PCA FACE RECOGNITION

Size: px
Start display at page:

Download "PCA FACE RECOGNITION"

Transcription

1 PCA FACE RECOGNITION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Shree Nayar (Columbia) including their own slides.

2 Goal of Principal Components Analysis We wish to explain/summarize the underlying variance-covariance structure of a large set of variables through a few linear combinations of these variables.

3 Rotate Coordinate Axes Measure M random variables X 1,,X in the N-dimensional Cartesian coordinate system. Find N orthogonal axes in the directions of greatest variability. M M > N or M < N x_2 x_1 This is accomplished by rotating the original axes.

4 Algebraic Interpretation (1D) Given M points in an N dimensional space how does one project on to a (say) one-dimensional space? Choose the line that fits the data so that the points are maximally spread out along the line.

5 Assume the line passed through zero, which means, the mean of all points is already subtracted. We want the axes x such that to the covariance (zero mean) of the points (given) is decreasing as we go along the axes. Bx is (MxN)(Nx1) As we go from the first x to the N-s x each axis correspond to a lesser variance of the points in this direction. The last x corresponds to TLS minimizing the distance to the rest of the space.

6 Algebraic Solution The algebraic solution starts with the relation below and have N solutions in x. (L2 norm) x T B T Bx subject to x T x = 1 orthogonal x-s B is the matrix with points along the rows, MxN,... nr. of points / coor. per point T (point i)... x the unknown line (column vector), Nx1.

7 Algebraic Solution Rewriting this: x T B T Bx = e = e x T x = x T (ex) <=> x T (B T Bx ex) = 0 e is a scalar The value of x T B T Bx is obtained each time satisfying B T Bx=ex x x = 1 Find the e-s and associated x-s such that the matrix B T B when applied to x yields same x, scaled by e. x are eigenvectors and e are eigenvalues All eigenvectors are mutually orthogonal and if distinct, form a new N-dimensional basis. T

8 Problem: Size of Covariance Matrix A Each data point has N coordinates T and the covariance matrix is B B = A with the size of covariance matrix A being NxN and the number of eigenvectors is N. Example: N = 256x256 pixels = in vector form the size of A will be x and the number of eigenvectors is Typically, only eigenvectors suffice. So, this method is very inefficient!

9 Efficient Computation of Eigenvectors If B is MxN and M<<N then A=B T B is NxN >> MxM M number of images, N number of coor. per point use BB T instead; eigenvector of BB T is easily converted to that of B T B (BB T ) y = e y => B T (BB T ) y = e (B T y) => (B T B)(B T y) = e (B T y) => B T y is the eigenvector of B T B

10 PCA Ignoring Eigenvectors You can decide to ignore the components of lesser significance. You will lose some information, but if the eigenvalues are small, you don t lose more than 2-5%. N dimensions in your data calculate N eigenvectors and eigenvalues choose only the first p eigenvectors final data set has only p dimensions. The matrix B goes from M x N to M x p where M is the number of points.

11 2D example of PCA what we have to achieve

12 Covariance values are not affected by subtracting the mean values. Step 1

13 Step 2 Calculate the 2x2 covariance matrix Since the nondiagonal elements in this covariance matrix are all positive, we should expect that both the x and y variables increase together.

14 Step 3 Calculate the eigenvectors and eigenvalues of the covariance matrix. eigenvalues eigenvectors first second The eigenvalues are in decreasing order.

15 Principal components overlayed. Here the mean is still substracted.

16 1D Reconstruction Along the larger eigenvector.

17 Face Recognition Digital photography Surveillance Album organization Person tracking/id. Emotions and expressions Security/warfare Teleconferencing etc.

18 Space of Faces An image is a point in a high dimensional space. For example: an N x M image is a point in R NM a point in the vectorized space. [Thanks to Chuck Dyer, Steve Seitz, Nishino]

19 Image space Face space a linear approach Computes k-dim subspace such that the projection of the data points onto the subspace has the largest variance among all k-dim subspaces. Maximize the scatter of the training images in face space.

20 Eigenfaces [Turk and Pentland 91] Images in the possible set The original vector space is Z dimensional. {xˆ} are highly correlated. Compress them to a low-dimensional subspace that captures key appearance characteristics of the visual features. Use PCA for estimating the subspace. Two faces are compared in this subspace by measuring the euclidean distance between them. Among the first successful algorithms outside computer vision. It was a linear approach. Was improved later.

21 Projecting onto the Eigenfaces v is Zx1 dimensional i The eigenfaces v 1,..., v K span the space of faces A face is converted to eigenface coordinates by

22 Training Algorithm here N images and Z dim. vec. space (not M images!!) 1. Align training images x 1, x 2,, x N Note that each image is formulated into a long vector! 2. Compute average face u = 1/N Σ x i 3. Compute the difference image φ i = x i u i = 1,..., N

23 Algorithm Each of the N "points" is a column not a row!! 4. Compute the covariance matrix (total scatter matrix) S T = (1/N) Σ φ i φ i T = BB T B=[φ 1, φ 2 φ N ]. 5. Compute the eigenvectors of the covariance matrix S T. 6. Compute training projections in subspace a1, a2... a k << Z Testing 1. Take query image X. 2. Project X into eigenface space, W = {eigenfaces}, and compute projections ω = W(1...k)(X u). 3. Compare projections ω with all training N projections. k

24 Reconstruction and Errors k = 4 k = 200 k = 400 Only selecting the top k eigenfaces reduces the dimensionality. Fewer eigenfaces result in more information loss, and less discrimination between faces.

25 Limitations PCA assumes that the data has a distribution which has mean µ, covariance matrix Σ. Example: The shape of this dataset is not well described by its principal components. Credit slide: S. Lazebnik

26 The spaces of faces is not convex.

27 The spaces of faces is not convex. The average of two faces is not another face.

28 How Humans Detect Faces? We do not know yet! Some Conjectures: Memory-prediction model Match faces with the face model in memory. Parallel computing Detect faces at multiple location/scale combination.

29 Face Detection in Computers Basic Idea: Slide windows of different sizes across image. At each location match the window to a face model. I.1

30 Basic Framework For each window Extract Match Features F Face Model Yes / No I.12 Features: Which features represent faces well? Classifier: How to construct/match the face model?

31 Characteristics of Good Features Discriminate Face/Non-Face I.7 I.10 I.8 I.12 I.9 I.11 Extremely Fast to Compute Need to evaluate tens of thousands windows in an image.

32 The Viola/Jones Face Detector P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), A paradigmatic method for real-time object detection. Training is slow, but detection is very fast. Three ideas interact Integral images for fast feature evaluation. Boosting for feature selection. Attentional cascade for fast rejection of nonface windows.

33 Integral Image A table that holds the sum of all pixel values to the left and top of a given pixel, inclusive. For example: Image Integral Image

34 Integral Image A table that holds the sum of all pixel values to the left and top of a given pixel, inclusive. For example: Image Integral Image

35 Integral Image A table that holds the sum of all pixel values to the left and top of a given pixel, inclusive. For example: Image Integral Image

36 Integral Image A table that holds the sum of all pixel values to the left and top of a given pixel, inclusive. For example: Image Integral Image

37 Summation Within a Rectangle Fast summations of arbitrary rectangles using integral images Image Integral Image (II)

38 Summation Within a Rectangle Fast summations of arbitrary rectangles using integral images P Sum = II P + Image = Integral Image (II)

39 Summation Within a Rectangle Fast summations of arbitrary rectangles using integral images Q P Image Sum = II P II Q + = Integral Image (II)

40 Summation Within a Rectangle Fast summations of arbitrary rectangles using integral images Q S P Image Integral Image (II) Sum = II P II Q II S + =

41 Summation Within a Rectangle Can be computed in constant time with only 4 references R Q S P Image Integral Image (II) Sum = II P II Q II S + II R = = 1521

42 Boosting Designing a strong classifier from a set of weak classifier. Background Decision boundary Features Computer screen In some feature space.

43 Boosting Defines a classifier using an additive model: Strong classifier Features vector Weight Weak classifier We need to define a family of weak classifiers. form a family of weak classifiers. A simple algorithm for learning robust classifiers.

44 Boosting - mathematics Example of a weak learner value of rectangle feature h ( x) j 1 if f j( x) j 0 otherwise threshold Final strong classifier T 1 1 h( x) hx ( ) 2 0 otherwise t 1 t t t 1 t T

45 A weak classifier Four kind of rectangle filters Value = (pixels in white area) (pixels in black area) called Haar filters (features). Credit slide: S. Lazebnik

46 Haar Response using Integral Image T R Q S P O Image Integral Image (II) V A = (pixels in white area) (pixels in black area) = (II O II T + II R II S ) (II P II Q + II T II O ) = ( ) ( ) = 64

47 Face Detection at Different Scales Use filters of different sizes to find faces at corresponding scale

48 Weak classifier will behave this way......evaluate each rectangle filter on each window and on each example. 1 (,1) x1 ( x2,1) ( x3,0) x4 (,0) ( 5,0) x 6 ( x,0) ( x, y ) n n h ( x) j 1 if f j( x) j 0 otherwise threshold a weak classifier, total of T weak classifiers

49 Viola-Jones detector: features Considering all possible filter parameters: position, scale(1.25), and type. 180,000+ possible features associated on 12 scales. At base 24 x 24 windows. At learning a 24x24 window is a face if it is a positive window and a nonface if it is a negative window, Which subset of these features should we use to determine if a window has a face?

50 The Viola-Jones detector used a simple boosting method the AdaBoost process. For a single feature, T weak classifiers. (Freund and Schapire, 1995) Learning Negative (more) and positive image examples. Total n images. For a t = 1,...,T find from the t weak classifier which has the minimum training error. At each iteration: The weights of incorrectly classified example are decreased and the correctly classified example increased. The t+1 step tries to correct wrongly classified images. The error decreases almost every step. Weak Class. h_{t+1}(x) The final strong classifier have the T weights inversely proportional to the t = 1,...,T training errors. Testing New images.

51 Boosting for face detection A 200-feature classifier can yield 95% detection rate and a false positive rate of 1 in Not good enough! We want 1 in 1,000, classifiers ~10 operations. Receiver operating characteristic (ROC) curve

52 Boosting: pros and cons Advantages Integrates classification with feature selection. Complexity of training is linear in the number of training examples. Flexibility in the choice of weak learners and boosting schemes. Easy to implement. Disadvantages Needs many training (pos./neg.) examples. Often found to work less well than alternative discriminative classifier, like support vector machine (SVM), especially for many class problems. Slide credit: S. Lazebnik

53 Cascading classifiers for detection Form a cascade with low false negative rates early on. Apply less accurate but faster classifiers first to discard windows that clearly appear to be negative. Kristen Grauman

54 Attentional cascade We start with simple classifiers which reject a few of the negative windows while detecting almost all positive windows. Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on. The classifier have progressively lower false positive rates. The detection and false positive rates of the cascade are found by multiplying the individual rates. -6 example: detection rate 0.9 false positive rate ~10 can be achieved by a 10-stage cascade where each stage d.r and f.p.r. 0.3.

55 Viola-Jones detector: summary Train cascade of classifiers with AdaBoost Faces New image Non-faces Selected features, thresholds, and weights 384x288 new faces [Implementation available in OpenCV: Kristen Grauman

56 The implemented system Training Data 4916 faces All frontal, rescaled to 24x24 pixels per face 350 million non-faces in 9500 non-face images Faces are normalized Scale, translation Many variations Across individuals Illumination Pose Real-time detector using 38 layer cascade, total of 6060 features About a week of training. (~2002, 466Mhz) (Most slides from Paul Viola)

57 The two curves mean different amount of windows examined. 75million/18million In each layer max non-faces were collected. First layer 2 features; rejects 50% non-faces, accepts close to 100% faces. Second layer 10 features; 80% non-faces, ~100% faces. Third and fourth layer 25 features... Average of 10 features evaluated per window on test set.

58 Output of VJ Face Detector: Test Images

59 Facial Feature Localization Profile Detection Male vs. female

60 Face recognition is far from perfect. In a face is moved, say, 30 degrees off frontal, the performance decreases a lot. There are many face recognition system by now, e.g., face recognition in secure entrance. They are much faster and with many more faces in the database. But they are not perfect and, say, the first 20 frontal face images are examed for a querry.

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

COS 429: COMPUTER VISON Face Recognition

COS 429: COMPUTER VISON Face Recognition COS 429: COMPUTER VISON Face Recognition Intro to recognition PCA and Eigenfaces LDA and Fisherfaces Face detection: Viola & Jones (Optional) generic object models for faces: the Constellation Model Reading:

More information

Reconnaissance d objetsd et vision artificielle

Reconnaissance d objetsd et vision artificielle Reconnaissance d objetsd et vision artificielle http://www.di.ens.fr/willow/teaching/recvis09 Lecture 6 Face recognition Face detection Neural nets Attention! Troisième exercice de programmation du le

More information

Lecture: Face Recognition

Lecture: Face Recognition Lecture: Face Recognition Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 12-1 What we will learn today Introduction to face recognition The Eigenfaces Algorithm Linear

More information

2D Image Processing Face Detection and Recognition

2D Image Processing Face Detection and Recognition 2D Image Processing Face Detection and Recognition Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Face recognition Computer Vision Spring 2018, Lecture 21

Face recognition Computer Vision Spring 2018, Lecture 21 Face recognition http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 21 Course announcements Homework 6 has been posted and is due on April 27 th. - Any questions about the homework?

More information

CS 231A Section 1: Linear Algebra & Probability Review

CS 231A Section 1: Linear Algebra & Probability Review CS 231A Section 1: Linear Algebra & Probability Review 1 Topics Support Vector Machines Boosting Viola-Jones face detector Linear Algebra Review Notation Operations & Properties Matrix Calculus Probability

More information

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang CS 231A Section 1: Linear Algebra & Probability Review Kevin Tang Kevin Tang Section 1-1 9/30/2011 Topics Support Vector Machines Boosting Viola Jones face detector Linear Algebra Review Notation Operations

More information

Lecture 13 Visual recognition

Lecture 13 Visual recognition Lecture 13 Visual recognition Announcements Silvio Savarese Lecture 13-20-Feb-14 Lecture 13 Visual recognition Object classification bag of words models Discriminative methods Generative methods Object

More information

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition ace Recognition Identify person based on the appearance of face CSED441:Introduction to Computer Vision (2017) Lecture10: Subspace Methods and ace Recognition Bohyung Han CSE, POSTECH bhhan@postech.ac.kr

More information

Boosting: Algorithms and Applications

Boosting: Algorithms and Applications Boosting: Algorithms and Applications Lecture 11, ENGN 4522/6520, Statistical Pattern Recognition and Its Applications in Computer Vision ANU 2 nd Semester, 2008 Chunhua Shen, NICTA/RSISE Boosting Definition

More information

Deriving Principal Component Analysis (PCA)

Deriving Principal Component Analysis (PCA) -0 Mathematical Foundations for Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deriving Principal Component Analysis (PCA) Matt Gormley Lecture 11 Oct.

More information

Lecture 17: Face Recogni2on

Lecture 17: Face Recogni2on Lecture 17: Face Recogni2on Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei-Fei Li Stanford Vision Lab Lecture 17-1! What we will learn today Introduc2on to face recogni2on Principal Component Analysis

More information

Example: Face Detection

Example: Face Detection Announcements HW1 returned New attendance policy Face Recognition: Dimensionality Reduction On time: 1 point Five minutes or more late: 0.5 points Absent: 0 points Biometrics CSE 190 Lecture 14 CSE190,

More information

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision)

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision) CS4495/6495 Introduction to Computer Vision 8B-L2 Principle Component Analysis (and its use in Computer Vision) Wavelength 2 Wavelength 2 Principal Components Principal components are all about the directions

More information

Lecture 17: Face Recogni2on

Lecture 17: Face Recogni2on Lecture 17: Face Recogni2on Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei-Fei Li Stanford Vision Lab Lecture 17-1! What we will learn today Introduc2on to face recogni2on Principal Component Analysis

More information

Robot Image Credit: Viktoriya Sukhanova 123RF.com. Dimensionality Reduction

Robot Image Credit: Viktoriya Sukhanova 123RF.com. Dimensionality Reduction Robot Image Credit: Viktoriya Sukhanova 13RF.com Dimensionality Reduction Feature Selection vs. Dimensionality Reduction Feature Selection (last time) Select a subset of features. When classifying novel

More information

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation)

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) PCA transforms the original input space into a lower dimensional space, by constructing dimensions that are linear combinations

More information

Image Analysis. PCA and Eigenfaces

Image Analysis. PCA and Eigenfaces Image Analysis PCA and Eigenfaces Christophoros Nikou cnikou@cs.uoi.gr Images taken from: D. Forsyth and J. Ponce. Computer Vision: A Modern Approach, Prentice Hall, 2003. Computer Vision course by Svetlana

More information

ECE 661: Homework 10 Fall 2014

ECE 661: Homework 10 Fall 2014 ECE 661: Homework 10 Fall 2014 This homework consists of the following two parts: (1) Face recognition with PCA and LDA for dimensionality reduction and the nearest-neighborhood rule for classification;

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Principal Component Analysis Barnabás Póczos Contents Motivation PCA algorithms Applications Some of these slides are taken from Karl Booksh Research

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision A/Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh Lecture 06 Object Recognition Objectives To understand the concept of image based object recognition To learn how to match images

More information

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Eigenface and

More information

Real Time Face Detection and Recognition using Haar - Based Cascade Classifier and Principal Component Analysis

Real Time Face Detection and Recognition using Haar - Based Cascade Classifier and Principal Component Analysis Real Time Face Detection and Recognition using Haar - Based Cascade Classifier and Principal Component Analysis Sarala A. Dabhade PG student M. Tech (Computer Egg) BVDU s COE Pune Prof. Mrunal S. Bewoor

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Linear Subspace Models

Linear Subspace Models Linear Subspace Models Goal: Explore linear models of a data set. Motivation: A central question in vision concerns how we represent a collection of data vectors. The data vectors may be rasterized images,

More information

Principal Component Analysis

Principal Component Analysis B: Chapter 1 HTF: Chapter 1.5 Principal Component Analysis Barnabás Póczos University of Alberta Nov, 009 Contents Motivation PCA algorithms Applications Face recognition Facial expression recognition

More information

20 Unsupervised Learning and Principal Components Analysis (PCA)

20 Unsupervised Learning and Principal Components Analysis (PCA) 116 Jonathan Richard Shewchuk 20 Unsupervised Learning and Principal Components Analysis (PCA) UNSUPERVISED LEARNING We have sample points, but no labels! No classes, no y-values, nothing to predict. Goal:

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Dimensionality Reduction Using PCA/LDA. Hongyu Li School of Software Engineering TongJi University Fall, 2014

Dimensionality Reduction Using PCA/LDA. Hongyu Li School of Software Engineering TongJi University Fall, 2014 Dimensionality Reduction Using PCA/LDA Hongyu Li School of Software Engineering TongJi University Fall, 2014 Dimensionality Reduction One approach to deal with high dimensional data is by reducing their

More information

Outline: Ensemble Learning. Ensemble Learning. The Wisdom of Crowds. The Wisdom of Crowds - Really? Crowd wiser than any individual

Outline: Ensemble Learning. Ensemble Learning. The Wisdom of Crowds. The Wisdom of Crowds - Really? Crowd wiser than any individual Outline: Ensemble Learning We will describe and investigate algorithms to Ensemble Learning Lecture 10, DD2431 Machine Learning A. Maki, J. Sullivan October 2014 train weak classifiers/regressors and how

More information

Dr. Ulas Bagci

Dr. Ulas Bagci CAP5415-Computer Vision Lecture 18-Face Recogni;on Dr. Ulas Bagci bagci@ucf.edu 1 Lecture 18 Face Detec;on and Recogni;on Detec;on Recogni;on Sally 2 Why wasn t Massachusetss Bomber iden6fied by the Massachuse8s

More information

CS 4495 Computer Vision Principle Component Analysis

CS 4495 Computer Vision Principle Component Analysis CS 4495 Computer Vision Principle Component Analysis (and it s use in Computer Vision) Aaron Bobick School of Interactive Computing Administrivia PS6 is out. Due *** Sunday, Nov 24th at 11:55pm *** PS7

More information

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Recognition Using Class Specific Linear Projection Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Articles Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection, Peter N. Belhumeur,

More information

Two-Layered Face Detection System using Evolutionary Algorithm

Two-Layered Face Detection System using Evolutionary Algorithm Two-Layered Face Detection System using Evolutionary Algorithm Jun-Su Jang Jong-Hwan Kim Dept. of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology (KAIST),

More information

Eigenimaging for Facial Recognition

Eigenimaging for Facial Recognition Eigenimaging for Facial Recognition Aaron Kosmatin, Clayton Broman December 2, 21 Abstract The interest of this paper is Principal Component Analysis, specifically its area of application to facial recognition

More information

Face Detection and Recognition

Face Detection and Recognition Face Detection and Recognition Face Recognition Problem Reading: Chapter 18.10 and, optionally, Face Recognition using Eigenfaces by M. Turk and A. Pentland Queryimage face query database Face Verification

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Modeling Classes of Shapes Suppose you have a class of shapes with a range of variations: System 2 Overview

Modeling Classes of Shapes Suppose you have a class of shapes with a range of variations: System 2 Overview 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 Modeling Classes of Shapes Suppose you have a class of shapes with a range of variations: System processes System Overview Previous Systems:

More information

Covariance and Principal Components

Covariance and Principal Components COMP3204/COMP6223: Computer Vision Covariance and Principal Components Jonathon Hare jsh2@ecs.soton.ac.uk Variance and Covariance Random Variables and Expected Values Mathematicians talk variance (and

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Salvador Dalí, Galatea of the Spheres CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy and Lisa Zhang Some slides from Derek Hoiem and Alysha

More information

Eigenface-based facial recognition

Eigenface-based facial recognition Eigenface-based facial recognition Dimitri PISSARENKO December 1, 2002 1 General This document is based upon Turk and Pentland (1991b), Turk and Pentland (1991a) and Smith (2002). 2 How does it work? The

More information

COMP 408/508. Computer Vision Fall 2017 PCA for Recognition

COMP 408/508. Computer Vision Fall 2017 PCA for Recognition COMP 408/508 Computer Vision Fall 07 PCA or Recognition Recall: Color Gradient by PCA v λ ( G G, ) x x x R R v, v : eigenvectors o D D with v ^v (, ) x x λ, λ : eigenvalues o D D with λ >λ v λ ( B B, )

More information

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection Instructor: Herke van Hoof (herke.vanhoof@cs.mcgill.ca) Based on slides by:, Jackie Chi Kit Cheung Class web page:

More information

Dimensionality reduction

Dimensionality reduction Dimensionality Reduction PCA continued Machine Learning CSE446 Carlos Guestrin University of Washington May 22, 2013 Carlos Guestrin 2005-2013 1 Dimensionality reduction n Input data may have thousands

More information

CS 559: Machine Learning Fundamentals and Applications 5 th Set of Notes

CS 559: Machine Learning Fundamentals and Applications 5 th Set of Notes CS 559: Machine Learning Fundamentals and Applications 5 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 25 Project:

More information

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface Image Analysis & Retrieval Lec 14 Eigenface and Fisherface Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu Z. Li, Image Analysis & Retrv, Spring

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

Unsupervised Learning: K- Means & PCA

Unsupervised Learning: K- Means & PCA Unsupervised Learning: K- Means & PCA Unsupervised Learning Supervised learning used labeled data pairs (x, y) to learn a func>on f : X Y But, what if we don t have labels? No labels = unsupervised learning

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Pattern Recognition 2

Pattern Recognition 2 Pattern Recognition 2 KNN,, Dr. Terence Sim School of Computing National University of Singapore Outline 1 2 3 4 5 Outline 1 2 3 4 5 The Bayes Classifier is theoretically optimum. That is, prob. of error

More information

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU,

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU, Eric Xing Eric Xing @ CMU, 2006-2010 1 Machine Learning Data visualization and dimensionality reduction Eric Xing Lecture 7, August 13, 2010 Eric Xing Eric Xing @ CMU, 2006-2010 2 Text document retrieval/labelling

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface

Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface Zhu Li Dept of CSEE, UMKC http://l.web.umkc.edu/lizhu Office Hour: Tue/Thr 2:30-4pm@FH560E, Contact:

More information

Karhunen-Loève Transform KLT. JanKees van der Poel D.Sc. Student, Mechanical Engineering

Karhunen-Loève Transform KLT. JanKees van der Poel D.Sc. Student, Mechanical Engineering Karhunen-Loève Transform KLT JanKees van der Poel D.Sc. Student, Mechanical Engineering Karhunen-Loève Transform Has many names cited in literature: Karhunen-Loève Transform (KLT); Karhunen-Loève Decomposition

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to:

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to: System 2 : Modelling & Recognising Modelling and Recognising Classes of Classes of Shapes Shape : PDM & PCA All the same shape? System 1 (last lecture) : limited to rigidly structured shapes System 2 :

More information

1 Principal Components Analysis

1 Principal Components Analysis Lecture 3 and 4 Sept. 18 and Sept.20-2006 Data Visualization STAT 442 / 890, CM 462 Lecture: Ali Ghodsi 1 Principal Components Analysis Principal components analysis (PCA) is a very popular technique for

More information

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Corners, Blobs & Descriptors With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Motivation: Build a Panorama M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 How do we build panorama?

More information

Face Recognition and Biometric Systems

Face Recognition and Biometric Systems The Eigenfaces method Plan of the lecture Principal Components Analysis main idea Feature extraction by PCA face recognition Eigenfaces training feature extraction Literature M.A.Turk, A.P.Pentland Face

More information

Subspace Analysis for Facial Image Recognition: A Comparative Study. Yongbin Zhang, Lixin Lang and Onur Hamsici

Subspace Analysis for Facial Image Recognition: A Comparative Study. Yongbin Zhang, Lixin Lang and Onur Hamsici Subspace Analysis for Facial Image Recognition: A Comparative Study Yongbin Zhang, Lixin Lang and Onur Hamsici Outline 1. Subspace Analysis: Linear vs Kernel 2. Appearance-based Facial Image Recognition.

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

A Tutorial on Data Reduction. Principal Component Analysis Theoretical Discussion. By Shireen Elhabian and Aly Farag

A Tutorial on Data Reduction. Principal Component Analysis Theoretical Discussion. By Shireen Elhabian and Aly Farag A Tutorial on Data Reduction Principal Component Analysis Theoretical Discussion By Shireen Elhabian and Aly Farag University of Louisville, CVIP Lab November 2008 PCA PCA is A backbone of modern data

More information

Face Recognition Using Eigenfaces

Face Recognition Using Eigenfaces Face Recognition Using Eigenfaces Prof. V.P. Kshirsagar, M.R.Baviskar, M.E.Gaikwad, Dept. of CSE, Govt. Engineering College, Aurangabad (MS), India. vkshirsagar@gmail.com, madhumita_baviskar@yahoo.co.in,

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015 CS 3710: Visual Recognition Describing Images with Features Adriana Kovashka Department of Computer Science January 8, 2015 Plan for Today Presentation assignments + schedule changes Image filtering Feature

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY [Gaurav, 2(1): Jan., 2013] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Face Identification & Detection Using Eigenfaces Sachin.S.Gurav *1, K.R.Desai 2 *1

More information

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels Machine Learning: Basis and Wavelet 32 157 146 204 + + + + + - + - 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 7 22 38 191 17 83 188 211 71 167 194 207 135 46 40-17 18 42 20 44 31 7 13-32 + + - - +

More information

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces Singular Value Decomposition This handout is a review of some basic concepts in linear algebra For a detailed introduction, consult a linear algebra text Linear lgebra and its pplications by Gilbert Strang

More information

Visual Object Detection

Visual Object Detection Visual Object Detection Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu 1 / 47 Visual Object

More information

Eigenfaces. Face Recognition Using Principal Components Analysis

Eigenfaces. Face Recognition Using Principal Components Analysis Eigenfaces Face Recognition Using Principal Components Analysis M. Turk, A. Pentland, "Eigenfaces for Recognition", Journal of Cognitive Neuroscience, 3(1), pp. 71-86, 1991. Slides : George Bebis, UNR

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 18: Principal Component Analysis (PCA) Dr. Yanjun Qi. University of Virginia

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 18: Principal Component Analysis (PCA) Dr. Yanjun Qi. University of Virginia UVA CS 6316/4501 Fall 2016 Machine Learning Lecture 18: Principal Component Analysis (PCA) Dr. Yanjun Qi University of Virginia Department of Computer Science 1 Kmeans + GMM + Hierarchical next aper classificaron?

More information

ISSN: Jurnal. Ilmiah. eknik. omputer. Kelompok Kellmuan Teknlk Komputer Sekolah Teknlk Elektro a Informatlka Instltut Teknologl Bandung

ISSN: Jurnal. Ilmiah. eknik. omputer. Kelompok Kellmuan Teknlk Komputer Sekolah Teknlk Elektro a Informatlka Instltut Teknologl Bandung ISSN: 2085-6407 Jurnal eknik Ilmiah omputer zo 3 o ~ N N o o Kelompok Kellmuan Teknlk Komputer Sekolah Teknlk Elektro a Informatlka Instltut Teknologl Bandung Jurnalllmiah Teknik Komputer, Vol. 1, No.

More information

Classification: The rest of the story

Classification: The rest of the story U NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CS598 Machine Learning for Signal Processing Classification: The rest of the story 3 October 2017 Today s lecture Important things we haven t covered yet Fisher

More information

Machine Learning for Signal Processing Detecting faces in images

Machine Learning for Signal Processing Detecting faces in images Machine Learning for Signal Processing Detecting faces in images Class 7. 19 Sep 2013 Instructor: Bhiksha Raj 19 Sep 2013 11755/18979 1 Administrivia Project teams? Project proposals? 19 Sep 2013 11755/18979

More information

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 42 Outline 1 Introduction 2 Feature selection

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machine Learning & Perception Instructor: Tony Jebara Topic 1 Introduction, researchy course, latest papers Going beyond simple machine learning Perception, strange spaces, images, time, behavior

More information

Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks Templates, Image Pyramids, and Filter Banks 09/9/ Computer Vision James Hays, Brown Slides: Hoiem and others Review. Match the spatial domain image to the Fourier magnitude image 2 3 4 5 B A C D E Slide:

More information

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines CS4495/6495 Introduction to Computer Vision 8C-L3 Support Vector Machines Discriminative classifiers Discriminative classifiers find a division (surface) in feature space that separates the classes Several

More information

Recap: edge detection. Source: D. Lowe, L. Fei-Fei

Recap: edge detection. Source: D. Lowe, L. Fei-Fei Recap: edge detection Source: D. Lowe, L. Fei-Fei Canny edge detector 1. Filter image with x, y derivatives of Gaussian 2. Find magnitude and orientation of gradient 3. Non-maximum suppression: Thin multi-pixel

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Non-parametric Classification of Facial Features

Non-parametric Classification of Facial Features Non-parametric Classification of Facial Features Hyun Sung Chang Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Problem statement In this project, I attempted

More information

An overview of Boosting. Yoav Freund UCSD

An overview of Boosting. Yoav Freund UCSD An overview of Boosting Yoav Freund UCSD Plan of talk Generative vs. non-generative modeling Boosting Alternating decision trees Boosting and over-fitting Applications 2 Toy Example Computer receives telephone

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks Delivered by Mark Ebden With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable

More information

Learning theory. Ensemble methods. Boosting. Boosting: history

Learning theory. Ensemble methods. Boosting. Boosting: history Learning theory Probability distribution P over X {0, 1}; let (X, Y ) P. We get S := {(x i, y i )} n i=1, an iid sample from P. Ensemble methods Goal: Fix ɛ, δ (0, 1). With probability at least 1 δ (over

More information

Computational paradigms for the measurement signals processing. Metodologies for the development of classification algorithms.

Computational paradigms for the measurement signals processing. Metodologies for the development of classification algorithms. Computational paradigms for the measurement signals processing. Metodologies for the development of classification algorithms. January 5, 25 Outline Methodologies for the development of classification

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

W vs. QCD Jet Tagging at the Large Hadron Collider

W vs. QCD Jet Tagging at the Large Hadron Collider W vs. QCD Jet Tagging at the Large Hadron Collider Bryan Anenberg: anenberg@stanford.edu; CS229 December 13, 2013 Problem Statement High energy collisions of protons at the Large Hadron Collider (LHC)

More information