NONLINEAR ANALYSIS OF PULL IN VOLTAGE IN MICRO- CANTILEVER BEAM

Size: px
Start display at page:

Download "NONLINEAR ANALYSIS OF PULL IN VOLTAGE IN MICRO- CANTILEVER BEAM"

Transcription

1 International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada November 011, Montreal, Quebec, Canada NONLINEAR ANALYSIS OF PULL IN VOLTAGE IN MICRO- CANTILEVER BEAM M. Amin Changizi 1, Armin Hadadian, Ion Stiharu 3 1 Ph.D. Candidate, Concordia University, mo_chang@encs.concordia.ca MSc. Student, Concorida University, a_hadad@encs.concordia.ca 3 Professor of Mechanical and Industrial Engineering, Concordia University, istih@encs.concordia.ca ABSTRACT Micro-cantilever beams are structures of great interest in MEMS due to their versatility and simplicity to fabricate. The interest in micro-cantilevers has driven investigations from various perspectives including static and dynamic performances under certain influences such as potential fields. This paper is studying the non-linear differential equation that models the dynamics of a microstructure such a cantilever beam which is subjected to electrostatic field. The model is used to evaluate the critical pull-in voltage. This model is analyzed based on the adopted model of stiffness of the cantilever. The one degree of freedom non-linear differential equation used to model the dynamics of the cantilever subjected to electric field close to snapon is highly stiff and only Isode algorithm was found to yield correct solution to the problem. Isode is equipped with a robust adaptive time step selection mechanism that enables solutions to very stiff problems, as the one under discussion. The equivalent stiffness of the model was considered based on four different models selected from the literature. The stiffness model suitable for the best match in deflection is proved to be different from the model that yields the best match in the resonant frequency. Pull-in voltage is a topic of high interest as most of micro-cantilever like structures operates under electric files. Pull-in voltage has been investigated from the theoretical perspective. Effect of structural damping for large deflection of micro-cantilever beam was studied numerically in this work. Also, effect of different kind of impulse voltages on pulling voltage was studied. A closed from of time response to step voltage for un-damped system was derived and pull in voltage of such system was calculated. At the end, a reduced form of nonlinear ODE that can be used to derive the pull-in voltage is presented. 011 CANSMART CINDE IZFP

2 INTRODUCTION Micro-cantilever beams are structures of great interest in MEMS due to simplicity to fabricate. Various aspects of static and dynamic behaviours of the micro-cantilever beams subjected to potential fields, thermal effects, manufacturing influence, inter-laminar stress, or geometric configuration have been studied. Pull-in voltage represents a topic of high interest in the study of micro beams. It is utilized to identify the performance limits of a micro-cantilever beam with specific geometries. Pull-in voltage indicates where the structures become unstable. At this point, the beam is attracted by the fixed electrode when it reaches a position that corresponds to /3 of the original gap between the beam and the fixed electrode. Due to the operation of micro-cantilever under electric fields theoretical and experimental study of pull-in voltage has been conducted in great number of publications. The pull-in voltage is extracted from the governing differential equation which defines the dynamic of the cantilever beam. Energy method [1,] and Hamiltonian method [3] have been employed to derive the governing equation of deflection for a micro-cantilever beam under electrostatics field. Since the governing equations are nonlinear different approaches have been used to simplify and consequently finding the pull-in voltage. Taylor series are most utilized approach for linearization of the equations [4-8]. Finite Element Method (FEM) is another approach to calculate pull-in voltage of micro-beams [6]. Small deflections were also assumed to determine pull-in voltage and the results of the numerical solution were compared with experimental results [9]. The comparison shows that the longer the cantilever is, the higher the error is. However, the error would be significantly lower when the cantilever is subjected to potentials substantially below of the snap-on voltage [10]. Runge-Kutta algorithm [11] and perturbation method [1] have been employed to solve the Duffing equations derived to model the dynamics of micro-cantilever beam under electrostatic field and harmonic excitation, respectively. Continuum models for small deflection for micro-cantilever beams was studied and Taylor series built as orthogonal functions for linearization of the ODE [13]. Dimensionless continuous beam theory has been utilized to derive the governing equations of dynamic behaviour of the micro-beam [14]. The effect of wih and thickness of the beam on the resonant frequency has been experimentally and theoretically investigated in [15]. GOVERNING EQUATIONS The dynamic behaviour of an electrified micro-beam is modeled by an equivalent lump mass and a spring as shown in Figure CANSMART CINDE IZFP

3 Fig 1. The schematic of a mass-spring damper system of a beam The dynamics of the system in MEMS is defined by the following governing equation as [43]: d y( t) dy( t) f ( t) + ξω n + ωn y( t) = (1) m where y defines the deflection of the beam and f (t) is the electrostatic force which has been introduced as ε 0AV f ( t) = ( g y( t)) () in which ε 0, A, V, g and y(t) are electrical permittivity of air, cross section area, voltage, gap distance and deflection of the beam respectively. ωn and m are used to define the natural frequency and mass of the system, respectively. As a result, the equation (1) can be rewritten as: d y( t) dy( t) ε 0 AV + ξω ( ) n + ωn y t = (3) m( g y( t)) where the initial conditions (initial speed at reference position and time) for this ODE are respectively assumed as follows: = 0 dy y and = v t=0 0 (4) t= 0 This is a nonlinear equation and so far no analytical solution has been proposed to find its answer in a close form. This equation becomes more complicated when one extends it to micro-level dimensions which may result in a stiff ODE. There have been many contributions in the literature to solve this problem by using numerical methods [16-18]. The main contribution of the current paper is solving equation (3) by using Lie symmetry method. In this method, the order of differential equation is reduced by one order. Therefore, instead of solving a second order ODE, a first order ODE is solved that by all means it is easier to treat. With cumbersome mathematical method which is called Lie symmetric one can show that the governing equation (3) is reduced to 011 CANSMART CINDE IZFP

4 dv ε0 AV 3 + ξω nv + ( ωnr ) v = 0 (5) dr m( g r) in which 1 v = (6) dy 1 This is a first order ODE with v(0) = as the initial condition. According the recent v0 investigations there is no one-parameter group that satisfies the symmetric condition of equation (5). It is the reason which there is no closed form analytical solution for this ODE. One can show that there is no transformation of scaling or rotation symmetry for equation (5). This equation has a singularity (where r = g ) and it cannot be integrated in close form. Therefore, the numerical method approach is used to solve it. In equation (5) if we neglect damping term the equation will simplified to: This equation is separable and the solution is: ε 0AV 3 nr v dv + ( ω ) = 0 dr m( g r) (7) v = m( g r) 3 ω r m ω r mg + ε avo c mr + c mg 1 1 (8) 1 where is constant. According to Lie symmetry v = and r = y(t) so: dy( t) 1 m( g y( t)) = dy( t) 3 ω y( t) m ω y( t) mg + εavo c1my ( t) + c1mg (9) and m( g y) t = dy + c 3 (10) ω y m ω y mg + ε avo c1my + c1mg The above integral can be simplified as below: ( )( ) ( ) m(ellipticf j, k d g + EllipticPi j, h, k (e d) t = + c (c e)(c g) (11) 011 CANSMART CINDE IZFP

5 in which g e ( ) 1, c d and e h = k = h j = x g d ( c e) h d x and EllipticF is incomplete elliptic integral of the first kind and EllipticPi is incomplete elliptic integrals of the third kind. Parameters c, d and e are defined as the values of X which are the roots of the following equation (1) ω X m ω X mg + εavo c mx + c mg = (13) As an example of the solution a cantilever beam with length of 00 µm, wih of 0 µm, thickness of µm and the gap is 8 µm is assumed. The deflection of the beam when it is electrified with pull-in voltage and a voltage which is higher than pull-in voltage is determined and plotted in Figure and 3, respectively. Fig. Deflection of the micro cantilever beam versus time when it is electrified with V (pull-in voltage) 011 CANSMART CINDE IZFP

6 Fig 3. Deflection of the micro cantilever beam versus time when it is electrified with V As it can be realized the pull-in voltage in this special case is equal to V. For a voltage higher than the pull-in voltage, the beam shows an unstable behaviour which is correlated to the time when the beam snaps on the bottom electrode. It is important to mentioned that when the operating electrical field is less than pull-in voltage the behaviour of the beam is harmonic. PARAMETRIC STUDY The behaviour of the micro cantilever beam with defined geometry as presented in previous section under different voltages has been conducted as a parametric study. The effect of the variation of electrical voltage in vicinity of the pull-in voltage, on the dynamic behaviour of the beam has been calculated and the results are presented in Figure 4. Fig 4. Dynamic behaviour of the beam exposed to different voltages close to pull-in voltage. 011 CANSMART CINDE IZFP

7 As it can be realized from the Figure 4, the magnitude of the applied voltage has a great effect on the dynamic behaviour of the beam. It can be seen that when the voltage is approaching to the pull-in voltage, a flat region is appeared in the plots which is correlated to saddle point of the equation. CONCLUSION In the present paper the dynamic behaviour of a micro- cantilever under electrical field with voltages close to pull-in voltage was analytically investigated and validated experimentally against literature data. The Lie symmetry method was employed to reduce the order of the ODE and consequently the particular exact solution of the governing equation was presented. The pullin voltage of a beam with a defined geometry was calculated. It was shown that the behaviour of the beam significantly depends on the pull-in voltage. Beams show unstable behaviour when are subjected to a fields created by potentials higher than pull-in voltage. REFERENCES 1. H. Yuh-Chung, "Closed form solutions for the pull-in voltage of micro curled beams subjected to electrostatic loads," Journal of Micromechanics and Microengineering, vol. 16, p. 648, C. o.-k. Chen, H. Lai, and C.-C. Liu, "Application of hybrid differential transformation/finite difference method to nonlinear analysis of micro fixed-fixed beam," Microsystem Technologies, vol. 15, pp , Y. C. Hu, C. M. Chang, and S. C. Huang, "Some design considerations on the electrostatically actuated microstructures," Sensors & Actuators: A. Physical, vol. 11, pp , L. Castaner, A. Rodr guez, J. Pons, and S. D. Senturia, "Pull-in time energy product of electrostatic actuators: comparison of experiments with simulation," Sensors & Actuators: A. Physical, vol. 83, pp , E. K. Chan and R. W. Dutton, "Electrostatic micromechanical actuator with extended range of travel," Journal of microelectromechanical Systems, vol. 9, pp , H. Busta, R. Amantea, D. Furst, J. M. Chen, M. Turowski, and C. Mueller, "A MEMS shield structure for controlling pull-in forces and obtaining increased pull-in voltages," Journal of Micromechanics and Microengineering, vol. 11, pp , Younes, "Investigation of the mechanical behaviors of microbeam-base MEMS devices " in Mechanical Engineerig. vol. M.Sc Blacksburg: Virginia Polytechnic Institute and State University, Y. Zhang and Y.-p. Zhao, "Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading," Sensors and Actuators A: Physical, vol. 17, pp , I. Schiele, J. Huber, B. Hillerich, and F. Kozlowski, "Surface-micromachined electrostatic microrelay," Sensors & Actuators: A. Physical, vol. 66, pp , E. S. Hung and S. D. Senturia, "Extending the travel range of analog-tuned electrostatic actuators," Microelectromechanical Systems, Journal of, vol. 8, pp , X. Wei, C. Anthony, D. Lowe, and M. Ward, "Design and Fabrication of a Nonlinear Micro Impact Oscillator," Procedia Chemistry, vol. 1, pp , CANSMART CINDE IZFP

8 1. W. Zhang, R. Baskaran, and K. L. Turner, "Effect of cubic nonlinearity on autoparametrically amplified resonant MEMS mass sensor," Sensors & Actuators: A. Physical, vol. 10, pp , M. I. Younis, E. M. Abdel-Rahman, and A. Nayfeh, "A reduced-order model for electrically actuated microbeam-based MEMS," Microelectromechanical Systems, Journal of, vol. 1, pp , J. H. Kuang and C. J. Chen, "Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method," Journal of Micromechanics and Microengineering, vol. 14, pp , S. Chowdhury and et al., "A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams," Journal of Micromechanics and Microengineering, vol. 15, p. 756, W. Zhang and G. Meng, "Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS," Sensors & Actuators: A. Physical, vol. 119, pp , W. Thomson, Theory of vibration with applications: Taylor & Francis, S. Pamidighantam, R. Puers, K. Baert, and H. A. C. Tilmans, "Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions," Journal of Micromechanics and Microengineering, vol. 1, pp , CANSMART CINDE IZFP

Nonlinear Analysis of Pull-In Voltage of Twin Micro-Cantilever Beams

Nonlinear Analysis of Pull-In Voltage of Twin Micro-Cantilever Beams Avestia Publishing International Journal of Mechanical Engineering and Mechatronics (IJMEM) Volume 4, Year 017 ISSN: 199-74 DOI: 10.11159/ijmem.017.00 Nonlinear Analysis of Pull-In Voltage of Twin Micro-Cantilever

More information

An Investigation of the Effects of Crack on the Zone of Pull-in Suppression in MicroElectromechanical Systems Using High-Frequency Excitation

An Investigation of the Effects of Crack on the Zone of Pull-in Suppression in MicroElectromechanical Systems Using High-Frequency Excitation AUT Journal of Mechanical Engineering AUT J. Mech. Eng., 1(1) (017) 99-108 DOI: 10.060/mej.016.803 An Investigation of the Effects of Crack on the Zone of Pull-in Suppression in MicroElectromechanical

More information

874. The squeeze film effect on micro-electromechanical resonators

874. The squeeze film effect on micro-electromechanical resonators 874. The squeeze film effect on micro-electromechanical resonators Shih-Chieh Sun 1, Chi-Wei Chung, Chao-Ming Hsu 3, Jao-Hwa Kuang 4 1,, 4 Department of Mechanical and Electromechanical Engineering National

More information

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 77 CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 5.1 INTRODUCTION Fixed guided clamped and cantilever beams have been designed and analyzed using ANSYS and their performance were calculated. Maximum deflection

More information

Proceedings of IMECE' ASME International Mechanical Engineering Congress and Exposition November 5-11, 2005, Orlando, Florida

Proceedings of IMECE' ASME International Mechanical Engineering Congress and Exposition November 5-11, 2005, Orlando, Florida DRAFT Proceedings of IMECE'5 5 ASME International Mechanical Engineering Congress and Exposition November 5-, 5, Orlando, Florida IMECE5-87 RESPONSE OF MEMS DEVICES UNDER SHOCK LOADS Mohammad I. Younis

More information

MICROELECTROMECHANICAL systems (MEMS)

MICROELECTROMECHANICAL systems (MEMS) 144 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 16, NO. 5, OCTOBER 7 Resonant Pull-In Condition in Parallel-Plate Electrostatic Actuators Andreu Fargas-Marques, Jasmina Casals-Terré, and Andrei M.

More information

A Vertical Electrostatic Actuator with Extended Digital Range via Tailored Topology

A Vertical Electrostatic Actuator with Extended Digital Range via Tailored Topology A Vertical Electrostatic Actuator with Extended Digital Range via Tailored Topology Yanhang Zhang and Martin L. Dunn Department of Mechanical Engineering University of Colorado at Boulder Boulder, CO 80309

More information

A LOW VOLTAGE CONTROLLER FOR A CHAOTIC MICRO RESONATOR

A LOW VOLTAGE CONTROLLER FOR A CHAOTIC MICRO RESONATOR Proceedings of DETC2010 2010 Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference August 15 18, 2010, Montreal Quebec,

More information

Nonlinear Dynamic Analysis of Cracked Micro-Beams Below and at the Onset of Dynamic Pull-In Instability

Nonlinear Dynamic Analysis of Cracked Micro-Beams Below and at the Onset of Dynamic Pull-In Instability Journal of Solid Mechanics Vol., No. (8) pp. -3 Nonlinear Dynamic Analysis of Cracked Micro-Beams Below and at the Onset of Dynamic Pull-In Instability R. Hassannejad *, Sh. Amiri Jahed Department of Mechanical

More information

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

Dynamic Characteristics and Vibrational Response of a Capacitive Micro-Phase Shifter

Dynamic Characteristics and Vibrational Response of a Capacitive Micro-Phase Shifter Journal of Solid Mechanics Vol. 3, No. (0) pp. 74-84 Dynamic Characteristics and Vibrational Response of a Capacitive Micro-Phase Shifter M. Fathalilou, M. Sadeghi, S. Afrang, G. Rezazadeh 3,* Mechanical

More information

A Comparison of Pull-in Voltage Calculation Methods for MEMS-Based Electrostatic Actuator Design

A Comparison of Pull-in Voltage Calculation Methods for MEMS-Based Electrostatic Actuator Design A Comparison of Pull-in Voltage Calculation Methods for MEMS-Based Electrostatic Actuator Design Abstract Sazzadur Chowdhury, M. Ahmadi, W. C. Miller Department of Electrical and Computer Engineering University

More information

Nonlinear vibration of an electrostatically actuated microbeam

Nonlinear vibration of an electrostatically actuated microbeam 11 (214) 534-544 Nonlinear vibration of an electrostatically actuated microbeam Abstract In this paper, we have considered a new class of critical technique that called the He s Variational Approach ()

More information

Efficient Multi-Physics Transient Analysis Incorporating Feedback-Dependent Boundary Conditions

Efficient Multi-Physics Transient Analysis Incorporating Feedback-Dependent Boundary Conditions Efficient Multi-Physics Transient Analysis Incorporating Feedback-Dependent Boundary Conditions Balasaheb Kawade, D. H. S. Maithripala, and Jordan M. Berg {b.kawade, sanjeeva.maithripala, jordan.berg}@ttu.edu

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 5 2) 272 27 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: wwwelseviercom/locate/camwa Solution of nonlinear

More information

A new cantilever beam-rigid-body MEMS gyroscope: mathematical model and linear dynamics

A new cantilever beam-rigid-body MEMS gyroscope: mathematical model and linear dynamics Proceedings of the International Conference on Mechanical Engineering and Mechatronics Toronto, Ontario, Canada, August 8-10 2013 Paper No. XXX (The number assigned by the OpenConf System) A new cantilever

More information

Model to Analyze Micro Circular Plate Subjected to Electrostatic Force

Model to Analyze Micro Circular Plate Subjected to Electrostatic Force Sensors & Transducers, Vol. 15, Issue 6, June 1, pp. 19-1 Sensors & Transducers 1 by IFSA http://www.sensorsportal.com Model to Analyze Micro Circular Plate Subjected to Electrostatic Force Cao Tian-Jie

More information

MEMS PARALLEL PLATE ACTUATORS: PULL-IN, PULL-OUT AND OTHER TRANSITIONS

MEMS PARALLEL PLATE ACTUATORS: PULL-IN, PULL-OUT AND OTHER TRANSITIONS MEMS PARALLEL PLATE ACTUATORS: PULL-IN, PULL-OUT AND OTHER TRANSITIONS Subrahmanyam Gorthi, Atanu Mohanty and Anindya Chatterjee* Supercomputer Education and Research Centre, Indian Institute of Science,

More information

An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT)

An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT) An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT) Mosaddequr Rahman, Sazzadur Chowdhury Department of Electrical and Computer Engineering

More information

The Pull-In of Symmetrically and Asymmetrically Driven Microstructures and the Use in DC Voltage References

The Pull-In of Symmetrically and Asymmetrically Driven Microstructures and the Use in DC Voltage References IEEE Instrumentation and Measurement Technology Conference Anchorage, AK, USA, 1-3 May 00 The Pull-In of Symmetrically and Asymmetrically Driven Microstructures and the Use in DC Voltage References L.A.

More information

Microstructure cantilever beam for current measurement

Microstructure cantilever beam for current measurement 264 South African Journal of Science 105 July/August 2009 Research Articles Microstructure cantilever beam for current measurement HAB Mustafa and MTE Khan* Most microelectromechanical systems (MEMS) sensors

More information

sensors ISSN c 2008 by MDPI

sensors ISSN c 2008 by MDPI Sensors 2008, 8, 994-003 sensors ISSN 424-8220 c 2008 by MDPI www.mdpi.org/sensors Full Paper A Perturbation Method for the 3D Finite Element Modeling of Electrostatically Driven MEMS Mohamed Boutaayamou,,

More information

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool Gireesh K C 1, Harisha M 2, Karthick Raj M 3, Karthikkumar M 4, Thenmoli M 5 UG Students, Department

More information

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN03: Modeling, design and analysis Spring 2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture MEMS functional operation Transducer principles Sensor principles Methods

More information

Robust Sliding mode Control for a frequency approximated nonlinear model of a micro cantilever

Robust Sliding mode Control for a frequency approximated nonlinear model of a micro cantilever Robust Sliding mode Control for a frequency approximated nonlinear model of a micro cantilever Marialena Vagia Electrical and Computer Engineering Department, University of Patras,65,Greece(e-mail:mvagia@ece.upatras.gr).

More information

USING ALE-FEM TO SIMULATE THE INSTABILITY OF BEAM-TYPE NANO-ACTUATOR IN THE PRESENCE OF ELECTROSTATIC FIELD AND DISPERSION FORCES *

USING ALE-FEM TO SIMULATE THE INSTABILITY OF BEAM-TYPE NANO-ACTUATOR IN THE PRESENCE OF ELECTROSTATIC FIELD AND DISPERSION FORCES * IJST, Transactions of Mechanical Engineering, Vol. 37, No. M1, pp 1-9 Printed in The Islamic Republic of Iran, 2013 Shiraz University USING ALE-FEM TO SIMULATE THE INSTABILITY OF BEAM-TYPE NANO-ACTUATOR

More information

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load 1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load Nader Mohammadi 1, Mehrdad Nasirshoaibi 2 Department of Mechanical

More information

Natural vibration frequency of classic MEMS structures

Natural vibration frequency of classic MEMS structures Natural vibration frequency of classic MEMS structures Zacarias E. Fabrim PGCIMAT, UFRGS, Porto Alegre, RS, Brazil Wang Chong, Manoel Martín Pérez Reimbold DeTec, UNIJUI, Ijuí, RS, Brazil Abstract This

More information

STATIC AND DYNAMIC ANALYSIS OF A BISTABLE MICRO-ACTUATOR

STATIC AND DYNAMIC ANALYSIS OF A BISTABLE MICRO-ACTUATOR Proceedings of IECE2008 2008 ASE International echanical Engineering Congress and Exposition October-November 31-6, 2008, Boston, A USA IECE2008-67553 STATIC AND DYNAIC ANALYSIS OF A BISTABLE ICRO-ACTUATOR

More information

Analysis of the manufacturing variation in a coupled micro resonators. array based on its designed values and measured eigenfrequencies

Analysis of the manufacturing variation in a coupled micro resonators. array based on its designed values and measured eigenfrequencies Analysis of the manufacturing variation in a coupled micro resonators array based on its designed values and measured eigenfrequencies Xueyong Wei, Nor Hayati Saad and Mike CL Ward School of Mechanical

More information

ACTA TECHNICA NAPOCENSIS

ACTA TECHNICA NAPOCENSIS 599 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA ACTA TECHNICA NAPOCENSIS Series: Applied Mathematics and Mechanics Vol. 55, Issue III, SIZE EFFECT ON THE DYNAMICAL BEHAVIOUR OF ELECTROSTATICALLY ACTUATED MEMS

More information

Modeling and simulation of multiport RF switch

Modeling and simulation of multiport RF switch Journal of Physics: Conference Series Modeling and simulation of multiport RF switch To cite this article: J Vijay et al 006 J. Phys.: Conf. Ser. 4 715 View the article online for updates and enhancements.

More information

A Computational Approach for Pre-Shaping Voltage Commands of Torsional Micromirrors

A Computational Approach for Pre-Shaping Voltage Commands of Torsional Micromirrors Copyright 2009 Tech Science Press CMES, vol.45, no.3, pp.207-225, 2009 A Computational Approach for Pre-Shaping Voltage Commands of Torsional Micromirrors T. Starling 1, M. F. Daqaq 1 and G. Li 1,2 Abstract:

More information

RECENT technological developments have opened

RECENT technological developments have opened JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 5, OCTOBER 2006 1175 Electromechanical Model of Electrically Actuated Narrow Microbeams Romesh C. Batra, ASME, Fellow, Maurizio Porfiri, and Davide

More information

DYNAMIC ANALYSIS OF A DIGITAL MICROMIRROR DEVICE

DYNAMIC ANALYSIS OF A DIGITAL MICROMIRROR DEVICE Proceedings of IMECE ASME International Mechanical Engineering Congress and Exposition November -,, Chicago, Illinois, USA Proceedings of IMECE ASME International Mechanical Engineering Congress and Exposition

More information

Research Article Dynamic Analysis of Cracked Cantilever, Electrostatic Microactuators Using Radial Basis Functions

Research Article Dynamic Analysis of Cracked Cantilever, Electrostatic Microactuators Using Radial Basis Functions Mathematical Problems in Engineering Volume 212, Article ID 865461, 11 pages doi:1.1155/212/865461 Research Article Dynamic Analysis of Cracked Cantilever, Electrostatic Microactuators Using Radial Basis

More information

NONLINEARITY is easily encountered in the resonant

NONLINEARITY is easily encountered in the resonant 122 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 7, NO. 1, MARCH 1998 Nonlinearity and Hysteresis of Resonant Strain Gauges Chengqun Gui, Rob Legtenberg, Harrie A. C. Tilmans, Jan H. J. Fluitman, and

More information

NONLINEAR BEHAVIOR OF A PARAMETRIC RESONANCE-BASED MASS SENSOR

NONLINEAR BEHAVIOR OF A PARAMETRIC RESONANCE-BASED MASS SENSOR Proceedings of IMECE00 ASME International Mechanical Engineering Congress & Exposition November 17-, 00, New Orleans, Louisiana IMECE00-3361 NONLINEAR BEHAVIOR OF A PARAMETRIC RESONANCE-BASED MASS SENSOR

More information

The Influence of Couple Stress Components and Electrostatic Actuation on Free Vibration Characteristics of Thin Micro-Plates

The Influence of Couple Stress Components and Electrostatic Actuation on Free Vibration Characteristics of Thin Micro-Plates MATEC Web of Conferences 5, 0008 (06) DOI: 0.05/ matecconf/0650008 MIMT 06 The Influence of Couple Stress Components and Electrostatic Actuation on Free Vibration Characteristics of Thin Micro-Plates Amir

More information

Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems

Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems Alexey I. Borovkov Eugeny V. Pereyaslavets Igor A. Artamonov Computational Mechanics Laboratory, St.Petersburg State

More information

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting Excerpt from the Proceedings of the COMSOL Conference 29 Milan Thickness Optimization of a Piezoelectric Converter for Energy Harvesting M. Guizzetti* 1, V. Ferrari 1, D. Marioli 1 and T. Zawada 2 1 Dept.

More information

Computer-Aided Generation of Nonlinear Reduced-Order Dynamic Macromodels II: Stress-Stiffened Case

Computer-Aided Generation of Nonlinear Reduced-Order Dynamic Macromodels II: Stress-Stiffened Case 270 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 9, NO. 2, JUNE 2000 Computer-Aided Generation of Nonlinear Reduced-Order Dynamic Macromodels II: Stress-Stiffened Case Jan E. Mehner, Lynn D. Gabbay,

More information

Parametrically Excited Electrostatic MEMS Cantilever Beam with Flexible Support. Mark Pallay, Shahrzad Towfighian

Parametrically Excited Electrostatic MEMS Cantilever Beam with Flexible Support. Mark Pallay, Shahrzad Towfighian Parametrically Excited Electrostatic MEMS Cantilever Beam with Flexible Support Abstract Parametric resonators that show large amplitude of vibration are highly desired for sensing applications. In this

More information

Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration

Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration Arti Arora 1, Himanshu Monga 2, Anil Arora 3 Baddi University of Emerging Science

More information

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic I. Mechanical Measurands: 1. Classification of main types: EE 5344 Introduction MEMS CHAPTER 6 Mechanical Sensors 1. Position Displacement x, θ. Velocity, speed Kinematic dx dθ v =, = ω 3. Acceleration

More information

Design of Electrostatic Actuators for MOEMS Applications

Design of Electrostatic Actuators for MOEMS Applications Design of Electrostatic Actuators for MOEMS Applications Dooyoung Hah 1,, Hiroshi Toshiyoshi 1,3, and Ming C. Wu 1 1 Department of Electrical Engineering, University of California, Los Angeles Box 951594,

More information

Investigation of Size Effect on the Pull-in Instability of Beamtype NEMS under van der Waals Attraction

Investigation of Size Effect on the Pull-in Instability of Beamtype NEMS under van der Waals Attraction Available online at www.sciencedirect.com Procedia Engineering 10 (011) 1718 173 ICM11 Investigation of Size Effect on the Pull-in Instability of Beamtype NEMS under van der Waals Attraction Y. Tadi Beni

More information

Design of a MEMS Capacitive Comb-drive Accelerometer

Design of a MEMS Capacitive Comb-drive Accelerometer Design of a MEMS Capacitive Comb-drive Accelerometer Tolga Kaya* 1, Behrouz Shiari 2, Kevin Petsch 1 and David Yates 2 1 Central Michigan University, 2 University of Michigan * kaya2t@cmich.edu Abstract:

More information

Experimental analysis of spring hardening and softening nonlinearities in. microelectromechanical oscillators. Sarah Johnson

Experimental analysis of spring hardening and softening nonlinearities in. microelectromechanical oscillators. Sarah Johnson Experimental analysis of spring hardening and softening nonlinearities in microelectromechanical oscillators. Sarah Johnson Department of Physics, University of Florida Mentored by Dr. Yoonseok Lee Abstract

More information

Capacitive Sensor Interfaces

Capacitive Sensor Interfaces Capacitive Sensor Interfaces Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Capacitive Sensor Interfaces 1996

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.2, pp ,

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.2, pp , International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.2, pp 678-684, 2014-2015 ICONN 2015 [4 th -6 th Feb 2015] International Conference on Nanoscience and Nanotechnology-2015

More information

Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers

Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers F.J.O. RODRIGUES, L.M. GONÇALVES, J.H. CORREIA, P.M. MENDES University of Minho, Dept. Industrial Electronics,

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 17: Energy

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 22: Capacitive

More information

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS P. MIAO, P. D. MITCHESON, A. S. HOLMES, E. M. YEATMAN, T. C. GREEN AND B. H. STARK Department of Electrical and Electronic Engineering, Imperial

More information

DESIGN AND OPTIMIZATION OF BULK MICROMACHINED ACCELEROMETER FOR SPACE APPLICATIONS

DESIGN AND OPTIMIZATION OF BULK MICROMACHINED ACCELEROMETER FOR SPACE APPLICATIONS INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 4, DECEMBER 008 DESIGN AND OPTIMIZATION OF BULK MICROMACHINED ACCELEROMETER FOR SPACE APPLICATIONS Thampi Paul 1, Jaspreet Singh,

More information

ME 237: Mechanics of Microsystems : Lecture. Modeling Squeeze Film Effects in MEMS

ME 237: Mechanics of Microsystems : Lecture. Modeling Squeeze Film Effects in MEMS ME 237: Mechanics of Microsystems : Lecture Squeeze Film Effects in MEMS Anish Roychowdhury Adviser : Prof Rudra Pratap Department of Mechanical Engineering and Centre for Nano Science and Engineering

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-1 Transduction Based on Changes in the Energy Stored in an Electrical Field Electric Field and Forces Suppose a charged fixed q 1 in a space, an exploring charge q is moving toward the fixed

More information

Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving

Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving Journal of Physics: Conference Series PAPER OPEN ACCESS Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving To cite this article: Y Zhang et al 15 J. Phys.: Conf. Ser. 66 116 Recent

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction MEMS switches and relays have many properties that make them promising candidates to replace conventional relays or solid-state switches in a number of low-power applications. They

More information

Development and Characterization of High Frequency Bulk Mode Resonators

Development and Characterization of High Frequency Bulk Mode Resonators Excerpt from the Proceedings of the COMSOL Conference 008 Hannover Development and Characterization of High Frequency Bulk Mode Resonators Hossein Pakdast 1*, Zachary James Davis 1 1 DTU Nanotech, Technical

More information

MICROELECTROMECHANICAL systems (MEMS) devices

MICROELECTROMECHANICAL systems (MEMS) devices 1334 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL 16, NO 6, DECEMBER 27 Application of the Generalized Differential Quadrature Method to the Study of Pull-In Phenomena of MEMS Switches Hamed Sadeghian,

More information

Introduction Basic principles Finite element formulation Nonlinear algorithms Validation & examples Oofelie::MEMS, driven by SAMCEF Field Perspectives

Introduction Basic principles Finite element formulation Nonlinear algorithms Validation & examples Oofelie::MEMS, driven by SAMCEF Field Perspectives Non linear behavior of electrostatically actuate micro-structures Dr. Ir. Stéphane Paquay, Open Engineering SA Dr. Ir. Véronique Rochus, ULg (LTAS-VIS) Dr. Ir. Stefanie Gutschmit, ULg (LTAS-VIS) Outline

More information

Four Degrees-of-Freedom Micromachined Gyroscope

Four Degrees-of-Freedom Micromachined Gyroscope Microsystems Laboratory Technical Report Four Degrees-of-Freedom Micromachined Gyroscope Cenk Acar 23 October 2001 Technical Report No: MSL-01003 cfl2001 Cenk Acar Contents Contents List of Figures Abstract

More information

Sensors & Transducers 2016 by IFSA Publishing, S. L.

Sensors & Transducers 2016 by IFSA Publishing, S. L. Sensors & Transducers, Vol. 96, Issue, January 206, pp. 52-56 Sensors & Transducers 206 by IFSA Publishing, S. L. http://www.sensorsportal.com Collapse Mode Characteristics of Parallel Plate Ultrasonic

More information

Simple models for piston-type micromirror behavior

Simple models for piston-type micromirror behavior INSTITUTE OFPHYSICS PUBISHING JOURNA OFMICROMECHANICS ANDMICROENGINEERING J. Micromech. Microeng. 6 (6) doi:.88/96-7/6//5 Simple models for piston-type micromirror behavior M H Miller, J A Perrault,GGParker,BPBettig

More information

GENERAL CONTACT AND HYSTERESIS ANALYSIS OF MULTI-DIELECTRIC MEMS DEVICES UNDER THERMAL AND ELECTROSTATIC ACTUATION

GENERAL CONTACT AND HYSTERESIS ANALYSIS OF MULTI-DIELECTRIC MEMS DEVICES UNDER THERMAL AND ELECTROSTATIC ACTUATION GENERAL CONTACT AND HYSTERESIS ANALYSIS OF MULTI-DIELECTRIC MEMS DEVICES UNDER THERMAL AND ELECTROSTATIC ACTUATION Yie He, James Marchetti, Carlos Gallegos IntelliSense Corporation 36 Jonspin Road Wilmington,

More information

Simulating Two-Dimensional Stick-Slip Motion of a Rigid Body using a New Friction Model

Simulating Two-Dimensional Stick-Slip Motion of a Rigid Body using a New Friction Model Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. ICMIE 116 DOI: 10.11159/icmie16.116 Simulating Two-Dimensional

More information

Analysis of pull-in Instability in Cantilever Microbeam

Analysis of pull-in Instability in Cantilever Microbeam Analysis of pull-in Instability in Cantilever Microbeam [1] Gajendra giri National Institute of Technology, Kurukshetra, Hariyana Abstract: We make the static pull-in parameters of electro statically incited

More information

RECENTLY, microelectromechanical oscillators exploiting

RECENTLY, microelectromechanical oscillators exploiting 310 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 16, NO. 2, APRIL 2007 Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators Barry E. DeMartini, Student Member, IEEE, Jeffrey F. Rhoads,

More information

RESONANCE PHENOMENA IN MICRO/NANOELECTROMECHANICAL SYSTEMS ZJAWISKA REZONANSOWE W UKŁADACH MIKRO/NANOELEKTROMECHANICZNCH

RESONANCE PHENOMENA IN MICRO/NANOELECTROMECHANICAL SYSTEMS ZJAWISKA REZONANSOWE W UKŁADACH MIKRO/NANOELEKTROMECHANICZNCH TECHNICL TRNSCTIONS FUNDMENTL SCIENCES CZSOPISMO TECHNICZNE NUKI PODSTWOWE -NP/0 NN FORYŚ*, NDRZEJ S. FORYŚ* RESONNCE PHENOMEN IN MICRO/NNOELECTROMECHNICL SYSTEMS ZJWISK REZONNSOWE W UKŁDCH MIKRO/NNOELEKTROMECHNICZNCH

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

Abstract. 1 Introduction

Abstract. 1 Introduction In R. A. Adey et al., eds., Simulation and Design of Microsystems and Microstructures (Proceedings of the 1st International Conference on Simulation and Design of Microsystems and Microstructures), Computational

More information

Feedback. Joel Voldman* Massachusetts Institute of Technology *(with thanks to SDS)

Feedback. Joel Voldman* Massachusetts Institute of Technology *(with thanks to SDS) Feedback Joel Voldman* Massachusetts Institute of Technology *(with thanks to SDS) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices,

More information

Platform Isolation Using Out-of-plane Compliant Mechanism

Platform Isolation Using Out-of-plane Compliant Mechanism Platform Isolation Using Out-of-plane Compliant Mechanism by Arpys Arevalo PhD Candidate in Electrical Engineering Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) King Abdullah University

More information

HEALTH MONITORING OF PLATE STRUCTURE USING PIEZO ELECTRIC PATCHES AND CURVATURE MODE SHAPE

HEALTH MONITORING OF PLATE STRUCTURE USING PIEZO ELECTRIC PATCHES AND CURVATURE MODE SHAPE ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber J.C. Ji, N. Zhang Faculty of Engineering, University of Technology, Sydney PO Box, Broadway,

More information

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism Simulation of a Micro-Scale Out-of-plane Compliant Mechanism by Arpys Arevalo PhD Candidate in Electrical Engineering Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) King Abdullah

More information

An improved brake squeal source model in the presence of kinematic and friction nonlinearities

An improved brake squeal source model in the presence of kinematic and friction nonlinearities An improved brake squeal source model in the presence of kinematic and friction nonlinearities Osman Taha Sen, Jason T. Dreyer, and Rajendra Singh 3 Department of Mechanical Engineering, Istanbul Technical

More information

Active elastomer components based on dielectric elastomers

Active elastomer components based on dielectric elastomers Gummi Fasern Kunststoffe, 68, No. 6, 2015, pp. 412 415 Active elastomer components based on dielectric elastomers W. Kaal and S. Herold Fraunhofer Institute for Structural Durability and System Reliability

More information

Today s Presentation

Today s Presentation Today s Presentation MEMS Comb Drive Actuator to Vary Tension & Compression of a Resonating Nano-Doubly Clamped Beam for High-Resolution & High Sensitivity Mass Detection Adam Hurst 1 John Regis 1 Chou

More information

Research Article The Effects of Structure Defects on the Performance of a Micro Comb Resonator

Research Article The Effects of Structure Defects on the Performance of a Micro Comb Resonator Mathematical Problems in Engineering Volume 2010, Article ID 726843, 12 pages doi:10.1155/2010/726843 Research Article The Effects of Structure Defects on the Performance of a Micro Comb Resonator D. Guo

More information

MAHDI MOJAHEDI and HAMID MOEENFARD School of Mechanical Engineering Sharif University of Technology, Tehran, Iran

MAHDI MOJAHEDI and HAMID MOEENFARD School of Mechanical Engineering Sharif University of Technology, Tehran, Iran International Journal of Applied Mechanics Vol. 1, No. 2 (2009) 349 365 c Imperial College Press A NEW EFFICIENT APPROACH FOR MODELING AND SIMULATION OF NANO-SWITCHES UNDER THE COMBINED EFFECTS OF INTERMOLECULAR

More information

2D BEAM STEERING USING ELECTROSTATIC AND THERMAL ACTUATION FOR NETWORKED CONTROL ABSTRACT

2D BEAM STEERING USING ELECTROSTATIC AND THERMAL ACTUATION FOR NETWORKED CONTROL ABSTRACT D BEAM STEERING USING ELECTROSTATIC AND THERMAL ACTUATION FOR NETWORKED CONTROL Jitendra Makwana 1, Stephen Phillips 1, Lifeng Wang 1, Nathan Wedge, and Vincenzo Liberatore 1 Department of Electrical Engineering,

More information

α Cubic nonlinearity coefficient. ISSN: x DOI: : /JOEMS

α Cubic nonlinearity coefficient. ISSN: x DOI: : /JOEMS Journal of the Egyptian Mathematical Society Volume (6) - Issue (1) - 018 ISSN: 1110-65x DOI: : 10.1608/JOEMS.018.9468 ENHANCING PD-CONTROLLER EFFICIENCY VIA TIME- DELAYS TO SUPPRESS NONLINEAR SYSTEM OSCILLATIONS

More information

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS JYH-CHENG YU and FU-HSIN LAI Department of Mechanical Engineering National Taiwan University of Science and Technology

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Chapter 2 Nonlinear Modeling of Squeeze-Film Phenomena

Chapter 2 Nonlinear Modeling of Squeeze-Film Phenomena Chapter 2 Nonlinear Modeling of Squeeze-Film Phenomena in Microbeam MEMS Reza N. Jazar Abstract Oscillating microplates attached to microbeams is the main part of many microresonators and micro-electro-mechanical

More information

Design and Simulation of A MEMS Based Horseshoe Shaped Low Current Lorentz Deformable Mirror (LCL-DM).

Design and Simulation of A MEMS Based Horseshoe Shaped Low Current Lorentz Deformable Mirror (LCL-DM). Design and Simulation of A MEMS Based Horseshoe Shaped Low Current Lorentz Deformable Mirror (LCL-DM). Byoungyoul Park 1, Tao Chen 1, Cyrus Shafai 1 1 Electrical and Computer Engineering, University of

More information

Nonlinear Vibration of the Double-Beams Assembly Subjected to A.C. Electrostatic Force

Nonlinear Vibration of the Double-Beams Assembly Subjected to A.C. Electrostatic Force Copyright 21 Tech Science Press CMES, vol.6, no.1, pp.95-114, 21 Nonlinear Vibration of the Double-Beams Assembly Subjected to A.C. Electrostatic Force Shueei-Muh Lin 1 Abstract: In this study, the mathematical

More information

An equivalent-circuit model. systems) electrostatic actuator using open-source. software Qucs

An equivalent-circuit model. systems) electrostatic actuator using open-source. software Qucs An equivalent-circuit model for MEMS electrostatic actuator using open-source software Qucs Makoto Mita 1 and Hiroshi Toshiyoshi 2a) 1 Institute of Space and Astronautical Science (ISAS), The Japan Aerospace

More information

Modeling and Experimentation: Mass-Spring-Damper System Dynamics

Modeling and Experimentation: Mass-Spring-Damper System Dynamics Modeling and Experimentation: Mass-Spring-Damper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters Issued: Wednesday, Nov. 23, 2011. PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 8, 2011, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Studying piezoelastic and piezomagnetoelastic configurations for different excitation frequencies in MEMS energy harvesters

Studying piezoelastic and piezomagnetoelastic configurations for different excitation frequencies in MEMS energy harvesters JCAMECH Vol. 47, No., December 6, pp 4-46 DOI:.59/jcamech.7.495.5 Studying piezoelastic and piezomagnetoelastic configurations for different excitation frequencies in MEMS energy harvesters Saeid Shakki,

More information

ON THE CHAOTIC VIBRATIONS OF ELECTROSTATICALLY ACTUATED ARCH MICRO/NANO RESONATORS: A PARAMETRIC STUDY

ON THE CHAOTIC VIBRATIONS OF ELECTROSTATICALLY ACTUATED ARCH MICRO/NANO RESONATORS: A PARAMETRIC STUDY ON THE CHAOTIC VIBRATIONS OF ELECTROSTATICALLY ACTUATED ARCH MICRO/NANO RESONATORS: A PARAMETRIC STUDY FARID TAJADDODIANFAR School of Mechanical Engineering, College of Engineering, University of Tehran,

More information

Effect of AFM Cantilever Geometry on the DPL Nanomachining process

Effect of AFM Cantilever Geometry on the DPL Nanomachining process Int J Advanced Design and Manufacturing Technology, Vol. 9/ No. 4/ December 2016 75 Effect of AFM Cantilever Geometry on the DPL Nanomachining process A. R. Norouzi Department of New Sciences and Technologies,

More information

arxiv: v1 [physics.app-ph] 26 Sep 2017

arxiv: v1 [physics.app-ph] 26 Sep 2017 ON THE LATERAL INSTABILITY ANALYSIS OF MEMS COMB-DRIVE ELECTROSTATIC TRANSDUCERS Binh Duc Truong Cuong Phu Le and Einar Halvorsen. arxiv:79.877v [physics.app-ph] 6 Sep 7 Keywords: Lateral instability MEMS

More information

Optimizing the Performance of MEMS Electrostatic Comb Drive Actuator with Different Flexure Springs

Optimizing the Performance of MEMS Electrostatic Comb Drive Actuator with Different Flexure Springs Optimizing the Performance of MEMS Electrostatic Comb Drive Actuator with Different Flexure Springs Shefali Gupta 1, Tanu Pahwa 1, Rakesh Narwal 1, B.Prasad 1, Dinesh Kumar 1 1 Electronic Science Department,

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 23: Electrical

More information

PARAMETRIC ANALYSIS ON THE DESIGN OF RF MEMS SERIES SWITCHES

PARAMETRIC ANALYSIS ON THE DESIGN OF RF MEMS SERIES SWITCHES PARAMETRIC ANALYSIS ON THE DESIGN OF RF MEMS SERIES SWITCHES Julio A. Lonac, Prof. Gustavo A. Merletti, PhD student MicroLAB-RF-microwave and MEMS research center of the Universidad Nacional de San Martín,

More information