A mathematical and computational model of necrotizing enterocolitis

Size: px
Start display at page:

Download "A mathematical and computational model of necrotizing enterocolitis"

Transcription

1 A mathematical and computational model of necrotizing enterocolitis Ivan Yotov Department of Mathematics, University of Pittsburgh McGowan Institute Scientific Retreat March 10-12, 2008 Acknowledgment: Gilles Clermont, Joshua Sullivan, and Yoram Vodovotz, University of Pittsburgh; Jeffrey Upperman, University of Southern California. Department of Mathematics, University of Pittsburgh 1

2 Problem Description NEC: lethal gastrointestinal disease in premature infants Risk factors: prematurity, hypoxia, formula feeding, bacterial infection Mathematical and computational model: predict the effect of various risk factors on the outcome of the disease Dynamic effects: inflammatory reactions Spatial effects: 4 compartments: lumen, gut epithelial layer, body tissue, blood epithelial cell migration, diffusion, chemotaxis Department of Mathematics, University of Pittsburgh 2

3 Department of Mathematics, University of Pittsburgh 3

4 System components e c - epithelial cells: barrier to infection b - bacteria: pathogen m - macrophage, N - neutrophil: stationary dormant defense system m a - activated macrophage, N a - activated neutrophil: immune defense c - pro-inflammatory cytokine: response promoter NO - nitric oxide: waste chemical that damages wall integrity ZO1 - tight junction protein: restricts passage through the wall d - damage: measure of tissue damage c a - anti-inflammatory cytokine: response inhibitor Department of Mathematics, University of Pittsburgh 4

5 Inflammatory reactions m + b m a + b m a c + m c + N N a + b N a e c e c NO + ZO1 d + m d + N k bm m a + b macrophage activation k ab m a + c macrophage bacteria destruction k m ac m a + c macrophage cytokine release k cm m a + NO macrophage reaction promotion k cn N a + N neutrophil reaction promotion k N ab N a + c neutrophil bacteria destruction k N ac N a + c neutrophil cytokine release k p 2e c proliferation of epi cells k a apoptosis of epi cells k nz N O tight junction destruction k dm m a macrophage activation from damage k dn N a neutrophil activation from damage Department of Mathematics, University of Pittsburgh 5

6 Spatial modeling x2 x1 Concentration - number of cells per unit volume For each spatial point x, b(x) is the concentration of bacteria at the point x. Diffusion Flux across: D b (b(left) b(right)) Conservation of mass: b(t + dt) b(t) dt flux(x + dx) flux(x) = dx x x + dx Department of Mathematics, University of Pittsburgh 6

7 Partial differential equations e c t + (β(e c)u(e c, b)) = k p e c (1 e c /e max c ) k a (b, c)e c, e 2 c β(e c ) = e 2 c + (e max c e c ) 2, u(e c, b) = α(b) e c b t D b b = k bg b(1 b/b max ) k b b/(1 + b/ɛ) R(c a )(k ab m a b + k Na bn a b) m t = k m0m 0 (1 m/m max ) k m m R(c a )(k bm bm + k cm cm + k dm dm) m a (D ma m a γ 0 m a c γ 1 m a b) t = k m m a + R(c a )(k bm bm + k cm cm + k dm dm) c t D c c = k c c + k ma cm a + k Na cn a +R(c a )(k ab m a b + k Na bn a b k cn cn k cm cm) c a t D Q c a c a = k ca c a + s c + k cnn 1 + Q Department of Mathematics, University of Pittsburgh 7

8 Partial differential equations, cont. NO = k no NO + k cm cm t ZO1 = k zo1 h(e c, e max c, 1/4)ZO1 0 (1 ZO1/ZO1 max ) k nz NO ZO1 t N a (D Na N a γ 2 N a c) = k Na N a + R(c a )(k cn cn + k dn dn) t d t D T q d d = k d (c a )d + k dn x q dn + T q γ 1 >> γ 0, T = R(c a ) = m a + N a 1 + k nc (c a / c a ) 2, Q = m a + N a + k cnd d 1 + k nc (c/ c a ) k nc (c a / c a ) 2, h(a, b, q) = a q a q + (b a) q Department of Mathematics, University of Pittsburgh 8

9 Model domain and initial conditions Lumen b = b 0 Epithelial layer m = m max m a = 0 N a = 0 e c = e c,0 b = 0 c = 0 NO = 0 ZO1 = ZO1 0 Tissue b = 0 c = 0 m = m max m a = 0 N a = 0 NO = 0 Blood b = 0 c = 0 m = m max m a = 0 N = N 0 N a = 0 NO = 0 Department of Mathematics, University of Pittsburgh 9

10 Some features of the model Diffusion coefficients are specified for each components and each layer. Vertical and horizontal diffusion may differ. The epithelial layer permeability depends on the amount of the tight junction protein ZO1. This is modeled by multiplying the vertical diffusion on the interface between the epithelial layer and the tissue by a permeability function, e.g., Db z Db z h(zo1 max ZO1, ZO1 max, 2). Blood/tissue barrier is generally very restrictive unless it is damaged: D z b D z b h(d d max, d max, 2). Epithelial cell migration is modeled via a conservation law with nonlinear flux β(e c )u(e c, b), u(e c, b) = α(b) e c. It is affected by the presence of LPS - endotoxin present in the lumen bacteria: α(b) = γ 3 h(b max b, b max, 1/2) Department of Mathematics, University of Pittsburgh 10

11 Computer simulator Matlab implementation Space-time finite difference discretization on 3D rectangular grids Rates, initial conditions, and other parameters are easy to manipulate Run time graphical user interface Department of Mathematics, University of Pittsburgh 11

12 Graphical user interface Department of Mathematics, University of Pittsburgh 12

13 Simulations: risk factors hypoxia and formula feed Hypoxia is modeled via an initial damage to the intestinal wall Initial condition: small wall damage Initial condition: large wall damage Breast milk effect is modeled via presence of anti-inflammatory cytokines Department of Mathematics, University of Pittsburgh 13

14 Small wall damage, breast milk feed: healthy outcome Department of Mathematics, University of Pittsburgh 14

15 Small wall damage, formula feed: sustained inflammation Department of Mathematics, University of Pittsburgh 15

16 Large wall damage, breast milk feed: approaches recovery Department of Mathematics, University of Pittsburgh 16

17 Large wall damage, formula feed: unhealthy outcome Department of Mathematics, University of Pittsburgh 17

18 Large damage, breast milk with reduced antibacterial effect Department of Mathematics, University of Pittsburgh 18

ANALYSIS OF A PARTIAL DIFFERENTIAL EQUATION MODEL FOR NECROTIZING ENTEROCOLITIS

ANALYSIS OF A PARTIAL DIFFERENTIAL EQUATION MODEL FOR NECROTIZING ENTEROCOLITIS ANALYSIS OF A PARTIAL DIFFERENTIAL EQUATION MODEL FOR NECROTIZING ENTEROCOLITIS by Mark D. Tronzo B.S. in Mechanical Engineering, Geneva College, 1979 B.S. in Mathematics, Geneva College, 1979 M.S. in

More information

Computational model of NOS/TGF- Beta1/Plasmodia System in humans and mosquitoes

Computational model of NOS/TGF- Beta1/Plasmodia System in humans and mosquitoes Computational model of NOS/TGF- Beta1/Plasmodia System in humans and mosquitoes Neil Parikh, Rice University Mentor: G. Bard Ermentrout, University of Pittsburgh Malaria One of the world s top 10 deadliest

More information

Controlling Systemic Inflammation Using NMPC. Using Nonlinear Model Predictive Control with State Estimation

Controlling Systemic Inflammation Using NMPC. Using Nonlinear Model Predictive Control with State Estimation Controlling Systemic Inflammation Using Nonlinear Model Predictive Control with State Estimation Gregory Zitelli, Judy Day July 2013 With generous support from the NSF, Award 1122462 Motivation We re going

More information

Atherosclerosis Initiation Modeled as an Inflammatory Process

Atherosclerosis Initiation Modeled as an Inflammatory Process Math. Model. Nat. Phenom. Vol. 2, No. 2, 2007, pp. 126-141 Atherosclerosis Initiation Modeled as an Inflammatory Process N. El Khatib 1, S. Génieys and V. Volpert Université Lyon 1, Institut Camille Jordan,

More information

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus.

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus. 4.1 Cell biology Cells are the basic unit of all forms of life. In this section we explore how structural differences between types of cells enables them to perform specific functions within the organism.

More information

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus.

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus. 4.1 Cell biology Cells are the basic unit of all forms of life. In this section we explore how structural differences between types of cells enables them to perform specific functions within the organism.

More information

General Model of the Innate Immune Response

General Model of the Innate Immune Response General Model of the Innate Immune Response Katherine Reed, Kathryn Schalla, Souad Sosa, Jackie Tran, Thuy-My Truong, Alicia Prieto Langarica, Betty Scarbrough, Hristo Kojouharov, James Grover Technical

More information

Assessment of toxicological properties and establishment of risk profiles - genotoxic properties of selected spice compounds

Assessment of toxicological properties and establishment of risk profiles - genotoxic properties of selected spice compounds Assessment of toxicological properties and establishment of risk profiles - genotoxic properties of selected spice compounds Frankfurt/Main, September 25 th 212 V.J. Koller 1, V. Auwärter 2, G. Zlabinger

More information

Lecture 3 13/11/2018

Lecture 3 13/11/2018 Lecture 3 13/11/2018 1 Plasma membrane ALL cells have a cell membrane made of proteins and lipids. protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump Lipid bilayer allows water, carbon

More information

THE DYNAMICS OF ACUTE INFLAMMATION

THE DYNAMICS OF ACUTE INFLAMMATION THE DYNAMICS OF ACUTE INFLAMMATION by Rukmini Kumar M.Sc. Physics, Indian Institute of Technology, Madras, 1999 B.Sc. Physics, Stella Maris College, Madras, 1997 Submitted to the Graduate Faculty of the

More information

A Multi-scale Extensive Petri Net Model of Bacterialmacrophage

A Multi-scale Extensive Petri Net Model of Bacterialmacrophage A Multi-scale Extensive Petri Net Model of Bacterialmacrophage Interaction Rafael V. Carvalho Imaging & BioInformatics, Leiden Institute of Advanced Computer Science Introduction - Mycobacterial infection

More information

MATHEMATICAL MODELING OF CHEMICAL SIGNALS IN INFLAMMATORY PATHWAYS. Ian Price. B.A., University of Florida, Submitted to the Graduate Faculty of

MATHEMATICAL MODELING OF CHEMICAL SIGNALS IN INFLAMMATORY PATHWAYS. Ian Price. B.A., University of Florida, Submitted to the Graduate Faculty of MATHEMATICAL MODELING OF CHEMICAL SIGNALS IN INFLAMMATORY PATHWAYS by Ian Price B.A., University of Florida, 2004 Submitted to the Graduate Faculty of The Department of Mathematics in partial fulfillment

More information

Delivery. Delivery Processes. Delivery Processes: Distribution. Ultimate Toxicant

Delivery. Delivery Processes. Delivery Processes: Distribution. Ultimate Toxicant Delivery Ultimate Toxicant The chemical species that reacts with the endogenous target. Toxicity depends on the concentration (dose) of the ultimate toxicant at the target site Delivery Processes Absorption

More information

Life Science FROM MOLECULES TO ORGANISMS: STRUCTURES AND PROCESSES

Life Science FROM MOLECULES TO ORGANISMS: STRUCTURES AND PROCESSES FROM MOLECULES TO ORGANISMS: STRUCTURES AND PROCESSES HS-LS1-1 Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential

More information

Explain your answer:

Explain your answer: Biology Midterm Exam Review Introduction to Biology and the Scientific Method Name: Date: Hour: 1. Biology is the study of: 2. A living thing is called a(n): 3. All organisms are composed of: 4. The smallest

More information

FOR RUMINANTS. kemin.com/guthealth

FOR RUMINANTS. kemin.com/guthealth FOR RUMINANTS kemin.com/guthealth What is CLOSTAT? CLOSTAT contains a proprietary, patented strain of Bacillus subtilis PB6. PB6 is a unique, naturally occurring, spore-forming microorganism. Kemin has

More information

Bacterial Activation of Epithelial Signaling Prof. Alice Prince

Bacterial Activation of Epithelial Signaling Prof. Alice Prince rof. Alice rince Bacterial Activation of Epithelial Signaling rof. Alice rince Columbia University New York, NY 1 Introduction Airway epithelial cells recognize bacterial components in the airway lumen

More information

Unit 1: Cells, Tissues, Organs, and Systems

Unit 1: Cells, Tissues, Organs, and Systems Unit 1: Cells, Tissues, Organs, and Systems Big Ideas The cell is the basic scientific unit of all living things. Cells must interact with the external environment to meet their basic needs. Your health

More information

Under the Radar Screen: How Bugs Trick Our Immune Defenses

Under the Radar Screen: How Bugs Trick Our Immune Defenses Under the Radar Screen: How Bugs Trick Our Immune Defenses Session 2: Phagocytosis Marie-Eve Paquet and Gijsbert Grotenbreg Whitehead Institute for Biomedical Research Salmonella Gram negative bacteria

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11419 Supplementary Figure 1 Schematic representation of innate immune signaling pathways induced by intracellular Salmonella in cultured macrophages. a, During the infection Salmonella

More information

Station 1 Cell Structure and Function

Station 1 Cell Structure and Function Station 1 Cell Structure and Function 1. What is the full name of the organelle that is abbreviated ER? Endoplasmic reticulum 2. What is the function of the ER? To turn DNA (blueprints) into protein (machines

More information

C. Introduction to Multicellularity

C. Introduction to Multicellularity C. Introduction to Multicellularity 1. Regulation of Organism Size by Cell Mass 2. Regulation of Extracellular Structure 3. Regulation of Cell Adhesion 4. Regulation of the Internal Aqueous Environment

More information

Surface Microdischarges and Modeling Wound Healing

Surface Microdischarges and Modeling Wound Healing Surface Microdischarges and Modeling Wound Healing David B. Graves University of California, Berkeley Plasma_to_Plasma 7-10 January 2013 Leiden, Netherlnds Acknowledgements Yuki Sakiyama (UCB Res. Assoc.;

More information

Chronic Granulomatous Disease Medical Management

Chronic Granulomatous Disease Medical Management Chronic Granulomatous Disease Medical Management N I C H O L A S H A R T O G, M D D i r e c t o r o f P e d i a t r i c / A d u l t P r i m a r y I m m u n o d e f i c i e n c y C l i n i c A s s i s t

More information

EE 5345 Biomedical Instrumentation Lecture 12: slides

EE 5345 Biomedical Instrumentation Lecture 12: slides EE 5345 Biomedical Instrumentation Lecture 1: slides 4-6 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: http:// www.seas.smu.edu/~cd/ee5345.html EE

More information

M469, Fall 2010, Practice Problems for the Final

M469, Fall 2010, Practice Problems for the Final M469 Fall 00 Practice Problems for the Final The final exam for M469 will be Friday December 0 3:00-5:00 pm in the usual classroom Blocker 60 The final will cover the following topics from nonlinear systems

More information

Simulating Solid Tumor Growth Using Multigrid Algorithms

Simulating Solid Tumor Growth Using Multigrid Algorithms Simulating Solid Tumor Growth Using Multigrid Algorithms Asia Wyatt Applied Mathematics, Statistics, and Scientific Computation Program Advisor: Doron Levy Department of Mathematics/CSCAMM Abstract In

More information

Membranes 2: Transportation

Membranes 2: Transportation Membranes 2: Transportation Steven E. Massey, Ph.D. Associate Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras Office & Lab: NCN#343B Tel: 787-764-0000 ext. 7798 E-mail:

More information

Simulating Solid Tumor Growth using Multigrid Algorithms

Simulating Solid Tumor Growth using Multigrid Algorithms Simulating Solid Tumor Growth using Multigrid Applied Mathematics, Statistics, and Program Advisor: Doron Levy, PhD Department of Mathematics/CSCAMM University of Maryland, College Park September 30, 2014

More information

Physical Pharmacy. Diffusion

Physical Pharmacy. Diffusion Physical Pharmacy Diffusion Diffusion Diffusion is defined as a process of mass transfer of individual molecules of a substance brought about by random molecular motion and associated with a driving force

More information

Microorganisms Answer Key

Microorganisms Answer Key Microorganisms Answer Key 1. What is NOT a part of the water cycle? a. condensation b. evaporation c. transpiration d. bacteria 2. Unicellular prokaryotes that may be spherical, rod or spiral shaped. a.

More information

OCR Biology Checklist

OCR Biology Checklist Topic 1. Cell level systems Video: Eukaryotic and prokaryotic cells Compare the structure of animal and plant cells. Label typical and atypical prokaryotic cells. Compare prokaryotic and eukaryotic cells.

More information

OCR Biology Checklist

OCR Biology Checklist Topic 1. Cell level systems Video: Eukaryotic and prokaryotic cells Compare the structure of animal and plant cells. Label typical and atypical prokaryotic cells. Compare prokaryotic and eukaryotic cells.

More information

Electron micrograph of the bacteria Escherichia coli AKA..E. coli

Electron micrograph of the bacteria Escherichia coli AKA..E. coli Domain The Domain Bacteria, has a wide variety of single celled organisms. They are often called prokaryotes because they have no nuclei. The term prokaryote comes from the Greek πρό- (pro-) "before" +

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 9 THE CLINICAL SIGNIFICANCE OF BACTERIAL ANATOMY WHY IS THIS IMPORTANT? Bacterial structures play a significant role in the five steps required for infection OVERVIEW The Clinical Signifcance of

More information

How Chemicals Move Into, Around & Out of the Body ENV

How Chemicals Move Into, Around & Out of the Body ENV How Chemicals Move Into, Around & Out of the Body 1 ADME The movement of toxicants into, around and out of the body is commonly referred to as ADME! Absorption! Distribution! Metabolism! Elimination 2

More information

Seminar 2 : Good Bugs

Seminar 2 : Good Bugs Seminar 2 : Good Bugs Part 2 Viruses What is a virus? Microscopic particles that infect other organisms and can only replicate within a host cell Contain either contain DNA or RNA surrounded by a protective

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

A Mathematical Study of Germinal Center Formation

A Mathematical Study of Germinal Center Formation A Mathematical Study of Germinal Center Formation Samantha Erwin Adviser: Dr. Stanca Ciupe Virginia Tech October 1, 2014 Samantha Erwin Modeling Germinal Center Formation 1/19 1 Biology 2 The Model 3 Results

More information

A MATHEMATICAL MODEL OF ACUTE INFLAMMATORY RESPONSE TO ENDOTOXIN CHALLENGE. Anirban Roy. Silvia Daun. Gilles Clermont. Jonathan Rubin.

A MATHEMATICAL MODEL OF ACUTE INFLAMMATORY RESPONSE TO ENDOTOXIN CHALLENGE. Anirban Roy. Silvia Daun. Gilles Clermont. Jonathan Rubin. MATHEMATICAL BIOSCIENCES AND ENGINEERING Volume xx, Number xx, xx 2xx doi:1.3934/mbe.29.xx.xx pp. 1 xx A MATHEMATICAL MODEL OF ACUTE INFLAMMATORY RESPONSE TO ENDOTOXIN CHALLENGE Anirban Roy Department

More information

Georgia Performance Standards Framework for Science GRADE 7

Georgia Performance Standards Framework for Science GRADE 7 The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Stoichiometry Of Tumor Dynamics: Models And Analysis

Stoichiometry Of Tumor Dynamics: Models And Analysis Stoichiometry Of Tumor Dynamics: Models And Analysis Yang Kuang Department of Mathematics and Statistics Arizona State University Supported by NSF grant DMS-0077790 Y. Kuang, J. Nagy and J. Elser: Disc.

More information

Special Session 25: Dynamics in Complex Biological Systems

Special Session 25: Dynamics in Complex Biological Systems SPECIAL SESSION 25 111 Special Session 25: Dynamics in Complex Biological Systems Bijoy K. Ghosh, Texas Tech University, USA Akif Ibraguimov, Texas Tech University, USA Qishao Lu, Beihang University, China

More information

Brief history of life on Earth

Brief history of life on Earth Brief history of life on Earth 4.6 Billion Years ago: Earth forms 3.6 Billion Years ago : First life on the planet (Prokaryotes = Bacteria) 2.8 Billion Years ago : First eukaryotic life (also microbial

More information

Hanoi Open Mathematical Competition 2016

Hanoi Open Mathematical Competition 2016 Hanoi Open Mathematical Competition 2016 Junior Section Saturday, 12 March 2016 08h30-11h30 Question 1. If then m is equal to 2016 = 2 5 + 2 6 + + 2 m, (A): 8 (B): 9 (C): 10 (D): 11 (E): None of the above.

More information

How many lessons is it?

How many lessons is it? Science Unit Learning Summary Content Eukaryotes and Prokaryotes Cells are the basic unit of all life forms. A eukaryotic cell contains genetic material enclosed within a nucleus. Plant and animal cells

More information

Epithelial Polarity. Gerard Apodaca Luciana I. Gallo. Colloquium series on Building BloCks of the Cell: Cell structure and function

Epithelial Polarity. Gerard Apodaca Luciana I. Gallo. Colloquium series on Building BloCks of the Cell: Cell structure and function Colloquium series on Building BloCks of the Cell: Cell structure and function Series Editor: Ivan Robert Nabi Epithelial Polarity Gerard Apodaca Luciana I. Gallo life sciences Morgan & Claypool life SCIEnCES

More information

EE 143 Microfabrication Technology Fall 2014

EE 143 Microfabrication Technology Fall 2014 EE 143 Microfabrication Technology Fall 2014 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 EE 143: Microfabrication

More information

Chapter X. Pathogenic Escherichia coli Kyle S. Enger, MPH

Chapter X. Pathogenic Escherichia coli Kyle S. Enger, MPH Chapter X. Pathogenic Escherichia coli Kyle S. Enger, MPH X.1 Overview Escherichia coli usually exists as a commensal bacterium in the mammalian large intestine, benefiting itself as well as the host.

More information

In vitro the effect of intestinal normal flora on some pathogenic bacteria.

In vitro the effect of intestinal normal flora on some pathogenic bacteria. In vitro the effect of intestinal normal flora on some pathogenic bacteria. Abstract: Dr.abbass shaker Ali adel Leena abd Al-Redha The effect of two types of intestinal bacterial normal floral ( and klebsiella)

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Compartmental modeling

Compartmental modeling Compartmental modeling This is a very short summary of the notes from my two-hour lecture. These notes were not originally meant to be distributed, and so they are far from being complete. A comprehensive

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Module 6 Note Taking Guide. Lesson 6.01:Organization of Life

Module 6 Note Taking Guide. Lesson 6.01:Organization of Life Module 6 Note Taking Guide Lesson 6.01:Organization of Life Lesson Page: Organization of Living Things The smallest level of organization for living things. Example: Oxygen, Hydrogen - A group of atoms

More information

xxvii ABSTRACT OF THE THESIS

xxvii ABSTRACT OF THE THESIS xxvii ABSTRACT F TE TESIS Synthesis, Characterization and Biological Activities f ovel ybrid Molecules Related to Substituted ydrazones, Sulphonamides and Sulphonates of on- Steroidal Anti-Inflammatory

More information

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium point and the model reproduction number Prove the stability

More information

Foundation Cell Biology

Foundation Cell Biology Foundation Cell Biology Electron vs Light Microscope Light use light and lenses to magnify specimen Electron use a beam of electrons to form an image Electron higher magnification and higher resolution

More information

MITOCHONDRIAL BIOGENESIS AND REDOX REGULATION

MITOCHONDRIAL BIOGENESIS AND REDOX REGULATION MITOCHONDRIAL BIOGENESIS AND REDOX Claude A. Piantadosi, MD Professor of Medicine and Pathology Duke University Medical Center Durham, N.C. USA Objectives Provide an overview of the physiological and pathological

More information

AVICENNA INTERNATIONAL COLLEGE

AVICENNA INTERNATIONAL COLLEGE AVICENNA INTERNATIONAL COLLEGE BIOLOGICAL SCIENCES ACADEMIC CALENDAR LECTURE SYLLABUS CELL & MOLECULAR BIOLOGY 1 2 3 4 5 6 7 Characteristics of Living Organisms, Levels of Organization in Biology (Introduction

More information

12/5/2014. The cell cycle and cell death. The cell cycle: cells duplicate their contents and divide

12/5/2014. The cell cycle and cell death. The cell cycle: cells duplicate their contents and divide The cell cycle and cell death The cell cycle: cells duplicate their contents and divide 1 The cell cycle may be divided into 4 phases Eucaryotic cell division: Mitosis (nuclear division) Cytokinesis (cell

More information

VIRULENCE. Vibrio cholerae Yersinia Shigella

VIRULENCE. Vibrio cholerae Yersinia Shigella VIRULENCE How do all the sensing systems we ve looked at so far come together to control the response of a pathogen to its host and what is the response of the host 3 examples Vibrio cholerae Yersinia

More information

Actinobacteria Relative abundance (%) Co-housed CD300f WT. CD300f KO. Colon length (cm) Day 9. Microscopic inflammation score

Actinobacteria Relative abundance (%) Co-housed CD300f WT. CD300f KO. Colon length (cm) Day 9. Microscopic inflammation score y groups y individuals 9 Actinobacteria Relative abundance (%) acteroidetes Cyanobacteria Deferribacteres Firmicutes Proteobacteria TM Tenericutes Unclassified CDf CDf Co-housed CDf Co-housed CDf CDf CDf

More information

Unit 2 Benchmark Review. Disease Review:

Unit 2 Benchmark Review. Disease Review: Match the term with the definition: Unit 2 Benchmark Review Disease Review: 1. Caused by tiny organisms called pathogens B 2. This is responsible for distinguishing between the different kinds of pathogens

More information

Modeling Human Immune Response to the Lyme Disease-Causing Bacteria

Modeling Human Immune Response to the Lyme Disease-Causing Bacteria University of Connecticut DigitalCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-7-2011 Modeling Human Immune Response to the Lyme Disease-Causing Bacteria Yevhen Rutovytskyy University

More information

Plant Pigments Chromatography

Plant Pigments Chromatography Plant Pigments Chromatography Gary Stacey Lab Teacher workshop, March 8, 2014 University of Missouri Division of Plant Sciences Plant pigments Pigments - chemical compounds which reflect only certain

More information

1. Introduction. 2. Model Description and Assumptions

1. Introduction. 2. Model Description and Assumptions Excerpt from the Proceedings of the COMSOL Conference 2010 Boston The Dissolution and Transport of Radionuclides from Used Nuclear Fuel in an Underground Repository Y. Beauregard *1, M. Gobien 2, F. Garisto

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

Intermediate Differential Equations. John A. Burns

Intermediate Differential Equations. John A. Burns Intermediate Differential Equations Delay Differential Equations John A. Burns jaburns@vt.edu Interdisciplinary Center for Applied Mathematics Virginia Polytechnic Institute and State University Blacksburg,

More information

Understanding Cell Motion and Electrotaxis with Computational Methods

Understanding Cell Motion and Electrotaxis with Computational Methods Understanding Cell Motion and Electrotaxis with Computational Methods Blake Cook 15th of February, 2018 Outline 1 Biological context 2 Image analysis 3 Modelling membrane dynamics 4 Discussion Outline

More information

The facts about cells

The facts about cells The facts about cells By Regina Bailey, ThoughtCo.com on 10.18.17 Word Count 867 Level MAX An illustration of cells. Photo from Pixabay. Cells are the fundamental units of life. Whether they be unicellular

More information

Do we understand how pinewood nematode kills trees? Some hypotheses

Do we understand how pinewood nematode kills trees? Some hypotheses Do we understand how pinewood nematode kills trees? Some hypotheses Hugh Evans, Sam Evans & Makihiko Ikegami Forest Research, the research agency of the Forestry Commission, UK Adults emerge carrying nematodes

More information

How the host sees and responds to pathogens

How the host sees and responds to pathogens How the host sees and responds to pathogens David A. Relman, Stanford University IOM Forum on Microbial Threats March 17, 2005 Issues Pathogens and commensals: conserved patterns and pathways Sources of

More information

Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College

Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College Chapter 3: Cells Lectures by Mark Manteuffel, St. Louis Community College Learning Objectives Be able to describe: what a cell is & two main classes of cells. structure & functions of cell membranes. how

More information

Cellular Biology. Cells: theory, types, form & function, evolution

Cellular Biology. Cells: theory, types, form & function, evolution Cellular Biology Cells: theory, types, form & function, evolution The Cell Theory Problems with the Cell Theory? The cell theory has three components: 1. all living organisms are made up of one or more

More information

Applications of Latin Hypercube Sampling Scheme and Partial Rank Correlation Coefficient Analysis to Mathematical Models on Wound Healing

Applications of Latin Hypercube Sampling Scheme and Partial Rank Correlation Coefficient Analysis to Mathematical Models on Wound Healing Western Kentucky University TopSCHOLAR Honors College Capstone Experience/Thesis Projects Honors College at WKU 5-13-215 Applications of Latin Hypercube Sampling Scheme and Partial Rank Correlation Coefficient

More information

Statistical Investigation Worksheet IRON DATA

Statistical Investigation Worksheet IRON DATA Statistical Investigation Worksheet IRON DATA This activity arises out of information gleaned from a video interview with Elaine Ferguson: Is iron deficiency common among NZ infants and toddlers? http://www.maths.otago.ac.nz/video/statistics/iron/index.html

More information

Year 09 Science Learning Cycle 5 Overview

Year 09 Science Learning Cycle 5 Overview e Year 09 Science Learning Cycle 5 Overview Learning Cycle Overview: Biology How do we keep your body healthy L01 4.3.1.1 Communicable (infectious) disease L02 4.3.1.2 Viral diseases L03 4.3.1.3 Bacterial

More information

Lecture 5: Uptake, metabolism and excretion of xenobiotics

Lecture 5: Uptake, metabolism and excretion of xenobiotics Environmental issues and hazards in the chemical research laboratory Lecture 5: Uptake, metabolism and excretion of xenobiotics Ulf Ellervik Lecture 5 - outline 1. Introduction 2. Uptake of chemicals 3.

More information

Departmental Curriculum Planning

Departmental Curriculum Planning Department: Btec Subject: Biology Key Stage: 4 Year Group: 10 Learning aim A: Investigate the relationships that different organisms have with each other and with their environment Learning aim B: Demonstrate

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

Cell Biology. AQA Biology topic 1

Cell Biology. AQA Biology topic 1 Cell Biology AQA Biology topic 1 1.1 Cell Structure Plant and Animal cells (eukaryotic cells) Eukaryotic cells have these features: 1) Cytoplasm 2) Genetic material within a nucleus 3) Cell Membrane Typical

More information

Today. Introduction to Differential Equations. Linear DE ( y = ky ) Nonlinear DE (e.g. y = y (1-y) ) Qualitative analysis (phase line)

Today. Introduction to Differential Equations. Linear DE ( y = ky ) Nonlinear DE (e.g. y = y (1-y) ) Qualitative analysis (phase line) Today Introduction to Differential Equations Linear DE ( y = ky ) Nonlinear DE (e.g. y = y (1-y) ) Qualitative analysis (phase line) Differential equations (DE) Carbon dating: The amount of Carbon-14 in

More information

1- What are rod-shaped bacteria called? A. cocci B. bacilli C. spirilla D. halophiles

1- What are rod-shaped bacteria called? A. cocci B. bacilli C. spirilla D. halophiles Question 1: Multiple Choice (20 Marks) 1- What are rod-shaped bacteria called? A. cocci B. bacilli C. spirilla D. halophiles 2- The eukaryotic nucleus houses all of the following except the A. RNA B. DNA

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

1- Which of the following molecules stores hereditary information? A. ATP B. DNA C. protein D. carbohydrates

1- Which of the following molecules stores hereditary information? A. ATP B. DNA C. protein D. carbohydrates Question 1: Multiple Choice (20 Marks) 1- Which of the following molecules stores hereditary information? A. ATP B. DNA C. protein D. carbohydrates 2- What is the name of the molecule in plants that stores

More information

Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927)

Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927) NCEA Level 1 Biology (90927) 2016 page 1 of 5 Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927) Evidence Statement Question One No response

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1. The inflammatory response in the mammalian gut leads to tetrathionate generation.

Nature Biotechnology: doi: /nbt Supplementary Figure 1. The inflammatory response in the mammalian gut leads to tetrathionate generation. Supplementary Figure 1 The inflammatory response in the mammalian gut leads to tetrathionate generation. Cytokine signaling following an inflammatory insult leads to, among other responses, release of

More information

Line. Chickens. Health. Program. Nutrition. Program. SILO patented 1-Monoglycerides from C1 to C7 for treating animals. Patent n.

Line. Chickens. Health. Program. Nutrition. Program. SILO patented 1-Monoglycerides from C1 to C7 for treating animals. Patent n. Chickens Line N Health Program H Nutrition Program SILO patented 1-Monoglycerides from C1 to C7 for treating animals Patent n. EP 2 410 871 B1 USAGE SILOhealth is a synergistic combination of short, medium

More information

Adaptive modeling of biochemical pathways

Adaptive modeling of biochemical pathways Adaptive modeling of biochemical pathways R.Brause J.W.G.University, Frankfurt, Germany Brause@cs.uni-frankfurt.de Abstract In bioinformatics, biochemical pathways can be modeled by many differential equations.

More information

Bangor School Department Grade 7 Science

Bangor School Department Grade 7 Science Bangor School Department Grade 7 Science Teacher: School: NOTE: This record of assessments must be submitted to the Assistant Superintendent s Office by end of the school year. Date: 4 = Exceeds 3 = Meets

More information

Kernel-based Characterization of Dynamics in a Heterogeneous Population of Septic Patients Under Therapy

Kernel-based Characterization of Dynamics in a Heterogeneous Population of Septic Patients Under Therapy Kernel-based Characterization of Dynamics in a Heterogeneous Population of Septic Patients Under Therapy Kosta Ristovski a* kosta.ristovski@temple.edu Vladan Radosavljevic a* vladan@temple.edu Zoran Obradovic

More information

Supplemental table S7.

Supplemental table S7. Supplemental table S7. GO terms significantly enriched in significantly up-regulated genes of the microarray. K: number of genes from the input cluster in the given category. F: number of total genes in

More information

Animal Cell Organelles. Plant Cell. Organelle. Cell Wall. Chloroplasts. Vacuole

Animal Cell Organelles. Plant Cell. Organelle. Cell Wall. Chloroplasts. Vacuole Cell Biology Higher Electron vs Light Microscope Light use light and lenses to magnify specimen Electron use a beam of electrons to form an image Electron higher magnification and higher resolution Electron

More information

Jordan University of Science & Technology. Faculty of Arts and Sciences. Department of Applied Biological Sciences

Jordan University of Science & Technology. Faculty of Arts and Sciences. Department of Applied Biological Sciences Jordan University of Science & Technology Faculty of Arts and Sciences Department of Applied Biological Sciences Course Title Title & Instructor General Biology Course Number BIO 104 Instructor Office

More information

Unit 1 Cell Biology Topic 1: Cell Structure

Unit 1 Cell Biology Topic 1: Cell Structure Unit 1 Cell Biology Topic 1: Cell Structure Lesson 1.1.1 I will know I am successful if I can: 1. Label all parts of plant and animal cells and state their functions 2. State the differences between plant

More information

Universidad Nacional de Córdoba CIEM-CONICET, Argentina

Universidad Nacional de Córdoba CIEM-CONICET, Argentina Selçuk J. Appl. Math. Vol. 10. No. 1. pp. 147-155, 2009 Selçuk Journal of Applied Mathematics A Simple Discrete Model for the Growth Tumor Andrés Barrea, Cristina Turner Universidad Nacional de Córdoba

More information

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab 5: Introduction to Statistics

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab 5: Introduction to Statistics BIOE 98MI Biomedical Data Analysis. Spring Semester 209. Lab 5: Introduction to Statistics A. Review: Ensemble and Sample Statistics The normal probability density function (pdf) from which random samples

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

7th Grade Life Science Grade Remediation Packet

7th Grade Life Science Grade Remediation Packet 7th Grade Life Science Grade Remediation Packet Purpose of this packet If you have received this packet it is because you are currently or in jeopardy of failing this class. This is not a punishment, but

More information

Simplicity is Complexity in Masquerade. Michael A. Savageau The University of California, Davis July 2004

Simplicity is Complexity in Masquerade. Michael A. Savageau The University of California, Davis July 2004 Simplicity is Complexity in Masquerade Michael A. Savageau The University of California, Davis July 2004 Complexity is Not Simplicity in Masquerade -- E. Yates Simplicity is Complexity in Masquerade One

More information