Synthetic Sensing - Machine Vision: Tracking I MediaRobotics Lab, March 2010

Size: px
Start display at page:

Download "Synthetic Sensing - Machine Vision: Tracking I MediaRobotics Lab, March 2010"

Transcription

1 Synthetic Sensing - Machine Vision: Tracking I MediaRobotics Lab, March 2010 References: Forsyth / Ponce: Computer Vision Horn: Robot Vision Schunk: Machine Vision University of Edingburgh online image processing reference The Computer Vision Homepage Rice University Eigenface Group OpenCV

2 Tracking The idea is old. Tracking is just keep note of things... General requirements: - a something to detect - a way of representing that object to your system - a way to tally the results - a way to find previous results - a way to recover from mistakes

3 Non-image based tracking Biometrics: fingerprints skin pattern facial thermogram gait dna Governmental: social security numbers tax records credit reports

4 Hydra, University of Notre Dame

5 retrospective surveillance: The goal of these systems is to review the captured scenes from other sites in order to validate whether a hint of threat detected at the local site is part of a larger pattern. Imagine our proposed infrastructure deployed to monitor all important landmarks in the United States... Analyzing the images from multiple cameras peering into the crowds can allow detection algorithms to potentially make more reliable identification of terrorists than single cameras. More importantly, we can develop recognition algorithms that, when triggered by the suspicious activity of one tourist, analyze the stored streams from other landmarks to see if this same tourist exhibited suspicious behavior in those other sites; activity which may be missed by each site locally. Analyzing the streams in concert can also help identify more complex threat behavioral patterns. Hydra, University of Notre Dame

6 ...One can imagine recognition algorithms that identify a threat event that involves multiple actors; identified not only because each of these actors exhibit similar suspicious behavior but also by the fact that they all scoped out the landmark sites without overlapping with each other. While one person was identified as video taping the Empire State building and the Statue of Liberty in NYC and Sears tower in Chicago within a week of each other, another individual was also noticed video taping the Brooklyn bridge in New York and Navy pier in Chicago in the same week. Note that tourists video taping landmark sites itself is not the threat; rather the specific pattern and choice of sites might give clues to suspicious behavior... Hydra, University of Notre Dame

7 Also:

8

9 Image based tracking Direct tracking: -image analysis Indirect tracking: -image differencing -optical flow Visual servoing: -feed results back into a controller to steer a moving vehicle

10 Difference images: pyramid of change > nth derivative Stream of images in time Time is here a variable (function of #frames) Effective for global properties

11 Visual tracking of moving objects (multi-camera) The first step in tracking objects is for the system to distinguish moving objects from stationary ones through feature selection and detection. The next step requires the system to make note of the location, speed, size, and shape of moving objects. Finally, the system must learn to recognize and track the same object as it moves out of the visual field of one camera and into the next. The computer is able to do this as long as the visual fields of the its cameras overlap at least somewhat.

12 Visual Tracking with a single camera: algorithm feature selection while (streaming) { feature extraction feature location }

13 Indoor Line Following: Vision-based Line Tracking and Navigation in Structured Environments G. Reccari Y. Caselli F. Zanichelli A. Calafiore Advanced Outdoor Line Following: First results in vision-based crop line tracking Mark Ollis & Anthony Stentz, Robotics Institute (1996) The color segmentation algorithm has two parts: a discriminant and a segmentor. The discriminant computes a function d(i,j) of individual pixels whose output provides some information about whether that pixel is in the cut region or the uncut region; the segmentor then uses the discriminant to produce a segmentation.

14 Features -color -brightness -texture -location -size -form -other local and global geometry (eigenfaces for face detection) > isolated and combined

15 Outlines and Templates -> cvmatchtemplate (C++ only)

16 image template Occurances of the template in the image In Opencv under C++ cvmatchtemplate(image, template, result, CV_TM_CCOEFF_NORMED);

17 z y x x, y x, y

18 Rotation, Scale, Translation-Invariant Template Matching

19 Texture What is texture? - a feature that repeats with some variation - need to separate the repeating elements from the constant elements - often approached with probabilistic distributions - also: wavelets and neuralnets - example: Anil K. Jain, Kalle Karu, Learning Texture Discrimination Masks (February 1996 (Vol. 18, No. 2) pp

20 Eigenfaces Eigenfaces are a set of eigenvectors used in the computer vision problem of human face recognition. These eigenvectors are derived from the covariance matrix of the probability distribution of the high-dimensional vector space of possible faces of human beings. The technique has been used for handwriting, lip reading, voice recognition, and medical imaging. Eigenfaces can be imagined as a set of "standardized face ingredients", derived from statistical analysis of many pictures of faces. Any human face can be considered to be a combination of these standard faces (everyone has eyes, a nose, a mouth..). One person's face might be made up of 10% from face 1, 24% from face 2 and so on.

21 Eigenfaces Practically, eigenfaces are created by finding feature vectors based on deviations from an averaged training set. a) collect some images b) find the average image (sum and divide) c) find the deviated images (differences between individual images and the ave image) d) calculate the covariance matrix (measure of how much a set of variables vary in the same way) e) calculate the eigenvectors of the covariance matrix (vectors that do not change with scaling) f) construct eigenfaces by combining N eigenvectors check wikipedia for an intuitive description of eigenvectors:

22 Eigenfaces Covariance - reminder: Standard deviation and variance only operate on 1 dimension, so that one can only calculate the standard deviation for each dimension of the data set independently of the other dimensions. However, it is useful to have a similar measure to find out how much the dimensions vary from the mean with respect to each other. Covariance is such a measure. Covariance is always measured between 2 dimensions. Here are the base formulae for variance and covariance: For a 3d data set, the covariance matrix would be: note: cov (x,x) = var (x)

23 Eigenfaces Eigenvectors - reminder: - eigenvectors can only be found for square matrices. And, not every square matrix has eigenvectors. An nxn matrix that does have eigenvectors, has N eigenvectors. -eigenvectors are scale independent even if one scales the vector by some amount before one multiplies it, the result is unchanged. - all the eigenvectors of a matrix are orthogonal, ie. at right angles to each other, no matter how many dimensions the matrix has.

24 Rice University: Eigenface Group has python face recognition code implementing eigenfaces: University of Pittsburgh has an online face detection program:

25 Problems with features -perspective -underdefinition (3d, content) -lighting -occlusion -distance -image resolution -test data without training data

26 General approach feature selection while (streaming) { feature extraction feature location } feature location: choose an invariant property for example: center of mass

27 Center of Mass According to Newton's third law the two internal forces are equal and opposite. Adding the equations then gives: Fi1+F1 = a1m1 Fi2+F2 = a2m2 (internal forces are equal and opposite) xcm The two bodies are combined to one body with mass m 1 + m 2 This body is acted upon by the same external forces as our two bodies. This imaginary body then gets an acceleration which we call the acceleration of the center of mass a CM and given by: F1 + F2 = a1m1 + a2m2 a1m1 + a2m2 = (m1+m2) a cm acceleration is the second derivative of the position: x1m1 + x2m2 = (m1+m2) xcm the center of mass 'balances' the two different weights: xcm = (x1m1 + x2m2) / m1m2

28 Calculating the CG in matlab %find the centers of gravity of image Y(i * j) for i = 1 : j C = [C, ((Y(:,i)'*m') / sum(y(:,i)))]; end for i = 1 : k D = [D, ((Y(i,:)*n') / sum(y(i,:)))]; end G = C(2:end); E = D(2:end); PY = round(median(g)); PX = round(median(e)); %Y coordinate of the COG %X coordinate of the COG

29 Color based tracking xstart, ystart, xnew, ynew, xprevious, yprevious while (streaming) { feature extraction > hue >binarize >area feature location > get CG coordinates > xnew, ynew } xstart = xnew ystart = ynew xstart xprevious ystart yprevious xprevious = xnew yprevious = ynew //set only once //set only once //check distance travelled //check distance travelled //update continuously //update continuously

30 Simple Hack with PIL Calculate the bounding box around a region of interest #binarize the final image mask6 = mask5.convert("1", dither=image.none) #find outer corners of remaining area for i in range(x): for j in range(y): if(mask6.getpixel((i,j))): if (i < xmin): xmin = i if(i > xmax): xmax = i if (j < ymin): ymin = j if(y > ymax): ymax = j box = (xmin, ymin, xmax, ymax) draw.rectangle(box, outline=(255,0,0))

31 Simple tracking based on color xstart, ystart, xnew, ynew, xprevious, yprevious while (streaming) { feature extraction > hue binarize area(s) feature location > get CoM coordinates > xnew, ynew xstart xnew ystart ynew xstart xprevious ystart yprevious xprevious = xnew yprevious = ynew }

32 Advanced form tracker: car finder

33 Additional topics: industrial applications: moving line tracking clustering: k-means decomposition: principle component analysis

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision A/Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh Lecture 06 Object Recognition Objectives To understand the concept of image based object recognition To learn how to match images

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY [Gaurav, 2(1): Jan., 2013] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Face Identification & Detection Using Eigenfaces Sachin.S.Gurav *1, K.R.Desai 2 *1

More information

Eigenface-based facial recognition

Eigenface-based facial recognition Eigenface-based facial recognition Dimitri PISSARENKO December 1, 2002 1 General This document is based upon Turk and Pentland (1991b), Turk and Pentland (1991a) and Smith (2002). 2 How does it work? The

More information

Vision for Mobile Robot Navigation: A Survey

Vision for Mobile Robot Navigation: A Survey Vision for Mobile Robot Navigation: A Survey (February 2002) Guilherme N. DeSouza & Avinash C. Kak presentation by: Job Zondag 27 February 2009 Outline: Types of Navigation Absolute localization (Structured)

More information

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision)

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision) CS4495/6495 Introduction to Computer Vision 8B-L2 Principle Component Analysis (and its use in Computer Vision) Wavelength 2 Wavelength 2 Principal Components Principal components are all about the directions

More information

Image Analysis. PCA and Eigenfaces

Image Analysis. PCA and Eigenfaces Image Analysis PCA and Eigenfaces Christophoros Nikou cnikou@cs.uoi.gr Images taken from: D. Forsyth and J. Ponce. Computer Vision: A Modern Approach, Prentice Hall, 2003. Computer Vision course by Svetlana

More information

A RAIN PIXEL RESTORATION ALGORITHM FOR VIDEOS WITH DYNAMIC SCENES

A RAIN PIXEL RESTORATION ALGORITHM FOR VIDEOS WITH DYNAMIC SCENES A RAIN PIXEL RESTORATION ALGORITHM FOR VIDEOS WITH DYNAMIC SCENES V.Sridevi, P.Malarvizhi, P.Mathivannan Abstract Rain removal from a video is a challenging problem due to random spatial distribution and

More information

Face Recognition Using Eigenfaces

Face Recognition Using Eigenfaces Face Recognition Using Eigenfaces Prof. V.P. Kshirsagar, M.R.Baviskar, M.E.Gaikwad, Dept. of CSE, Govt. Engineering College, Aurangabad (MS), India. vkshirsagar@gmail.com, madhumita_baviskar@yahoo.co.in,

More information

Eigenimaging for Facial Recognition

Eigenimaging for Facial Recognition Eigenimaging for Facial Recognition Aaron Kosmatin, Clayton Broman December 2, 21 Abstract The interest of this paper is Principal Component Analysis, specifically its area of application to facial recognition

More information

Lecture: Face Recognition

Lecture: Face Recognition Lecture: Face Recognition Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 12-1 What we will learn today Introduction to face recognition The Eigenfaces Algorithm Linear

More information

Robot Image Credit: Viktoriya Sukhanova 123RF.com. Dimensionality Reduction

Robot Image Credit: Viktoriya Sukhanova 123RF.com. Dimensionality Reduction Robot Image Credit: Viktoriya Sukhanova 13RF.com Dimensionality Reduction Feature Selection vs. Dimensionality Reduction Feature Selection (last time) Select a subset of features. When classifying novel

More information

20 Unsupervised Learning and Principal Components Analysis (PCA)

20 Unsupervised Learning and Principal Components Analysis (PCA) 116 Jonathan Richard Shewchuk 20 Unsupervised Learning and Principal Components Analysis (PCA) UNSUPERVISED LEARNING We have sample points, but no labels! No classes, no y-values, nothing to predict. Goal:

More information

CS 4495 Computer Vision Principle Component Analysis

CS 4495 Computer Vision Principle Component Analysis CS 4495 Computer Vision Principle Component Analysis (and it s use in Computer Vision) Aaron Bobick School of Interactive Computing Administrivia PS6 is out. Due *** Sunday, Nov 24th at 11:55pm *** PS7

More information

Face Recognition and Biometric Systems

Face Recognition and Biometric Systems The Eigenfaces method Plan of the lecture Principal Components Analysis main idea Feature extraction by PCA face recognition Eigenfaces training feature extraction Literature M.A.Turk, A.P.Pentland Face

More information

Face Detection and Recognition

Face Detection and Recognition Face Detection and Recognition Face Recognition Problem Reading: Chapter 18.10 and, optionally, Face Recognition using Eigenfaces by M. Turk and A. Pentland Queryimage face query database Face Verification

More information

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to:

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to: System 2 : Modelling & Recognising Modelling and Recognising Classes of Classes of Shapes Shape : PDM & PCA All the same shape? System 1 (last lecture) : limited to rigidly structured shapes System 2 :

More information

Kronecker Decomposition for Image Classification

Kronecker Decomposition for Image Classification university of innsbruck institute of computer science intelligent and interactive systems Kronecker Decomposition for Image Classification Sabrina Fontanella 1,2, Antonio Rodríguez-Sánchez 1, Justus Piater

More information

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani)

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani) Video and Motion Analysis 16-385 Computer Vision Carnegie Mellon University (Kris Kitani) Optical flow used for feature tracking on a drone Interpolated optical flow used for super slow-mo optical flow

More information

Fingerprint Individuality

Fingerprint Individuality Fingerprint Individuality On the Individuality of Fingerprints, Sharat Pankanti, Anil Jain and Salil Prabhakar, IEEE Transactions on PAMI, 2002 US DOJ, Office of the Inspector General, A Review of the

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

A Study of the Kalman Filter applied to Visual Tracking

A Study of the Kalman Filter applied to Visual Tracking A Study of the Kalman Filter applied to Visual Tracking Nathan Funk University of Alberta Project for CMPUT 652 December 7, 2003 Abstract This project analyzes the applicability of the Kalman filter as

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

PCA FACE RECOGNITION

PCA FACE RECOGNITION PCA FACE RECOGNITION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Shree Nayar (Columbia) including their own slides. Goal

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Additional reading can be found from non-assessed exercises (week 8) in this course unit teaching page. Textbooks: Sect. 6.3 in [1] and Ch. 12 in [2] Outline Introduction

More information

Foundations for Functions

Foundations for Functions Activity: TEKS: Overview: Materials: Regression Exploration (A.2) Foundations for functions. The student uses the properties and attributes of functions. The student is expected to: (D) collect and organize

More information

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface Image Analysis & Retrieval Lec 14 Eigenface and Fisherface Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu Z. Li, Image Analysis & Retrv, Spring

More information

Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface

Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface Zhu Li Dept of CSEE, UMKC http://l.web.umkc.edu/lizhu Office Hour: Tue/Thr 2:30-4pm@FH560E, Contact:

More information

2D Image Processing Face Detection and Recognition

2D Image Processing Face Detection and Recognition 2D Image Processing Face Detection and Recognition Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

EECS490: Digital Image Processing. Lecture #26

EECS490: Digital Image Processing. Lecture #26 Lecture #26 Moments; invariant moments Eigenvector, principal component analysis Boundary coding Image primitives Image representation: trees, graphs Object recognition and classes Minimum distance classifiers

More information

Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart 1 Motivation Imaging is a stochastic process: If we take all the different sources of

More information

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Eigenface and

More information

Optical Flow, Motion Segmentation, Feature Tracking

Optical Flow, Motion Segmentation, Feature Tracking BIL 719 - Computer Vision May 21, 2014 Optical Flow, Motion Segmentation, Feature Tracking Aykut Erdem Dept. of Computer Engineering Hacettepe University Motion Optical Flow Motion Segmentation Feature

More information

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition ace Recognition Identify person based on the appearance of face CSED441:Introduction to Computer Vision (2017) Lecture10: Subspace Methods and ace Recognition Bohyung Han CSE, POSTECH bhhan@postech.ac.kr

More information

Data Preprocessing Tasks

Data Preprocessing Tasks Data Tasks 1 2 3 Data Reduction 4 We re here. 1 Dimensionality Reduction Dimensionality reduction is a commonly used approach for generating fewer features. Typically used because too many features can

More information

Face recognition Computer Vision Spring 2018, Lecture 21

Face recognition Computer Vision Spring 2018, Lecture 21 Face recognition http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 21 Course announcements Homework 6 has been posted and is due on April 27 th. - Any questions about the homework?

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Main matrix factorizations

Main matrix factorizations Main matrix factorizations A P L U P permutation matrix, L lower triangular, U upper triangular Key use: Solve square linear system Ax b. A Q R Q unitary, R upper triangular Key use: Solve square or overdetrmined

More information

Wavelet Transform And Principal Component Analysis Based Feature Extraction

Wavelet Transform And Principal Component Analysis Based Feature Extraction Wavelet Transform And Principal Component Analysis Based Feature Extraction Keyun Tong June 3, 2010 As the amount of information grows rapidly and widely, feature extraction become an indispensable technique

More information

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University TOPIC MODELING MODELS FOR TEXT DATA

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

Edge Detection. Introduction to Computer Vision. Useful Mathematics Funcs. The bad news

Edge Detection. Introduction to Computer Vision. Useful Mathematics Funcs. The bad news Edge Detection Introduction to Computer Vision CS / ECE 8B Thursday, April, 004 Edge detection (HO #5) Edge detection is a local area operator that seeks to find significant, meaningful changes in image

More information

Automatic estimation of crowd size and target detection using Image processing

Automatic estimation of crowd size and target detection using Image processing Automatic estimation of crowd size and target detection using Image processing Asst Prof. Avinash Rai Dept. of Electronics and communication (UIT-RGPV) Bhopal avinashrai@rgtu.net Rahul Meshram Dept. of

More information

Facial Expression Recognition using Eigenfaces and SVM

Facial Expression Recognition using Eigenfaces and SVM Facial Expression Recognition using Eigenfaces and SVM Prof. Lalita B. Patil Assistant Professor Dept of Electronics and Telecommunication, MGMCET, Kamothe, Navi Mumbai (Maharashtra), INDIA. Prof.V.R.Bhosale

More information

Statistical Filters for Crowd Image Analysis

Statistical Filters for Crowd Image Analysis Statistical Filters for Crowd Image Analysis Ákos Utasi, Ákos Kiss and Tamás Szirányi Distributed Events Analysis Research Group, Computer and Automation Research Institute H-1111 Budapest, Kende utca

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Last Lecture : Edge Detection Preprocessing of image is desired to eliminate or at least minimize noise effects There is always tradeoff

More information

Announcements. Tracking. Comptuer Vision I. The Motion Field. = ω. Pure Translation. Motion Field Equation. Rigid Motion: General Case

Announcements. Tracking. Comptuer Vision I. The Motion Field. = ω. Pure Translation. Motion Field Equation. Rigid Motion: General Case Announcements Tracking Computer Vision I CSE5A Lecture 17 HW 3 due toda HW 4 will be on web site tomorrow: Face recognition using 3 techniques Toda: Tracking Reading: Sections 17.1-17.3 The Motion Field

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Anders Øland David Christiansen 1 Introduction Principal Component Analysis, or PCA, is a commonly used multi-purpose technique in data analysis. It can be used for feature

More information

Lecture 13 Visual recognition

Lecture 13 Visual recognition Lecture 13 Visual recognition Announcements Silvio Savarese Lecture 13-20-Feb-14 Lecture 13 Visual recognition Object classification bag of words models Discriminative methods Generative methods Object

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

Shape Outlier Detection Using Pose Preserving Dynamic Shape Models

Shape Outlier Detection Using Pose Preserving Dynamic Shape Models Shape Outlier Detection Using Pose Preserving Dynamic Shape Models Chan-Su Lee and Ahmed Elgammal Rutgers, The State University of New Jersey Department of Computer Science Outline Introduction Shape Outlier

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Recurrent Autoregressive Networks for Online Multi-Object Tracking. Presented By: Ishan Gupta

Recurrent Autoregressive Networks for Online Multi-Object Tracking. Presented By: Ishan Gupta Recurrent Autoregressive Networks for Online Multi-Object Tracking Presented By: Ishan Gupta Outline Multi Object Tracking Recurrent Autoregressive Networks (RANs) RANs for Online Tracking Other State

More information

Pattern recognition. "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher

Pattern recognition. To understand is to perceive patterns Sir Isaiah Berlin, Russian philosopher Pattern recognition "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher The more relevant patterns at your disposal, the better your decisions will be. This is hopeful news to

More information

Principal Component Analysis CS498

Principal Component Analysis CS498 Principal Component Analysis CS498 Today s lecture Adaptive Feature Extraction Principal Component Analysis How, why, when, which A dual goal Find a good representation The features part Reduce redundancy

More information

RESTORATION OF VIDEO BY REMOVING RAIN

RESTORATION OF VIDEO BY REMOVING RAIN RESTORATION OF VIDEO BY REMOVING RAIN Sajitha Krishnan 1 and D.Venkataraman 1 1 Computer Vision and Image Processing, Department of Computer Science, Amrita Vishwa Vidyapeetham University, Coimbatore,

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machine Learning & Perception Instructor: Tony Jebara Topic 1 Introduction, researchy course, latest papers Going beyond simple machine learning Perception, strange spaces, images, time, behavior

More information

ERROR COVARIANCE ESTIMATION IN OBJECT TRACKING SCENARIOS USING KALMAN FILTER

ERROR COVARIANCE ESTIMATION IN OBJECT TRACKING SCENARIOS USING KALMAN FILTER ERROR COVARIANCE ESTIMATION IN OBJECT TRACKING SCENARIOS USING KALMAN FILTER Mr K V Sriharsha K.V 1, Dr N V Rao 2 1 Assistant Professor, Department of Information Technology, CVR College of Engg (India)

More information

Unsupervised Learning: K- Means & PCA

Unsupervised Learning: K- Means & PCA Unsupervised Learning: K- Means & PCA Unsupervised Learning Supervised learning used labeled data pairs (x, y) to learn a func>on f : X Y But, what if we don t have labels? No labels = unsupervised learning

More information

Linear Subspace Models

Linear Subspace Models Linear Subspace Models Goal: Explore linear models of a data set. Motivation: A central question in vision concerns how we represent a collection of data vectors. The data vectors may be rasterized images,

More information

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017 EKF and SLAM McGill COMP 765 Sept 18 th, 2017 Outline News and information Instructions for paper presentations Continue on Kalman filter: EKF and extension to mapping Example of a real mapping system:

More information

Temporal Factorization Vs. Spatial Factorization

Temporal Factorization Vs. Spatial Factorization Temporal Factorization Vs. Spatial Factorization Lihi Zelnik-Manor 1 and Michal Irani 2 1 California Institute of Technology, Pasadena CA, USA, lihi@caltech.edu, WWW home page: http://www.vision.caltech.edu/lihi

More information

Principal Component Analysis

Principal Component Analysis B: Chapter 1 HTF: Chapter 1.5 Principal Component Analysis Barnabás Póczos University of Alberta Nov, 009 Contents Motivation PCA algorithms Applications Face recognition Facial expression recognition

More information

Example: Face Detection

Example: Face Detection Announcements HW1 returned New attendance policy Face Recognition: Dimensionality Reduction On time: 1 point Five minutes or more late: 0.5 points Absent: 0 points Biometrics CSE 190 Lecture 14 CSE190,

More information

Image Similarity Test Using Eigenface Calculation

Image Similarity Test Using Eigenface Calculation 2017 IJSRST Volume 3 Issue 6 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Image Similarity Test Using Eigenface Calculation Nadya Andhika Putri 1, Andysah Putera

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Data Informatics. Seon Ho Kim, Ph.D.

Data Informatics. Seon Ho Kim, Ph.D. Data Informatics Seon Ho Kim, Ph.D. seonkim@usc.edu What is Machine Learning? Overview slides by ETHEM ALPAYDIN Why Learn? Learn: programming computers to optimize a performance criterion using example

More information

Machine Learning! in just a few minutes. Jan Peters Gerhard Neumann

Machine Learning! in just a few minutes. Jan Peters Gerhard Neumann Machine Learning! in just a few minutes Jan Peters Gerhard Neumann 1 Purpose of this Lecture Foundations of machine learning tools for robotics We focus on regression methods and general principles Often

More information

2D Image Processing (Extended) Kalman and particle filter

2D Image Processing (Extended) Kalman and particle filter 2D Image Processing (Extended) Kalman and particle filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

Reconnaissance d objetsd et vision artificielle

Reconnaissance d objetsd et vision artificielle Reconnaissance d objetsd et vision artificielle http://www.di.ens.fr/willow/teaching/recvis09 Lecture 6 Face recognition Face detection Neural nets Attention! Troisième exercice de programmation du le

More information

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x =

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x = Linear Algebra Review Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1 x x = 2. x n Vectors of up to three dimensions are easy to diagram.

More information

CS 231A Section 1: Linear Algebra & Probability Review

CS 231A Section 1: Linear Algebra & Probability Review CS 231A Section 1: Linear Algebra & Probability Review 1 Topics Support Vector Machines Boosting Viola-Jones face detector Linear Algebra Review Notation Operations & Properties Matrix Calculus Probability

More information

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Objectives: Learn to recognize and describe periodic motion. Develop some intuition for the principle of conservation of energy in periodic systems. Use

More information

Biometrics: Introduction and Examples. Raymond Veldhuis

Biometrics: Introduction and Examples. Raymond Veldhuis Biometrics: Introduction and Examples Raymond Veldhuis 1 Overview Biometric recognition Face recognition Challenges Transparent face recognition Large-scale identification Watch list Anonymous biometrics

More information

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Recognition Using Class Specific Linear Projection Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Articles Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection, Peter N. Belhumeur,

More information

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang CS 231A Section 1: Linear Algebra & Probability Review Kevin Tang Kevin Tang Section 1-1 9/30/2011 Topics Support Vector Machines Boosting Viola Jones face detector Linear Algebra Review Notation Operations

More information

Dimensionality Reduction

Dimensionality Reduction Dimensionality Reduction Le Song Machine Learning I CSE 674, Fall 23 Unsupervised learning Learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification of

More information

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014 Principal Component Analysis and Singular Value Decomposition Volker Tresp, Clemens Otte Summer 2014 1 Motivation So far we always argued for a high-dimensional feature space Still, in some cases it makes

More information

Principal Components Analysis

Principal Components Analysis Principal Components Analysis Santiago Paternain, Aryan Mokhtari and Alejandro Ribeiro March 29, 2018 At this point we have already seen how the Discrete Fourier Transform and the Discrete Cosine Transform

More information

The Mathematics of Facial Recognition

The Mathematics of Facial Recognition William Dean Gowin Graduate Student Appalachian State University July 26, 2007 Outline EigenFaces Deconstruct a known face into an N-dimensional facespace where N is the number of faces in our data set.

More information

A Novel Activity Detection Method

A Novel Activity Detection Method A Novel Activity Detection Method Gismy George P.G. Student, Department of ECE, Ilahia College of,muvattupuzha, Kerala, India ABSTRACT: This paper presents an approach for activity state recognition of

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Review of Edge Detectors #2 Today s Lecture Interest Points Detection What do we mean with Interest Point Detection in an Image Goal:

More information

Face Recognition Technique Based on Eigenfaces Method

Face Recognition Technique Based on Eigenfaces Method Proceeding of 3 rd scientific conference of the College of Science, University of Baghdad Ali and AL-Phalahi 24 Proceeding to 26 arch of 2009 3 rd scientific conference, 2009, PP 781-786 Face Recognition

More information

Midterm Exam. CS283, Computer Vision Harvard University. Nov. 20, 2009

Midterm Exam. CS283, Computer Vision Harvard University. Nov. 20, 2009 Midterm Exam CS283, Computer Vision Harvard University Nov. 2, 29 You have two hours to complete this exam. Show all of your work to get full credit, and write your work in the blue books provided. Work

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

Internet Video Search

Internet Video Search Internet Video Search Arnold W.M. Smeulders & Cees Snoek CWI & UvA Overview Image and Video Search Lecture 1 Lecture 2 Lecture 3 visual search, the problem color-spatial-textural-temporal features measures

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

Global Behaviour Inference using Probabilistic Latent Semantic Analysis

Global Behaviour Inference using Probabilistic Latent Semantic Analysis Global Behaviour Inference using Probabilistic Latent Semantic Analysis Jian Li, Shaogang Gong, Tao Xiang Department of Computer Science Queen Mary College, University of London, London, E1 4NS, UK {jianli,

More information

Planning and Optimal Control

Planning and Optimal Control Planning and Optimal Control 1. Markov Models Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany 1 / 22 Syllabus Tue.

More information

STATS 306B: Unsupervised Learning Spring Lecture 12 May 7

STATS 306B: Unsupervised Learning Spring Lecture 12 May 7 STATS 306B: Unsupervised Learning Spring 2014 Lecture 12 May 7 Lecturer: Lester Mackey Scribe: Lan Huong, Snigdha Panigrahi 12.1 Beyond Linear State Space Modeling Last lecture we completed our discussion

More information

Student s guide CESAR Science Case Rotation period of the Sun and the sunspot activity

Student s guide CESAR Science Case Rotation period of the Sun and the sunspot activity Student s guide CESAR Science Case Rotation period of the Sun and the sunspot activity Name Date Introduction As you may know, the Sun is a luminous globe among many, consisting of hot gas that provides

More information

Determining Constant Optical Flow

Determining Constant Optical Flow Determining Constant Optical Flow Berthold K.P. Horn Copyright 003 The original optical flow algorithm [1] dealt with a flow field that could vary from place to place in the image, as would typically occur

More information

Karhunen-Loève Transform KLT. JanKees van der Poel D.Sc. Student, Mechanical Engineering

Karhunen-Loève Transform KLT. JanKees van der Poel D.Sc. Student, Mechanical Engineering Karhunen-Loève Transform KLT JanKees van der Poel D.Sc. Student, Mechanical Engineering Karhunen-Loève Transform Has many names cited in literature: Karhunen-Loève Transform (KLT); Karhunen-Loève Decomposition

More information

Face Recognition Technique Based on Eigenfaces Method

Face Recognition Technique Based on Eigenfaces Method Face Recognition Technique Based on Eigenfaces ethod S Ali * and KA AL-Phalahi ** * Remote Sensing Unit, College of Science, University of Baghdad, Iraq, Baghdad, Al- Jaderyia ** Department of Computer

More information

COS 429: COMPUTER VISON Face Recognition

COS 429: COMPUTER VISON Face Recognition COS 429: COMPUTER VISON Face Recognition Intro to recognition PCA and Eigenfaces LDA and Fisherfaces Face detection: Viola & Jones (Optional) generic object models for faces: the Constellation Model Reading:

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Predicting Social Interactions for Visual Tracking

Predicting Social Interactions for Visual Tracking XU YAN, ET AL: PREDICTING SOCIAL INTERACTIONS FOR VISUAL TRACKING 1 Predicting Social Interactions for Visual Tracking Xu Yan xyan6@uh.edu Ioannis A. Kakadiaris ioannisk@uh.edu Shishir K. Shah sshah@central.uh.edu

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016 CPSC 340: Machine Learning and Data Mining More PCA Fall 2016 A2/Midterm: Admin Grades/solutions posted. Midterms can be viewed during office hours. Assignment 4: Due Monday. Extra office hours: Thursdays

More information

Introduction to Signal Processing

Introduction to Signal Processing to Signal Processing Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Intelligent Systems for Pattern Recognition Signals = Time series Definitions Motivations A sequence

More information