Kriging and Alternatives in Computer Experiments

Size: px
Start display at page:

Download "Kriging and Alternatives in Computer Experiments"

Transcription

1 Kriging and Alternatives in Computer Experiments C. F. Jeff Wu ISyE, Georgia Institute of Technology Use kriging to build meta models in computer experiments, a brief review Numerical problems with kriging Alternatives to kriging: Regularized kriging, Hybrid kriging Overcomplete basis surrogate model (OBSM) 1

2 2

3 3

4 4

5 Kriging Models Ordinary Kriging Y( x) = μ + Z( x) Correlation function ( 2 ) ( 2 ) n σ ϕ σ ϕ Z( x)~ N 0, ( h) GP 0, ( h) ϕ ( 0) = 1 ϕ( h) = ϕ( h), (symmetric function) ϕ is a positive semi definite function 5

6 Matérn Correlation function 1 ϕ ( h ) = 2 νθ 2 1 ( )2 h K νθ h Γ ν ν K ν ( ) ν ( ) ν where is the modified Bessel function of order ν 2 ν, ϕ ( h ) exp( θh ) Power exponential correlation ( q ) ϕ ( h ) = exp θ h, 0 < q 2, 0 < θ q =2 Gaussian correlation function (infinitely differentiate) q =1 Ornstein Uhlenbeck process (ν = 1 in Matern) Linear, Cubic correlation 6

7 Kriging predictor Best Linear Unbiased Predictor (BLUP),, ) y ( x ) i = y i, an interpolating property* *required for deterministic simulations 7

8 Recent work in kriging Calibration of computer model, Kriging with calibration parameters (Kennedy O Hagan, 2001), with tuning parameters (Santner et al., 2009) Computer simulations with different levels of accuracy (Kennedy O Hagan,2000; Qian et al., 2006; Qian Wu, 2008) construction of nestedspace filling space (e.g., Latin hypercube) designs (Qian Ai Wu, 2009, various papers pp by Qian and others, 2009 date) 8

9 Recent work in kriging (cont.) Kriging gfor multiple utpeoutputs and functional cto response (Conti et al., 2009; Conti and O Hagan, 2010) Treed Gaussian Process model (Gramacy and Lee, 2008). Kriging (i.e., GP model) with quantitative and qualitative factors (Qian Wu Wu, 2008, Han et al., 2009) construction of sliced space filling (e.g., Latin hypercube) designs (Qian Wu Wu, 2009, Qian, 2010) 9

10 Maximum Likelihood Estimation Profile log likelihood likelihood approach 10

11 Numerical Instability in R 1 (θ) R(θ) is an nxn matrix, n=sample l size Its condition number (max e.v./min e.v.) as I. Sample size n II. Dimension of input vectors (Peng Wu, 2010) 11

12 Branin function (Andre, Siarry and Dognon, 2001) 12

13 Log likelihood function 2 (Regular grid: n = 7 2 ) 13

14 Regularized Kriging Introducing a regularizing constant λ into the predictor Peng and Wu (2010, submitted) Similar modification in estimation: maximizing a regularized likelihood 14

15 Kriging with nugget effects Model from spatial statistics BLUP 15

16 Algorithm (Ridge Trace) Root Mean Squared Prediction Error (RMSPE) N 1 RMSPE = ( Y( x ) ˆ i Y( xi)) N i =

17 Log likelihood function, Branin function, (Regular grid: n = 7 2 ) Log-likelihood n = 49, lambda = 1e θ θ 1 17

18 Regularized Kriging x x x

19 Overcomplete Basis Surrogate Model Use an overcomplete dictionary of basis functions Use linear combinations of basis functions to approximate unknown functions Use Matching Pursuit for fast (i.e. greedy) computations Choice of basis functions to mimic the shape of the surface Chen, Wang, and Wu (2010, IIE Tran. Q&R) 19

20 Surrogate Representation Surrogate model: use a linear combination of pre specified basis functions, i.e., f (x) = j c j φ j (x), x χ unitary norm ǁφ j ǁ = 1 basis dictionary, {φ j, j = 1,, M} no unknown parameter in φ j, only unknown are the linear c j Overcomplete : M much larger than data size 20

21 Surrogate Model (continued) Explored poedpoint set: P exp = {x 1,, x p }. Current responses: V = ( f ( x ),..., f ( x ) ) T P exp ( 1 p ) Use to approximate V Pexp, ~ φ = j ( ) φ T c φ ~ j j j j ( x1 ),..., φ j ( x p ) Two interesting questions: Choice of the basis functions? Estimation of the linear coefficients c i? 21

22 Coefficient Inference Matching Pursuit Algorithm (Mallat and Zhang, 1993): ~ V c φ Infercoefficients by minimizing P exp j j j A greedy algorithm: at the jth iteration, Let R (j 1) be the current residual vector. ~ ( j 1) ~ Selected a basis by φ( j ) = arg max i R, φi : c R ~ φ ( j 1) ( j ) = c( j ) + R, ( j ) ( j ) = R ( j 1) R ~ φ, ~ φ ( j 1), ( j ) ( j ). 22

23 Response Surface for Bistable Laser Diodes The true surface over a pre specified grid: Search all positive Lyapunov exponents (PLE) (red area) PLE corresponds to chaotic light output. 23

24 Gabor Functions Basis functions: n dimensional Gabor function T x Mx x g ( x ) = exp( )exp(2 πia x ), x = ( x,..., x 2 ( 1 n Two dimensional Gabor function, i.e. n = 2 ) T 24

25 Plots of 2 D Gabor Function 25

26 Overall Comparisons 26

27 Summary Computer experiments/simulations have becomepopular in engineering and science Kriging is the most common method for statistical meta model building but is more oe limited for large or complex problems Alternatives to kriging gare being sought: Tweaking of kriging to achieve stability (regularized, hybrid, tapering, reduced rank) Approximations with fast computations (OBSM, RIDW): but lacking inferential capability 27

28 Covariance Mti Matrix Tapering Covariance tapering g( (Kaufman et al., 2008) Covariance matrix is tapered or multiplied element wise by a sparse matrix, to approximate the likelihood. Advantages: Significant computational gains/stability. Retain interpolating property. Asymptotic convergence of the tamper estimator. But: The tapering function is isotropic: OK for spatial statistic problems, but not applicable to engineering problems. The tapering radius needs to be determined. 28

29 Rank krd Reduction Fixed rank kriging g( (Cressie-Johannesson, 2008) A flexible family of non-stationary covariance function is defined by using a set of basis functions that are fixed in number (smaller than the data size n). Advantage: Reduce the computational cost of kriging g to O(n). () But: How to choose the appropriate p basis functions. Not an interpolator. 29

30 Upper bound Upper bound exp( θ ) = 1 θ = 0 The worst case of a correlation matrix k k 30

31 31

32 32

33 33

34 Lower bound on λ Lower bound where Machine accuracy (or unit round off) 34

Post-Fisherian Experimentation: from Physical to Virtual

Post-Fisherian Experimentation: from Physical to Virtual Post-Fisherian Experimentation: from Physical to Virtual C. F. Jeff Wu School of Industrial and Systems Engineering Georgia Institute of Technology Fisher s legacy in experimental design. Post-Fisherian

More information

Monitoring Wafer Geometric Quality using Additive Gaussian Process

Monitoring Wafer Geometric Quality using Additive Gaussian Process Monitoring Wafer Geometric Quality using Additive Gaussian Process Linmiao Zhang 1 Kaibo Wang 2 Nan Chen 1 1 Department of Industrial and Systems Engineering, National University of Singapore 2 Department

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

arxiv: v1 [stat.me] 24 May 2010

arxiv: v1 [stat.me] 24 May 2010 The role of the nugget term in the Gaussian process method Andrey Pepelyshev arxiv:1005.4385v1 [stat.me] 24 May 2010 Abstract The maximum likelihood estimate of the correlation parameter of a Gaussian

More information

Theory and Computation for Gaussian Processes

Theory and Computation for Gaussian Processes University of Chicago IPAM, February 2015 Funders & Collaborators US Department of Energy, US National Science Foundation (STATMOS) Mihai Anitescu, Jie Chen, Ying Sun Gaussian processes A process Z on

More information

Model Selection for Geostatistical Models

Model Selection for Geostatistical Models Model Selection for Geostatistical Models Richard A. Davis Colorado State University http://www.stat.colostate.edu/~rdavis/lectures Joint work with: Jennifer A. Hoeting, Colorado State University Andrew

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Introduction to Geostatistics

Introduction to Geostatistics Introduction to Geostatistics Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,

More information

A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets

A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets Thomas Romary, Nicolas Desassis & Francky Fouedjio Mines ParisTech Centre de Géosciences, Equipe Géostatistique

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

Gaussian Process Regression and Emulation

Gaussian Process Regression and Emulation Gaussian Process Regression and Emulation STAT8810, Fall 2017 M.T. Pratola August 28, 2017 Today More on GP Regression Constructing Correlation Functions How can we systematically construct valid correlation

More information

SINGLE NUGGET KRIGING. Minyong R. Lee Art B. Owen. Department of Statistics STANFORD UNIVERSITY Stanford, California

SINGLE NUGGET KRIGING. Minyong R. Lee Art B. Owen. Department of Statistics STANFORD UNIVERSITY Stanford, California SINGLE NUGGET KRIGING By Minyong R. Lee Art B. Owen Technical Report No. 2015-21 November 2015 Department of Statistics STANFORD UNIVERSITY Stanford, California 94305-4065 SINGLE NUGGET KRIGING By Minyong

More information

On Gaussian Process Models for High-Dimensional Geostatistical Datasets

On Gaussian Process Models for High-Dimensional Geostatistical Datasets On Gaussian Process Models for High-Dimensional Geostatistical Datasets Sudipto Banerjee Joint work with Abhirup Datta, Andrew O. Finley and Alan E. Gelfand University of California, Los Angeles, USA May

More information

Point-Referenced Data Models

Point-Referenced Data Models Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring 2013 1 / 19 Objectives By the end of these meetings, participants should

More information

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling François Bachoc former PhD advisor: Josselin Garnier former CEA advisor: Jean-Marc Martinez Department

More information

Sequential adaptive designs in computer experiments for response surface model fit

Sequential adaptive designs in computer experiments for response surface model fit Statistics and Applications Volume 6, Nos. &, 8 (New Series), pp.7-33 Sequential adaptive designs in computer experiments for response surface model fit Chen Quin Lam and William I. Notz Department of

More information

Kriging Luc Anselin, All Rights Reserved

Kriging Luc Anselin, All Rights Reserved Kriging Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline Principles Kriging Models Spatial Interpolation

More information

PREDICTION AND DIMENSION REDUCTION METHODS IN COMPUTER EXPERIMENTS

PREDICTION AND DIMENSION REDUCTION METHODS IN COMPUTER EXPERIMENTS PREDICTION AND DIMENSION REDUCTION METHODS IN COMPUTER EXPERIMENTS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF STATISTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT

More information

Lecture 9: Introduction to Kriging

Lecture 9: Introduction to Kriging Lecture 9: Introduction to Kriging Math 586 Beginning remarks Kriging is a commonly used method of interpolation (prediction) for spatial data. The data are a set of observations of some variable(s) of

More information

Mixed models in R using the lme4 package Part 4: Theory of linear mixed models

Mixed models in R using the lme4 package Part 4: Theory of linear mixed models Mixed models in R using the lme4 package Part 4: Theory of linear mixed models Douglas Bates 8 th International Amsterdam Conference on Multilevel Analysis 2011-03-16 Douglas Bates

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets

Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets Sudipto Banerjee University of California, Los Angeles, USA Based upon projects involving: Abhirup Datta (Johns Hopkins University)

More information

Limit Kriging. Abstract

Limit Kriging. Abstract Limit Kriging V. Roshan Joseph School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, GA 30332-0205, USA roshan@isye.gatech.edu Abstract A new kriging predictor is proposed.

More information

Tilburg University. Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging Mehdad, Ehsan; Kleijnen, Jack

Tilburg University. Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging Mehdad, Ehsan; Kleijnen, Jack Tilburg University Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging Mehdad, Ehsan; Kleijnen, Jack Document version: Early version, also known as pre-print Publication

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

A Bayesian Approach to Prediction and Variable Selection Using Nonstationary Gaussian Processes

A Bayesian Approach to Prediction and Variable Selection Using Nonstationary Gaussian Processes A Bayesian Approach to Prediction and Variable Selection Using Nonstationary Gaussian Processes Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

Statistícal Methods for Spatial Data Analysis

Statistícal Methods for Spatial Data Analysis Texts in Statistícal Science Statistícal Methods for Spatial Data Analysis V- Oliver Schabenberger Carol A. Gotway PCT CHAPMAN & K Contents Preface xv 1 Introduction 1 1.1 The Need for Spatial Analysis

More information

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström.

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström. C Stochastic fields Covariance Spatial Statistics with Image Analysis Lecture 2 Johan Lindström November 4, 26 Lecture L2 Johan Lindström - johanl@maths.lth.se FMSN2/MASM2 L /2 C Stochastic fields Covariance

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Arno Solin and Simo Särkkä Aalto University, Finland Workshop on Gaussian Process Approximation Copenhagen, Denmark, May 2015 Solin &

More information

Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification

Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification François Bachoc Josselin Garnier Jean-Marc Martinez CEA-Saclay, DEN, DM2S, STMF,

More information

Iterative Gaussian Process Regression for Potential Energy Surfaces. Matthew Shelley University of York ISNET-5 Workshop 6th November 2017

Iterative Gaussian Process Regression for Potential Energy Surfaces. Matthew Shelley University of York ISNET-5 Workshop 6th November 2017 Iterative Gaussian Process Regression for Potential Energy Surfaces Matthew Shelley University of York ISNET-5 Workshop 6th November 2017 Outline Motivation: Calculation of potential energy surfaces (PES)

More information

Covariance Tapering for Likelihood-based Estimation in Large Spatial Datasets

Covariance Tapering for Likelihood-based Estimation in Large Spatial Datasets Covariance Tapering for Likelihood-based Estimation in Large Spatial Datasets Ph.D Thesis Proposal Cari Kaufman Department of Statistics, Carnegie Mellon University October 19, 2005 Abstract Likelihood-based

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Info-Greedy Sequential Adaptive Compressed Sensing

Info-Greedy Sequential Adaptive Compressed Sensing Info-Greedy Sequential Adaptive Compressed Sensing Yao Xie Joint work with Gabor Braun and Sebastian Pokutta Georgia Institute of Technology Presented at Allerton Conference 2014 Information sensing for

More information

Gradient Enhanced Universal Kriging Model for Uncertainty Propagation in Nuclear Engineering

Gradient Enhanced Universal Kriging Model for Uncertainty Propagation in Nuclear Engineering Gradient Enhanced Universal Kriging Model for Uncertainty Propagation in Nuclear Engineering Brian A. Lockwood 1 and Mihai Anitescu 2 1 Department of Mechanical Engineering University of Wyoming 2 Mathematics

More information

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt.

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt. SINGAPORE SHANGHAI Vol TAIPEI - Interdisciplinary Mathematical Sciences 19 Kernel-based Approximation Methods using MATLAB Gregory Fasshauer Illinois Institute of Technology, USA Michael McCourt University

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

SEQUENTIAL ADAPTIVE DESIGNS IN COMPUTER EXPERIMENTS FOR RESPONSE SURFACE MODEL FIT

SEQUENTIAL ADAPTIVE DESIGNS IN COMPUTER EXPERIMENTS FOR RESPONSE SURFACE MODEL FIT SEQUENTIAL ADAPTIVE DESIGNS IN COMPUTER EXPERIMENTS FOR RESPONSE SURFACE MODEL FIT DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate

More information

Gaussian Processes for Computer Experiments

Gaussian Processes for Computer Experiments Gaussian Processes for Computer Experiments Jeremy Oakley School of Mathematics and Statistics, University of Sheffield www.jeremy-oakley.staff.shef.ac.uk 1 / 43 Computer models Computer model represented

More information

Use of Design Sensitivity Information in Response Surface and Kriging Metamodels

Use of Design Sensitivity Information in Response Surface and Kriging Metamodels Optimization and Engineering, 2, 469 484, 2001 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Use of Design Sensitivity Information in Response Surface and Kriging Metamodels J. J.

More information

Nested Latin Hypercube Designs with Sliced Structures

Nested Latin Hypercube Designs with Sliced Structures Communications in Statistics - Theory and Methods ISSN: 0361-0926 (Print) 1532-415X (Online) Journal homepage: http://www.tandfonline.com/loi/lsta20 Nested Latin Hypercube Designs with Sliced Structures

More information

arxiv: v1 [stat.ap] 11 Jan 2013

arxiv: v1 [stat.ap] 11 Jan 2013 The Annals of Applied Statistics 2012, Vol. 6, No. 4, 1838 1860 DOI: 10.1214/12-AOAS570 c Institute of Mathematical Statistics, 2012 COMPOSITE GAUSSIAN PROCESS MODELS FOR EMULATING EXPENSIVE FUNCTIONS

More information

Interpolation of Spatial Data

Interpolation of Spatial Data Michael L. Stein Interpolation of Spatial Data Some Theory for Kriging With 27 Illustrations Springer Contents Preface vii 1 Linear Prediction 1 1.1 Introduction 1 1.2 Best linear prediction 2 Exercises

More information

A Sequential Split-Conquer-Combine Approach for Analysis of Big Spatial Data

A Sequential Split-Conquer-Combine Approach for Analysis of Big Spatial Data A Sequential Split-Conquer-Combine Approach for Analysis of Big Spatial Data Min-ge Xie Department of Statistics & Biostatistics Rutgers, The State University of New Jersey In collaboration with Xuying

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016 C3 Repetition Creating Q Spectral Non-grid Spatial Statistics with Image Analysis Lecture 8 Johan Lindström November 25, 216 Johan Lindström - johanl@maths.lth.se FMSN2/MASM25L8 1/39 Lecture L8 C3 Repetition

More information

314 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 2, MAY Wei Tan, I. Charles Ume, Ying Hung, and C. F. Jeff Wu

314 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 2, MAY Wei Tan, I. Charles Ume, Ying Hung, and C. F. Jeff Wu 314 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 2, MAY 2010 Effects of Warpage on Fatigue Reliability of Solder Bumps: Experimental and Analytical Studies Wei Tan, I. Charles Ume, Ying Hung,

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

Surrogate Modeling of Computer Experiments With Different Mesh Densities

Surrogate Modeling of Computer Experiments With Different Mesh Densities Technometrics ISSN: 0040-1706 (Print) 1537-2723 (Online) Journal homepage: http://amstat.tandfonline.com/loi/utch20 Surrogate Modeling of Computer Experiments With Different Mesh Densities Rui Tuo, C.

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

Outline Introduction OLS Design of experiments Regression. Metamodeling. ME598/494 Lecture. Max Yi Ren

Outline Introduction OLS Design of experiments Regression. Metamodeling. ME598/494 Lecture. Max Yi Ren 1 / 34 Metamodeling ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 1, 2015 2 / 34 1. preliminaries 1.1 motivation 1.2 ordinary least square 1.3 information

More information

Statistica Sinica Preprint No: SS R4

Statistica Sinica Preprint No: SS R4 Statistica Sinica Preprint No: SS-2016-0255R4 Title Single Nugget Kriging Manuscript ID SS-2016-0255R4 URL http://www.stat.sinica.edu.tw/statistica/ DOI 10.5705/ss.202016.0255R4 Complete List of Authors

More information

Multi-fidelity sensitivity analysis

Multi-fidelity sensitivity analysis Multi-fidelity sensitivity analysis Loic Le Gratiet 1,2, Claire Cannamela 2 & Bertrand Iooss 3 1 Université Denis-Diderot, Paris, France 2 CEA, DAM, DIF, F-91297 Arpajon, France 3 EDF R&D, 6 quai Watier,

More information

Likelihood-Based Methods

Likelihood-Based Methods Likelihood-Based Methods Handbook of Spatial Statistics, Chapter 4 Susheela Singh September 22, 2016 OVERVIEW INTRODUCTION MAXIMUM LIKELIHOOD ESTIMATION (ML) RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION (REML)

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Bayesian Transformed Gaussian Random Field: A Review

Bayesian Transformed Gaussian Random Field: A Review Bayesian Transformed Gaussian Random Field: A Review Benjamin Kedem Department of Mathematics & ISR University of Maryland College Park, MD (Victor De Oliveira, David Bindel, Boris and Sandra Kozintsev)

More information

Brownian Integrated Covariance Functions for Gaussian Process Modeling: Sigmoidal Versus Localized Basis Functions

Brownian Integrated Covariance Functions for Gaussian Process Modeling: Sigmoidal Versus Localized Basis Functions Brownian Integrated Covariance Functions for Gaussian Process Modeling: Sigmoidal Versus Localized Basis Functions Ning Zhang and Daniel W. Apley 1 Department of Industrial Engineering and Management Sciences,

More information

Scale Mixture Modeling of Priors for Sparse Signal Recovery

Scale Mixture Modeling of Priors for Sparse Signal Recovery Scale Mixture Modeling of Priors for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Outline Outline Sparse

More information

Recent developments on sparse representation

Recent developments on sparse representation Recent developments on sparse representation Zeng Tieyong Department of Mathematics, Hong Kong Baptist University Email: zeng@hkbu.edu.hk Hong Kong Baptist University Dec. 8, 2008 First Previous Next Last

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University REGRESSION ITH SPATIALL MISALIGNED DATA Lisa Madsen Oregon State University David Ruppert Cornell University SPATIALL MISALIGNED DATA 10 X X X X X X X X 5 X X X X X 0 X 0 5 10 OUTLINE 1. Introduction 2.

More information

Assessment of uncertainty in computer experiments: from Universal Kriging to Bayesian Kriging. Céline Helbert, Delphine Dupuy and Laurent Carraro

Assessment of uncertainty in computer experiments: from Universal Kriging to Bayesian Kriging. Céline Helbert, Delphine Dupuy and Laurent Carraro Assessment of uncertainty in computer experiments: from Universal Kriging to Bayesian Kriging., Delphine Dupuy and Laurent Carraro Historical context First introduced in the field of geostatistics (Matheron,

More information

Motivation Sparse Signal Recovery is an interesting area with many potential applications. Methods developed for solving sparse signal recovery proble

Motivation Sparse Signal Recovery is an interesting area with many potential applications. Methods developed for solving sparse signal recovery proble Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Zhilin Zhang and Ritwik Giri Motivation Sparse Signal Recovery is an interesting

More information

Introduction to Gaussian Process

Introduction to Gaussian Process Introduction to Gaussian Process CS 778 Chris Tensmeyer CS 478 INTRODUCTION 1 What Topic? Machine Learning Regression Bayesian ML Bayesian Regression Bayesian Non-parametric Gaussian Process (GP) GP Regression

More information

Data are collected along transect lines, with dense data along. Spatial modelling using GMRFs. 200m. Today? Spatial modelling using GMRFs

Data are collected along transect lines, with dense data along. Spatial modelling using GMRFs. 200m. Today? Spatial modelling using GMRFs Centre for Mathematical Sciences Lund University Engineering geology Lund University Results A non-stationary extension The model Estimation Gaussian Markov random fields Basics Approximating Mate rn covariances

More information

Spatial Modeling and Prediction of County-Level Employment Growth Data

Spatial Modeling and Prediction of County-Level Employment Growth Data Spatial Modeling and Prediction of County-Level Employment Growth Data N. Ganesh Abstract For correlated sample survey estimates, a linear model with covariance matrix in which small areas are grouped

More information

arxiv: v1 [stat.me] 31 Dec 2014

arxiv: v1 [stat.me] 31 Dec 2014 Variable Selection in Bayesian Semiparametric Regression Models Ofir Harari a, David M. Steinberg a a Department of Statistics and Operations Research, Raymond and Beverly Sackler Faculty of Exact Sciences,

More information

Introduction to emulators - the what, the when, the why

Introduction to emulators - the what, the when, the why School of Earth and Environment INSTITUTE FOR CLIMATE & ATMOSPHERIC SCIENCE Introduction to emulators - the what, the when, the why Dr Lindsay Lee 1 What is a simulator? A simulator is a computer code

More information

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider the problem of

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

arxiv: v1 [stat.me] 10 Jul 2009

arxiv: v1 [stat.me] 10 Jul 2009 6th St.Petersburg Workshop on Simulation (2009) 1091-1096 Improvement of random LHD for high dimensions arxiv:0907.1823v1 [stat.me] 10 Jul 2009 Andrey Pepelyshev 1 Abstract Designs of experiments for multivariate

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Chris Paciorek March 11, 2005 Department of Biostatistics Harvard School of

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

Cross Validation and Maximum Likelihood estimation of hyper-parameters of Gaussian processes with model misspecification

Cross Validation and Maximum Likelihood estimation of hyper-parameters of Gaussian processes with model misspecification Cross Validation and Maximum Likelihood estimation of hyper-parameters of Gaussian processes with model misspecification François Bachoc To cite this version: François Bachoc. Cross Validation and Maximum

More information

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable.

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable. Linear SVM (separable case) First consider the scenario where the two classes of points are separable. It s desirable to have the width (called margin) between the two dashed lines to be large, i.e., have

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Bayesian Methods for Sparse Signal Recovery

Bayesian Methods for Sparse Signal Recovery Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Motivation Motivation Sparse Signal Recovery

More information

Nonparametric Bayesian Methods - Lecture I

Nonparametric Bayesian Methods - Lecture I Nonparametric Bayesian Methods - Lecture I Harry van Zanten Korteweg-de Vries Institute for Mathematics CRiSM Masterclass, April 4-6, 2016 Overview of the lectures I Intro to nonparametric Bayesian statistics

More information

Scalable kernel methods and their use in black-box optimization

Scalable kernel methods and their use in black-box optimization with derivatives Scalable kernel methods and their use in black-box optimization David Eriksson Center for Applied Mathematics Cornell University dme65@cornell.edu November 9, 2018 1 2 3 4 1/37 with derivatives

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Bayesian Dynamic Linear Modelling for. Complex Computer Models

Bayesian Dynamic Linear Modelling for. Complex Computer Models Bayesian Dynamic Linear Modelling for Complex Computer Models Fei Liu, Liang Zhang, Mike West Abstract Computer models may have functional outputs. With no loss of generality, we assume that a single computer

More information

Worst-Case Bounds for Gaussian Process Models

Worst-Case Bounds for Gaussian Process Models Worst-Case Bounds for Gaussian Process Models Sham M. Kakade University of Pennsylvania Matthias W. Seeger UC Berkeley Abstract Dean P. Foster University of Pennsylvania We present a competitive analysis

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models John M. Neuhaus Charles E. McCulloch Division of Biostatistics University of California, San

More information

Scalable color image coding with Matching Pursuit

Scalable color image coding with Matching Pursuit SCHOOL OF ENGINEERING - STI SIGNAL PROCESSING INSTITUTE Rosa M. Figueras i Ventura CH-115 LAUSANNE Telephone: +4121 6935646 Telefax: +4121 69376 e-mail: rosa.figueras@epfl.ch ÉCOLE POLYTECHNIQUE FÉDÉRALE

More information

Outline lecture 2 2(30)

Outline lecture 2 2(30) Outline lecture 2 2(3), Lecture 2 Linear Regression it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic Control

More information

Multi-resolution models for large data sets

Multi-resolution models for large data sets Multi-resolution models for large data sets Douglas Nychka, National Center for Atmospheric Research National Science Foundation NORDSTAT, Umeå, June, 2012 Credits Steve Sain, NCAR Tia LeRud, UC Davis

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information