mass are equal. We can obtain the force ISBN: WCE 9

3 Proceeings of the Worl Congress on Engineering 9 Vol I WCE 9, July 1 -, 9, Lonon, U.K. equilibrium equation of proof mass as follow κ sx ( g (8) Where κ s is spring constant of the fole supporting beams linke with proof mass. When there is acceleration shown as in Fig., the gap of sensing capacitor will change, an the elastic force plus inertial force is equal to electrostatic force by sensing capacitor, the force equilibrium equation can be written as κ ( x Δx) Ma ( g ( x Δx) Δy1)) s (9) Here M refers to the mass of the proof mass. As for the vibrating beam, from (), we can obtain ( g ( x Δx) Δy1)) g (1) + ma κ ( y1 Δy1) When the sensor structure size, riving an sensing voltage are etermine, from () (8) (9) (1), we can calculate the value of x, y 1, x, y 1, an substitute them into (7), the relationship between the beam vibrating frequency an acceleration can be obtaine, which is important for sensor structure esign. cause by inertial force of the proof mass is larger when the fole beam is narrow an long, an electrostatic rigiity varies greatly. Also, too narrow or long fole beams will affect the strength an resistance to impact, even maybe result in absorption of capacitor plates an estroy the structure stability. Sensitivity(Hz/g) Sensitivity (Hz/g) Sensing voltage(v) (a) IV. STRUCTURE DEIGN The accelerometer sensitivity irectly affects its precision. The important aspect of sensor structure esign is to etermine proper structure size to improve the sensor sensitivity when the structure stability is guarantee. The sensor sensitivity will be calculate at ifferent structure size, riving or sensing voltage, with the above establishe equations. The vibrating beam is 5μm long an 5μm wie. The sensor structure is 5μm in thickness. The riving AC amplitue is 1V with 15V DC bias. The fole supporting beams are U-shape. Fig.a shows the relationship between the sensor sensitivity an sensing voltage when the capacitor gap is μm, the fole beam is 45μm long an 6μm with. Fig.b presents the variation of sensitivity with the capacitor gap istance when the fole beam is 45μm long an 6μm wie an sensing voltage is 16V. We can see that sensor sensitivity is 7Hz/g or 5Hz/g when sensing voltage is 17V or 18V respectively. Larger sensing voltage an small capacitor gap mean higher sensitivity. The reason is that the sensing capacitor electrostatic force increases when sensing voltage increases an capacitor gap gets narrow, then the variation of electrostatic rigiity at same acceleration become larger an prouce larger eviation of vibrating beam resonant frequency. But too large sensing voltage an small capacitor gap may lea to absorption of capacitor plates an structure stability will be ruine. Fig.c is the relationship of sensor sensitivity an fole supporting beam with, an Fig. shows that of sensor sensitivity an supporting beam length. We can see that narrower an longer supporting beams can improve sensor sensitivity. This is ue to that the capacitor gap variation Sensitivity(Hz/g) Sensitivity (Hz/g) Gap istance of capacitor (μm) (b) Length of fole beam(μm) (c) With of fole beam (μm) () Fig.. Sensor sensitivity versus voltage an structure size From above analysis, smaller capacitor gap, longer an narrower supporting beam, an larger sensing voltage are expecte to improve the sensor sensitivity. But in the respect ISBN: WCE 9

4 Proceeings of the Worl Congress on Engineering 9 Vol I WCE 9, July 1 -, 9, Lonon, U.K. of stability an strength, they shoul be controlle properly. So sensitivity an structure stability shoul be consiere at the same time when esigning the sensor structure size. The sensor structure size in this stuy is finally esigne as follows: fole supporting beam 45μm long an 6μm wie, capacitor gap μm wie, an sensing voltage 17V. The relationship between sensor resonant frequency an applie acceleration is shown in Fig.4. We can see that the esigne sensor sensitivity is at least 6Hz/g for one clampe-clampe beam of DETF. Resonant frequency (Hz) Acceleration (m/s ) Fig.4. Resonant frequency versus applie acceleration V. FABRICATION PROCESS The aopte fabrication process in this stuy is calle bulk-silicon issolve process. The process sequences are as follows: First, boron is heavily ope into the silicon wafer front sie to make the P++ etch-stop layer which is use as the structure layer an about 5μm thick; anchors for wafer-glass boning are patterne an etche on the wafer front sie with ICP eep etch technology(fig.5a); then, the sensor structure is patterne an etche with the secon ICP eep etching (Fig.5b); aluminum is sputtere on the glass wafer to form electroes through which ifferent voltage can be subjecte to ifferent parts of the sensor (Fig.5c);Finally, boning silicon wafer an glass wafer together using anoic boning (Fig.5)an etch the silicon wafer from backsie in KOH etch solution until arriving the etch-stop layer an obtaining the sensor structure(fig.5e). (a) Resonant accelerometer (b) Resonator Fig.6 The SEM pictures of the fabricate sensor VI. CONCLUSION In the silicon resonant accelerometer base on electrostatic rigiity, the proof mass will not vibrate when DETF beams vibrate without acceleration. Meanwhile, the proof mass will move away the initial equilibrium position with acceleration, an apply an aitional rigiity to the vibrating beam for change the resonant frequency. Accoring to the ynamic equations of proof mass an DETF, the accelerometer resonant frequency can be etermine at any acceleration. By analyzing effects of the structure size, sensing voltage on the sensor sensitivity, a sensor structure suitable for actual fabrication conition is esigne an fabricate. Future research work will focus on the measurement of the sensor performance. Fig.5. Fabrication processes The SEM pictures of the fabricate sensor structure are shown in Fig.6. REFERENCES [1] Chr. Burrer, J.Esteve. A novel resonant silicon accelerometer in bulk-micromachining technology. Sensors an Actuators A 46-47, 1995: [] Susan X. P. Su, Henry S. Yang, an Alice M. Agogino. A Resonant Accelerometer With Two-Stage Microleverage Mechanisms Fabricate by SOI-MEMS Technology. IEEE Sensors Journal, VOL. 5, NO. 6, 5:114-1 [] Ashwin A. Seshia,, Moorthi Palaniapan, Trey A. Roessig, Roger T. Howe, Rolan W. Gooch, Thomas R. Schimert, an Stephen Montague. A Vacuum Package Surface Micromachine Resonant Accelerometer. Journal of microelectromechnical Systems, vol.11, no.6, : [4] Mark Helsel, Gene Gassner, Mike Robinson an Jim Wooruff. A Navigation Grae Micro-Machine Silicon Accelerometer. IEEE 94: [5] Jia Yubin, Hao Yilong, an Zhang Rong. Bulk Silicon Resonant Accelerometer. Chinese Journal of Semiconuctors, Vol. 6, No., 5: [6] W. Burns, R. D. Horning, W. R. Herb, J. D. Zook, an H. Guckel. Resonant microbeam accelerometers. The 8th international Conference ISBN: WCE 9

5 Proceeings of the Worl Congress on Engineering 9 Vol I WCE 9, July 1 -, 9, Lonon, U.K. on Soli-State Sensors an Actuators, an Eurosensors IX. Stockholm, Sween, June 5-9, 1995: [7] B. L. Lee, C. H. Oh, Y. S. Oh, an K. Chun, A Novel Resonant Accelerometer: Electrostatic Stiffness Type, The 1th International Conference on Soli State Sensors an Actuators (Transucer 99), Senai, Japan, June 7-1, 1999, pp [8] Seonho Seok, Hak Kim, an Kukjin Chun. An Inertial-grae laterally-riven MEMS Differential Resonant Accelerometer.IEEE 4: M. Young, The Techincal Writers Hanbook. Mill Valley, CA: University Science, ISBN: WCE 9

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. Issued: Thursday, Nov. 24, 2009 PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters Issued: Wednesday, Nov. 23, 2011. PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 8, 2011, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Design and Analysis of Silicon Resonant Accelerometer

Design and Analysis of Silicon Resonant Accelerometer Research Journal of Applied Sciences, Engineering and Technology 5(3): 970-974, 2013 ISSN: 2040-7459; E-ISSN: 2040-7467 Maxwell Scientific Organization, 2013 Sumitted: June 22, 2012 Accepted: July 23,

More information

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary Abstract MEMS based gyroscopes have gained in popularity for use as rotation rate sensors in commercial products like

More information

Design and Analysis of a Novel MEMS Dual Axis Accelerometer

Design and Analysis of a Novel MEMS Dual Axis Accelerometer Design an Analysis of a Novel ES Dual Axis Accelerometer Zijun He, Xingguo Xiong, Wei Quan Abstract Due to their small size, low weight, low cost an low energy consumption, ES (icroelectromechanical Systems)

More information

Design and Analysis of dual Axis MEMS Capacitive Accelerometer

Design and Analysis of dual Axis MEMS Capacitive Accelerometer International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 5 (2017) pp. 779-790 Research India Publications http://www.ripublication.com Design and Analysis of dual Axis

More information

Static Analysis of Electrostatically Actuated Micro Cantilever Beam

Static Analysis of Electrostatically Actuated Micro Cantilever Beam Available online at www.scienceirect.com Proceia Engineering 51 ( 13 ) 776 78 Chemical, Civil an Mechanical Engineering Tracks of 3r Nirma University International Conference on Engineering (NUiCONE 1)

More information

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool Gireesh K C 1, Harisha M 2, Karthick Raj M 3, Karthikkumar M 4, Thenmoli M 5 UG Students, Department

More information

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 77 CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 5.1 INTRODUCTION Fixed guided clamped and cantilever beams have been designed and analyzed using ANSYS and their performance were calculated. Maximum deflection

More information

b. The displacement of the mass due to a constant acceleration a is x=

b. The displacement of the mass due to a constant acceleration a is x= EE147/247A Final, Fall 2013 Page 1 /35 2 /55 NO CALCULATORS, CELL PHONES, or other electronics allowed. Show your work, and put final answers in the boxes provided. Use proper units in all answers. 1.

More information

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN03: Modeling, design and analysis Spring 2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture MEMS functional operation Transducer principles Sensor principles Methods

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Design of a MEMS Capacitive Comb-drive Accelerometer

Design of a MEMS Capacitive Comb-drive Accelerometer Design of a MEMS Capacitive Comb-drive Accelerometer Tolga Kaya* 1, Behrouz Shiari 2, Kevin Petsch 1 and David Yates 2 1 Central Michigan University, 2 University of Michigan * kaya2t@cmich.edu Abstract:

More information

Piezoresistive pressure sensors. Electronics and Cybernetics 1

Piezoresistive pressure sensors. Electronics and Cybernetics 1 Piezoresistive pressure sensors Electronics an Cybernetics Two sensing principles Piezoresistive measure mechanical stress in ope resistor-area iaphragm pressure sensor bening beam ue to volume forces

More information

PES 1120 Spring 2014, Spendier Lecture 36/Page 1

PES 1120 Spring 2014, Spendier Lecture 36/Page 1 PES 0 Spring 04, Spenier ecture 36/Page Toay: chapter 3 - R circuits: Dampe Oscillation - Driven series R circuit - HW 9 ue Wenesay - FQs Wenesay ast time you stuie the circuit (no resistance) The total

More information

1. Narrative Overview Questions

1. Narrative Overview Questions Homework 4 Due Nov. 16, 010 Required Reading: Text and Lecture Slides on Downloadable from Course WEB site: http://courses.washington.edu/overney/nme498.html 1. Narrative Overview Questions Question 1

More information

Last lecture. Today s menu. Capacitive sensing elements. Capacitive sensing elements (cont d...) Examples. General principle

Last lecture. Today s menu. Capacitive sensing elements. Capacitive sensing elements (cont d...) Examples. General principle Last lecture esistive sensing elements: Displacement sensors (potentiometers). Temperature sensors. Strain gauges. Deflection briges. Toay s menu Capacitive sensing elements. Inuctive sensing elements.

More information

E05 Resonator Design

E05 Resonator Design POLITECNICO DI MILANO MSC COURSE - MEMS AND MICROSENSORS - 2018/2019 E05 Resonator Design Giorgio Mussi 16/10/2018 In this class we will learn how an in-plane MEMS resonator handles process variabilities,

More information

Silicon Capacitive Accelerometers. Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES

Silicon Capacitive Accelerometers. Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES Silicon Capacitive Accelerometers Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES 1 Measuring Acceleration The acceleration measurement is based on Newton s 2nd law: Let the acceleration

More information

CENTURION UNIVERSITY OF TECHNOLOGY & MANAGEMENT,ODISHA CUEE-2015

CENTURION UNIVERSITY OF TECHNOLOGY & MANAGEMENT,ODISHA CUEE-2015 CENTURION UNIVERSITY OF TECHNOLOGY & MANAGEMENT,ODISHA CUEE-015 PHYSICS 1. The imensional formula of angular momentum is a) ML T - b) MLT - c) MLT -1 ) ML T -1. If A B = B A, then the angle between A an

More information

induced _ electric _ field = = = = σ V

induced _ electric _ field = = = = σ V The Figure shows that the open-circuit voltage V (an hence the fiel strength ) is proportional to compressive stress T up to a maximum of 5 kv, which occurs at a stress of 50 MPa. Inuce electrical fiel

More information

Experimental analysis of spring hardening and softening nonlinearities in. microelectromechanical oscillators. Sarah Johnson

Experimental analysis of spring hardening and softening nonlinearities in. microelectromechanical oscillators. Sarah Johnson Experimental analysis of spring hardening and softening nonlinearities in microelectromechanical oscillators. Sarah Johnson Department of Physics, University of Florida Mentored by Dr. Yoonseok Lee Abstract

More information

DETC THE EFFECT OF HIGH ORDER NON-LINEARITIES ON SUB-HARMONIC EXCITATION WITH PARALLEL PLATE CAPACITIVE ACTUATORS

DETC THE EFFECT OF HIGH ORDER NON-LINEARITIES ON SUB-HARMONIC EXCITATION WITH PARALLEL PLATE CAPACITIVE ACTUATORS Proceeings of the ASME 27 International Design Engineering Technical Conferences & Computers an Information in Engineering Conference IDETC/CIE 27 September 4-7, 27, Las Vegas, Nevaa, USA DETC27-34996

More information

EE C245 - ME C218. Fall 2003

EE C245 - ME C218. Fall 2003 EE C45 - E C8 Introduction to ES Design Fall Roger Howe and Thara Srinivasan ecture 9 Energy ethods II Today s ecture echanical structures under driven harmonic motion develop analytical techniques for

More information

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by Foundations of MEMS Second Edition Chang Liu McCormick School of Engineering and Applied Science Northwestern University International Edition Contributions by Vaishali B. Mungurwadi B. V. Bhoomaraddi

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

PARALLEL-PLATE CAPACITATOR

PARALLEL-PLATE CAPACITATOR Physics Department Electric an Magnetism Laboratory PARALLEL-PLATE CAPACITATOR 1. Goal. The goal of this practice is the stuy of the electric fiel an electric potential insie a parallelplate capacitor.

More information

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

Chapter 6. Electromagnetic Oscillations and Alternating Current

Chapter 6. Electromagnetic Oscillations and Alternating Current hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

More information

V q.. REASONING The potential V created by a point charge q at a spot that is located at a

V q.. REASONING The potential V created by a point charge q at a spot that is located at a 8. REASONING The electric potential at a istance r from a point charge q is given by Equation 9.6 as kq / r. The total electric potential at location P ue to the four point charges is the algebraic sum

More information

LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR

LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR 5 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR Tatsunori Kaneko* an Yasuto Asano* * Department of Mechanical Engineering,

More information

SOLUTION & ANSWER FOR KCET-2009 VERSION A1 [PHYSICS]

SOLUTION & ANSWER FOR KCET-2009 VERSION A1 [PHYSICS] SOLUTION & ANSWER FOR KCET-009 VERSION A [PHYSICS]. The number of significant figures in the numbers.8000 ---- 5 an 7.8000 5 significant igits 8000.50 7 significant igits. β-ecay means emission of electron

More information

A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges

A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges Plasma Science an Technology, Vol.16, No.1, Oct. 214 A Simple Moel for the Calculation of Plasma Impeance in Atmospheric Raio Frequency Discharges GE Lei ( ) an ZHANG Yuantao ( ) Shanong Provincial Key

More information

DESIGN AND OPTIMIZATION OF BULK MICROMACHINED ACCELEROMETER FOR SPACE APPLICATIONS

DESIGN AND OPTIMIZATION OF BULK MICROMACHINED ACCELEROMETER FOR SPACE APPLICATIONS INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 4, DECEMBER 008 DESIGN AND OPTIMIZATION OF BULK MICROMACHINED ACCELEROMETER FOR SPACE APPLICATIONS Thampi Paul 1, Jaspreet Singh,

More information

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS P. MIAO, P. D. MITCHESON, A. S. HOLMES, E. M. YEATMAN, T. C. GREEN AND B. H. STARK Department of Electrical and Electronic Engineering, Imperial

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2012

EE C245 ME C218 Introduction to MEMS Design Fall 2012 EE C245 ME C218 Introduction to MEMS Design Fall 2012 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

Design and characterization of in-plane MEMS yaw rate sensor

Design and characterization of in-plane MEMS yaw rate sensor Sādhanā Vol. 34, Part 4, August 2009, pp. 633 642. Printed in India Design and characterization of in-plane MEMS yaw rate sensor K P VENKATESH, NISHAD PATIL, ASHOK KUMAR PANDEY and RUDRA PRATAP CranesSci

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-1 Transduction Based on Changes in the Energy Stored in an Electrical Field Electric Field and Forces Suppose a charged fixed q 1 in a space, an exploring charge q is moving toward the fixed

More information

The Pull-In of Symmetrically and Asymmetrically Driven Microstructures and the Use in DC Voltage References

The Pull-In of Symmetrically and Asymmetrically Driven Microstructures and the Use in DC Voltage References IEEE Instrumentation and Measurement Technology Conference Anchorage, AK, USA, 1-3 May 00 The Pull-In of Symmetrically and Asymmetrically Driven Microstructures and the Use in DC Voltage References L.A.

More information

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR. THE PARALLEL-PLATE CAPACITOR. The Parallel plate capacitor is a evice mae up by two conuctor parallel plates with total influence between them (the surface

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16 EECS 16A Designing Information Devices an Systems I Spring 218 Lecture Notes Note 16 16.1 Touchscreen Revisite We ve seen how a resistive touchscreen works by using the concept of voltage iviers. Essentially,

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 PROBLEM SET #1

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 PROBLEM SET #1 Issued: Thursday, Jan. 30, 2014 PROBLEM SET #1 Due (at 9 a.m.): Wednesday Feb. 12, 2014, in the EE C247B HW box near 125 Cory. This homework assignment is intended to give you some early practice playing

More information

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Sensor devices Outline 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Introduction Two Major classes of mechanical

More information

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture EE C45 - ME C8 Introduction to MEMS Design Fall 3 Roger Howe and Thara Srinivasan Lecture 9 Energy Methods II Today s Lecture Mechanical structures under driven harmonic motion develop analytical techniques

More information

CHARACTERISTICS OF A DYNAMIC PRESSURE GENERATOR BASED ON LOUDSPEAKERS. Jože Kutin *, Ivan Bajsić

CHARACTERISTICS OF A DYNAMIC PRESSURE GENERATOR BASED ON LOUDSPEAKERS. Jože Kutin *, Ivan Bajsić Sensors an Actuators A: Physical 168 (211) 149-154 oi: 1.116/j.sna.211..7 211 Elsevier B.V. CHARACTERISTICS OF A DYNAMIC PRESSURE GENERATOR BASED ON LOUDSPEAKERS Jože Kutin *, Ivan Bajsić Laboratory of

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

SENSORS and TRANSDUCERS

SENSORS and TRANSDUCERS SENSORS and TRANSDUCERS Tadeusz Stepinski, Signaler och system The Mechanical Energy Domain Physics Surface acoustic waves Silicon microresonators Variable resistance sensors Piezoelectric sensors Capacitive

More information

Designing Information Devices and Systems I Spring 2017 Official Lecture Notes Note 13

Designing Information Devices and Systems I Spring 2017 Official Lecture Notes Note 13 EES 6A Designing Information Devices an Systems I Spring 27 Official Lecture Notes Note 3 Touchscreen Revisite We ve seen how a resistive touchscreen works by using the concept of voltage iviers. Essentially,

More information

Dynamic Capacitance Extraction of A Triaxial Capacitive Accelerometer

Dynamic Capacitance Extraction of A Triaxial Capacitive Accelerometer Dynamic Capacitance Extraction of A Triaxial Capacitive Accelerometer Zhenchuan Yang, Gang LI, Yilong Hao, Guoying Wu Institute of Microelectronics, Peking University, Beijing, 100871 China Abstract Capacitive

More information

Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration

Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration Arti Arora 1, Himanshu Monga 2, Anil Arora 3 Baddi University of Emerging Science

More information

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads IJR International Journal of Railway Vol. 6, No. 4 / December 13, pp. 155-159 The Korean Society for Railway Vibration Analysis of Railway Tracks Force by Distribute Moving Loas Sinyeob Lee*, Dongkyu Kim*,

More information

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving M. Baù *, V. Ferrari, D. Marioli Department of Electronics for

More information

Proceedings MEMS Inertial Switch for Military Applications

Proceedings MEMS Inertial Switch for Military Applications Proceedings MEMS Inertial Switch for Military Applications Hyo-Nam Lee 1, Seung-Gyo Jang 1, *, Sungryeol Lee 2, Jeong-Sun Lee 2 and Young-Suk Hwang 2 1 Agency for Defence Development, Daejeon, Korea; lhn4577@add.re.kr

More information

PHY 114 Summer 2009 Final Exam Solutions

PHY 114 Summer 2009 Final Exam Solutions PHY 4 Summer 009 Final Exam Solutions Conceptual Question : A spherical rubber balloon has a charge uniformly istribute over its surface As the balloon is inflate, how oes the electric fiel E vary (a)

More information

An inductance lookup table application for analysis of reluctance stepper motor model

An inductance lookup table application for analysis of reluctance stepper motor model ARCHIVES OF ELECTRICAL ENGINEERING VOL. 60(), pp. 5- (0) DOI 0.478/ v07-0-000-y An inuctance lookup table application for analysis of reluctance stepper motor moel JAKUB BERNAT, JAKUB KOŁOTA, SŁAWOMIR

More information

A-level PHYSICS A PHYA4/1. Unit 4 Fields and Further Mechanics. Section A. Monday 20 June 2016 Morning

A-level PHYSICS A PHYA4/1. Unit 4 Fields and Further Mechanics. Section A. Monday 20 June 2016 Morning Please write clearly in block capitals. entre number aniate number Surname Forename(s) aniate signature -level PHYSIS Unit 4 Fiels an Further Mechanics Section Monay 20 June 2016 Morning Materials In aition

More information

Introduction Basic principles Finite element formulation Nonlinear algorithms Validation & examples Oofelie::MEMS, driven by SAMCEF Field Perspectives

Introduction Basic principles Finite element formulation Nonlinear algorithms Validation & examples Oofelie::MEMS, driven by SAMCEF Field Perspectives Non linear behavior of electrostatically actuate micro-structures Dr. Ir. Stéphane Paquay, Open Engineering SA Dr. Ir. Véronique Rochus, ULg (LTAS-VIS) Dr. Ir. Stefanie Gutschmit, ULg (LTAS-VIS) Outline

More information

Capacitive Sensor Interfaces

Capacitive Sensor Interfaces Capacitive Sensor Interfaces Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Capacitive Sensor Interfaces 1996

More information

Development and Characterization of High Frequency Bulk Mode Resonators

Development and Characterization of High Frequency Bulk Mode Resonators Excerpt from the Proceedings of the COMSOL Conference 008 Hannover Development and Characterization of High Frequency Bulk Mode Resonators Hossein Pakdast 1*, Zachary James Davis 1 1 DTU Nanotech, Technical

More information

Optimum design of tuned mass damper systems for seismic structures

Optimum design of tuned mass damper systems for seismic structures Earthquake Resistant Engineering Structures VII 175 Optimum esign of tune mass amper systems for seismic structures I. Abulsalam, M. Al-Janabi & M. G. Al-Taweel Department of Civil Engineering, Faculty

More information

New Zealand Institute of Physics

New Zealand Institute of Physics New Zealan Institute of Physics ASSESSMENT SCHEDULE Physics Level 2 90258 v2 Demonstrate unerstaning of physics in an integrate context Note: Minor computational errors will not be penalise. A wrong answer

More information

EECS C245 ME C218 Midterm Exam

EECS C245 ME C218 Midterm Exam University of California at Berkeley College of Engineering EECS C245 ME C218 Midterm Eam Fall 2003 Prof. Roger T. Howe October 15, 2003 Dr. Thara Srinivasan Guidelines Your name: SOLUTIONS Circle your

More information

Sensors & Transducers 2016 by IFSA Publishing, S. L.

Sensors & Transducers 2016 by IFSA Publishing, S. L. Sensors & Transducers, Vol. 96, Issue, January 206, pp. 52-56 Sensors & Transducers 206 by IFSA Publishing, S. L. http://www.sensorsportal.com Collapse Mode Characteristics of Parallel Plate Ultrasonic

More information

Four Degrees-of-Freedom Micromachined Gyroscope

Four Degrees-of-Freedom Micromachined Gyroscope Microsystems Laboratory Technical Report Four Degrees-of-Freedom Micromachined Gyroscope Cenk Acar 23 October 2001 Technical Report No: MSL-01003 cfl2001 Cenk Acar Contents Contents List of Figures Abstract

More information

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS JYH-CHENG YU and FU-HSIN LAI Department of Mechanical Engineering National Taiwan University of Science and Technology

More information

Simple piezoresistive accelerometer

Simple piezoresistive accelerometer Simple piezoresistive pressure sensor Simple piezoresistive accelerometer Simple capacitive accelerometer Cap wafer C(x)=C(x(a)) Cap wafer may be micromachined silicon, pyrex, Serves as over-range protection,

More information

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21 Large amping in a structural material may be either esirable or unesirable, epening on the engineering application at han. For example, amping is a esirable property to the esigner concerne with limiting

More information

Electronic Devices and Circuit Theory

Electronic Devices and Circuit Theory Instructor s Resource Manual to accompany Electronic Devices an Circuit Theory Tenth Eition Robert L. Boylesta Louis Nashelsky Upper Sale River, New Jersey Columbus, Ohio Copyright 2009 by Pearson Eucation,

More information

Accelerometer Theory & Design

Accelerometer Theory & Design 11 Chapter 2 Accelerometer Theory & Design 2.1 Introduction An accelerometer is a sensor that measures the physical acceleration experienced by an object due to inertial forces or due to mechanical excitation.

More information

Dept. of Electrical & Computer Engineering, Dept. of Mechanical Engineering University of Bridgeport, Bridgeport, CT /08/2015

Dept. of Electrical & Computer Engineering, Dept. of Mechanical Engineering University of Bridgeport, Bridgeport, CT /08/2015 Design and Analysis of Three DOF Piezoelectric Vibration Energy Harvester Ravi Teja Purra Reddy, Xingguo Xiong, Junling Hu Dept. of Electrical & Computer Engineering, Dept. of Mechanical Engineering University

More information

20 MHz Free-Free Beam Microelectromechanical Filter with High Quality Factor

20 MHz Free-Free Beam Microelectromechanical Filter with High Quality Factor 20 MHz Free-Free Beam Microelectromechanical Filter with High Quality Factor Group 4 Yang Lu 1, Tianfeng Lu 1, Han Wang 2, Zichen Tang 2 1 Department of Material Science and Engineering 2 Department of

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

Tunable MEMS Capacitor for RF Applications

Tunable MEMS Capacitor for RF Applications Tunable MEMS Capacitor for RF Applications Shriram H S *1, Tushar Nimje 1, Dhruv Vakharia 1 1 BITS Pilani, Rajasthan, India *1167, 1 st Main, 2 nd Block, BEL Layout, Vidyaranyapura, Bangalore 560097; email:

More information

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE ELECTRIC CHARGE Introuction: Orinary matter consists of atoms. Each atom consists of a nucleus, consisting of protons an neutrons, surroune by a number of electrons. In electricity, the electric charge

More information

Static Equilibrium. Theory: The conditions for the mechanical equilibrium of a rigid body are (a) (b)

Static Equilibrium. Theory: The conditions for the mechanical equilibrium of a rigid body are (a) (b) LPC Physics A 00 Las Positas College, Physics Department Staff Purpose: To etermine that, for a boy in equilibrium, the following are true: The sum of the torques about any point is zero The sum of forces

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 22: Capacitive

More information

Static temperature analysis and compensation of MEMS gyroscopes

Static temperature analysis and compensation of MEMS gyroscopes Int. J. Metrol. Qual. Eng. 4, 209 214 (2013) c EDP Sciences 2014 DOI: 10.1051/ijmqe/2013059 Static temperature analysis and compensation of MEMS gyroscopes Q.J. Tang 1,2,X.J.Wang 1,Q.P.Yang 2,andC.Z.Liu

More information

874. The squeeze film effect on micro-electromechanical resonators

874. The squeeze film effect on micro-electromechanical resonators 874. The squeeze film effect on micro-electromechanical resonators Shih-Chieh Sun 1, Chi-Wei Chung, Chao-Ming Hsu 3, Jao-Hwa Kuang 4 1,, 4 Department of Mechanical and Electromechanical Engineering National

More information

UNIT 4:Capacitors and Dielectric

UNIT 4:Capacitors and Dielectric UNIT 4:apacitors an Dielectric SF7 4. apacitor A capacitor is a evice that is capable of storing electric charges or electric potential energy. It is consist of two conucting plates separate by a small

More information

System Modeling of MEMS Gyroscopes

System Modeling of MEMS Gyroscopes Proceeings of the 5th Meiterranean Conference on Control & Automation, Jul 7-9, 7, Athens - Greece T-7 Sstem Moeling of MEMS Groscopes Ramar Rashe an H. Momeni* * Tarbiat Moares Universit, Facult of Engineering,

More information

Experimental Robustness Study of a Second-Order Sliding Mode Controller

Experimental Robustness Study of a Second-Order Sliding Mode Controller Experimental Robustness Stuy of a Secon-Orer Sliing Moe Controller Anré Blom, Bram e Jager Einhoven University of Technology Department of Mechanical Engineering P.O. Box 513, 5600 MB Einhoven, The Netherlans

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6- Transduction Based on Changes in the Energy Stored in an Electrical Field Actuator Examples Microgrippers Normal force driving In-plane force driving» Comb-drive device F = εav d 1 ε oε F rwv

More information

Design of Electrostatic Actuators for MOEMS Applications

Design of Electrostatic Actuators for MOEMS Applications Design of Electrostatic Actuators for MOEMS Applications Dooyoung Hah 1,, Hiroshi Toshiyoshi 1,3, and Ming C. Wu 1 1 Department of Electrical Engineering, University of California, Los Angeles Box 951594,

More information

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Progress In Electromagnetics Research M, Vol. 34, 171 179, 2014 Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Parsa Pirouznia * and Bahram Azizollah Ganji Abstract

More information

NONLINEAR ANALYSIS OF PULL IN VOLTAGE IN MICRO- CANTILEVER BEAM

NONLINEAR ANALYSIS OF PULL IN VOLTAGE IN MICRO- CANTILEVER BEAM International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 011-4 November 011, Montreal, Quebec, Canada NONLINEAR ANALYSIS OF PULL IN VOLTAGE IN MICRO- CANTILEVER BEAM

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Moule 2 DC Circuit Lesson 9 Analysis of c resistive network in presence of one non-linear element Objectives To unerstan the volt (V ) ampere ( A ) characteristics of linear an nonlinear elements. Concept

More information

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané Stresa, Italy, 5-7 April 007 MODELING OF T-SHAPED MICROCANTILEVER RESONATORS Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Centro Nacional de Microelectrónica

More information

Possible Design Modification for Capacitive Type MEMS Accelerometer

Possible Design Modification for Capacitive Type MEMS Accelerometer Possible Design Modification for Capacitive Type MEMS Accelerometer Dr. Jyoti K. Sinha School of Mechanical, Aerospace and Civil Engineering Manchester University Abstract: Dr. Ramadan E. Gennish Department

More information

19. Capacitive Accelerometers : A Case Study. 19. Capacitive Accelerometers : A Case Study. Introduction. Introduction (ctnd.)

19. Capacitive Accelerometers : A Case Study. 19. Capacitive Accelerometers : A Case Study. Introduction. Introduction (ctnd.) 19 Capacitive Accelerometers : A Case Study 19 Capacitive Accelerometers : A Case Study Fundamentals of Quasi-Static Accelerometers Position Measurement with Capacitance Capacitive Accelerometer Case Study

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

Week 8 Lecture: Concepts of Quantum Field Theory (QFT) Klein-Gordon Green s Functions and Raising/Lowering Operators

Week 8 Lecture: Concepts of Quantum Field Theory (QFT) Klein-Gordon Green s Functions and Raising/Lowering Operators Week 8 Lecture: Concepts of Quantum Fiel Theory (QFT) Anrew Forrester February 29, 2008 Klein-Goron Green s Functions an aising/lowering Operators This Week s Questions How o the Green s functions of the

More information

Capacitive MEMS Accelerometer Based on Silicon-on-Insulator Technology: Design, Simulation and Radiation Affect

Capacitive MEMS Accelerometer Based on Silicon-on-Insulator Technology: Design, Simulation and Radiation Affect Capacitive MEMS Accelerometer Based on Silicon-on-Insulator Technology: Design, Simulation and Radiation Affect Abdelhameed E. Sharaf Radiation Engineering Dept., National Center for Radiation Research

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 Chapter 31: RLC Circuits PHY049: Chapter 31 1 LC Oscillations Conservation of energy Topics Dampe oscillations in RLC circuits Energy loss AC current RMS quantities Force oscillations Resistance, reactance,

More information

Maxwell s Equations 5/9/2016. EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations for static fields. Review Electrostatics and Magnetostatics

Maxwell s Equations 5/9/2016. EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations for static fields. Review Electrostatics and Magnetostatics Generate by Foxit PDF Creator Foxit oftware 5/9/216 3332 lectromagnetic II Chapter 9 Maxwell s quations Islamic University of Gaza lectrical ngineering Department Prof. Dr. Hala J l-khozonar 216 1 2 Review

More information

PIEZOELECTRIC TECHNOLOGY PRIMER

PIEZOELECTRIC TECHNOLOGY PRIMER PIEZOELECTRIC TECHNOLOGY PRIMER James R. Phillips Sr. Member of Technical Staff CTS Wireless Components 4800 Alameda Blvd. N.E. Albuquerque, New Mexico 87113 Piezoelectricity The piezoelectric effect is

More information

Development of the 3-axis Angular Velocity Sensor Using a Piezoelectric Element

Development of the 3-axis Angular Velocity Sensor Using a Piezoelectric Element Development of the 3-axis Angular Velocity Sensor Using a Piezoelectric Element Kazuhiro Okada Tetsuya Kakutani Yoshiyuki Matsu Member Non-member Non-member Paper Operation of objects in 3-dimensional

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 17: Energy

More information

3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects IOP Conference Series: Materials Science an Engineering 3-D FEM Moeling of fiber/matrix interface eboning in UD composites incluing surface effects To cite this article: A Pupurs an J Varna 2012 IOP Conf.

More information

DESIGN AND SIMULATION OF ACCELEROMETER SPRINGS

DESIGN AND SIMULATION OF ACCELEROMETER SPRINGS DESIGN AND SIMULATION OF ACCELEROMETER SPRINGS Marin Hristov Hristov 1, Kiril Toshkov Toshev 1, Krasimir Hristov Denishev 1, Vladimir Emilov Grozdanov 2, Dobromir Georgiev Gaydazhiev 2 1 Department of

More information