Unsupervised Learning: K- Means & PCA

Size: px
Start display at page:

Download "Unsupervised Learning: K- Means & PCA"

Transcription

1 Unsupervised Learning: K- Means & PCA

2 Unsupervised Learning Supervised learning used labeled data pairs (x, y) to learn a func>on f : X Y But, what if we don t have labels? No labels = unsupervised learning Only some points are labeled = semi- supervised learning Labels may be expensive to obtain, so we only get a few Clustering is the unsupervised grouping of data points. It can be used for knowledge discovery.

3 K- Means Clustering Some material adapted from slides by Andrew Moore, CMU. Visit hmp:// for Andrew s repository of Data Mining tutorials.

4 Clustering Data

5 K- Means Clustering K- Means ( k, X ) Randomly choose k cluster center loca>ons (centroids) Loop un>l convergence Assign each point to the cluster of the closest centroid Re- es>mate the cluster centroids based on the data assigned to each cluster

6 K- Means Clustering K- Means ( k, X ) Randomly choose k cluster center loca>ons (centroids) Loop un>l convergence Assign each point to the cluster of the closest centroid Re- es>mate the cluster centroids based on the data assigned to each cluster

7 K- Means Clustering K- Means ( k, X ) Randomly choose k cluster center loca>ons (centroids) Loop un>l convergence Assign each point to the cluster of the closest centroid Re- es>mate the cluster centroids based on the data assigned to each cluster

8 K- Means Anima>on Example generated by Andrew Moore using Dan Pelleg s superduper fast K-means system: Dan Pelleg and Andrew Moore. Accelerating Exact k-means Algorithms with Geometric Reasoning. Proc. Conference on Knowledge Discovery in Databases 1999.

9 K- Means Objec>ve Func>on K- means finds a local op>mum of the following objec>ve func>on: S arg Xmin X S kx k i=1 2S X kx µ i k 2 2 k x2s i S {S S } where S = {S 1,...,S k } is a partitioning S over X = {x 1,...,x n } s.t. X = S k i=1 S i and µ i = mean(s i )

10 Problems with K- Means Very sensi>ve to the ini>al points Do many runs of K- Means, each with different ini>al centroids Seed the centroids using a bemer method than randomly choosing the centroids e.g., Farthest- first sampling Must manually choose k Learn the op>mal k for the clustering Note that this requires a performance measure

11 Problems with K- Means How do you tell it which clustering you want? k = 2" Constrained clustering techniques (semi- supervised) Same- cluster constraint (must- link) Different- cluster constraint (cannot- link)

12 Gaussian Mixture Models Recall the Gaussian distribu>on: P (x µ, ) = 1 1 p (2 )d exp 2 (x µ) 1 (x µ)

13 The GMM assumption There are k components. The i th component is called ω i Component ω i has an associated mean vector µ i µ 2 µ 1 µ 3 Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 13

14 The GMM assumption There are k components. The i th component is called ω i Component ω i has an associated mean vector µ i Each component generates data from a Gaussian with mean µ i and covariance matrix σ 2 I Assume that each datapoint is generated according to the following recipe: µ 1 µ 2 µ 3 Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 14

15 The GMM assumption There are k components. The i th component is called ω i Component ω i has an associated mean vector µ i Each component generates data from a Gaussian with mean µ i and covariance matrix σ 2 I Assume that each datapoint is generated according to the following recipe: 1. Pick a component at random. Choose component i with probability P(ω i ). µ 2 Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 15

16 The GMM assumption There are k components. The i th component is called ω i Component ω i has an associated mean vector µ i Each component generates data from a Gaussian with mean µ i and covariance matrix σ 2 I Assume that each datapoint is generated according to the following recipe: 1. Pick a component at random. Choose component i with probability P(ω i ). 2. Datapoint ~ N(µ i, σ 2 I ) µ 2 x Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 16

17 The General GMM assumption There are k components. The i th component is called ω i Component ω i has an associated mean vector µ i Each component generates data from a Gaussian with mean µ i and covariance matrix Σ i Assume that each datapoint is generated according to the following recipe: 1. Pick a component at random. Choose component i with probability P(ω i ). 2. Datapoint ~ N(µ i, Σ i ) Copyright 2001, 2004, Andrew W. Moore µ 1 µ 2 µ 3 Clustering with Gaussian Mixtures: Slide 17

18 Fi8ng a Gaussian Mixture Model (Optional)

19 Clustering with Gaussian Mixtures: Slide 19 Just evaluate a Gaussian at x k Copyright 2001, 2004, Andrew W. Moore Expectation-Maximization for GMMs Iterate until convergence: On the t th iteration let our estimates be λ t = { µ 1 (t), µ 2 (t) µ c (t) } E-step: Compute expected classes of all datapoints for each class ( ) ( ) ( ) ( ) ( ) ( ) = = = c j j j j k i i i k t k t i t i k t k i t p t w x t p t w x x w w x x w ) ( ), (, p ) ( ), (, p p P, p, P I I σ µ σ µ λ λ λ λ M-step: Estimate µ given our data s class membership distributions ( ) ( ) ( ) = + k t k i k k t k i i x w x x w t λ λ, P, P 1 µ

20 Clustering with Gaussian Mixtures: Slide 20 Copyright 2001, 2004, Andrew W. Moore E.M. for General GMMs Iterate. On the t th iteration let our estimates be λ t = { µ 1 (t), µ 2 (t) µ c (t), Σ 1 (t), Σ 2 (t) Σ c (t), p 1 (t), p 2 (t) p c (t) } E-step: Compute expected clusters of all datapoints ( ) ( ) ( ) ( ) ( ) ( ) = Σ Σ = = c j j j j j k i i i i k t k t i t i k t k i t p t t w x t p t t w x x w w x x w 1 ) ( ) ( ), (, p ) ( ) ( ), (, p p P, p, P µ µ λ λ λ λ M-step: Estimate µ, Σ given our data s class membership distributions p i (t) is shorthand for estimate of P(ω i ) on t th iteration ( ) ( ) ( ) = + k t k i k k t k i i x w x x w t λ λ, P, P 1 µ ( ) ( ) ( ) [ ] ( ) [ ] ( ) + + = + Σ k t k i T i k i k k t k i i x w t x t x x w t λ µ µ λ, P 1 1, P 1 ( ) ( ) R x w t p k t k i i = +,λ P 1 R = #records Just evaluate a Gaussian at x k

21 (End op>onal sec>on)

22 Gaussian Mixture Example: Start Advance apologies: in Black and White this example will be incomprehensible Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 22

23 After first iteration Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 23

24 After 2nd iteration Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 24

25 After 3rd iteration Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 25

26 After 4th iteration Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 26

27 After 5th iteration Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 27

28 After 6th iteration Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 28

29 After 20th iteration Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 29

30 Some Bio Assay data Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 30

31 GMM clustering of the assay data Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 31

32 Resulting Density Estimator Copyright 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 32

33 Principal Components Analysis Based on slides by Barnabás Póczos, UAlberta

34 How Can We Visualize High Dimensional Data? E.g., 53 blood and urine tests for 65 pa>ents Instances H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHC A A A A A A A A A Features Difficult to see the correla>ons between the features... 34

35 Data Visualization Is there a representa>on bemer than the raw features? Is it really necessary to show all the 53 dimensions? what if there are strong correla>ons between the features? Could we find the smallest subspace of the 53- D space that keeps the most informa-on about the original data? One solu>on: Principal Component Analysis 35

36 Principle Component Analysis Orthogonal projec>on of data onto lower- dimension linear space that... maximizes variance of projected data (purple line) minimizes mean squared distance between data point and projec>ons (sum of blue lines) 36

37 The Principal Components Vectors origina>ng from the center of mass Principal component #1 points in the direc>on of the largest variance Each subsequent principal component is orthogonal to the previous ones, and points in the direc>ons of the largest variance of the residual subspace 38

38 2D Gaussian Dataset 39

39 1 st PCA axis 40

40 2 nd PCA axis 41

41 Dimensionality Reduc>on Can ignore the components of lesser significance Variance (%) PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 You do lose some informa>on, but if the eigenvalues are small, you don t lose much choose only the first k eigenvectors, based on their eigenvalues final data set has only k dimensions 43

42 PCA Algorithm Given data {x 1,, x n }, compute covariance matrix Σ X is the n x d data matrix Compute data mean (average over all rows of X) Subtract mean from each row of X (centering the data) Compute covariance matrix Σ = XX T PCA basis vectors are given by the eigenvectors of Σ Q,Λ = numpy.linalg.eig(σ)" {q i, λ i } i=1..n are the eigenvectors/eigenvalues of Σ... λ 1 λ 2 λ n! Larger eigenvalue more important eigenvectors 44

43 X = PCA x 3" Q = Columns are ordered by importance! x 3" Slide by Eric Eaton 45

44 X = PCA x 3" Q = Keep only first k columns of Q" x 3" Slide by Eric Eaton 46

45 PCA Visualiza>on of MNIST Digits 47

46 Challenge: Facial Recognition Want to identify specific person, based on facial image Robust to glasses, lighting, Can t just use the given 256 x 256 pixels 52

47 PCA applications -Eigenfaces Eigenfaces are the eigenvectors of the covariance matrix of the probability distribution of the vector space of human faces Eigenfaces are the standardized face ingredients derived from the statistical analysis of many pictures of human faces A human face may be considered to be a combination of these standard faces

48 PCA applications -Eigenfaces To generate a set of eigenfaces: 1. Large set of digitized images of human faces is taken under the same lighting conditions. 2. The images are normalized to line up the eyes and mouths. 3. The eigenvectors of the covariance matrix of the statistical distribution of face image vectors are then extracted. 4. These eigenvectors are called eigenfaces.

49 PCA applications -Eigenfaces the principal eigenface looks like a bland androgynous average human face

50 Eigenfaces Face Recognition When properly weighted, eigenfaces can be summed together to create an approximate grayscale rendering of a human face. Remarkably few eigenvector terms are needed to give a fair likeness of most people's faces Hence eigenfaces provide a means of applying data compression to faces for identification purposes. Similarly, Expert Object Recognition in Video

51 Eigenfaces Experiment and Results Data used here are from the ORL database of faces. Facial images of 16 persons each with 10 views are used. - Training set contains 16 7 images. - Test set contains 16 3 images. First three eigenfaces :

52 Classification Using Nearest Neighbor Save average coefficients for each person. Classify new face as the person with the closest average. Recognition accuracy increases with number of eigenfaces till 15. Later eigenfaces do not help much with recognition. Best recognition rates Training set 99% Test set 89%

53 Facial Expression Recognition: Happiness subspace 59

54 Disgust subspace 60

55 Image Compression

56 Original Image Divide the original 372x492 image into patches: Each patch is an instance that contains 12x12 pixels on a grid View each as a 144-D vector 62

57 L 2 error and PCA dim 63

58 PCA compression: 144D ) 60D 64

59 PCA compression: 144D ) 16D 65

60 16 most important eigenvectors

61 PCA compression: 144D ) 6D 67

62 6 most important eigenvectors

63 PCA compression: 144D ) 3D 69

64 3 most important eigenvectors

65 PCA compression: 144D ) 1D 71

66 60 most important eigenvectors Looks like the discrete cosine bases of JPG!... 72

67 2D Discrete Cosine Basis 73

68 Noisy image 74

69 Denoised image using 15 PCA components 75

Robot Image Credit: Viktoriya Sukhanova 123RF.com. Dimensionality Reduction

Robot Image Credit: Viktoriya Sukhanova 123RF.com. Dimensionality Reduction Robot Image Credit: Viktoriya Sukhanova 13RF.com Dimensionality Reduction Feature Selection vs. Dimensionality Reduction Feature Selection (last time) Select a subset of features. When classifying novel

More information

Unsupervised Learning: K-Means, Gaussian Mixture Models

Unsupervised Learning: K-Means, Gaussian Mixture Models Unsupervised Learning: K-Means, Gaussian Mixture Models These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online.

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Principal Component Analysis Barnabás Póczos Contents Motivation PCA algorithms Applications Some of these slides are taken from Karl Booksh Research

More information

Principal Component Analysis

Principal Component Analysis B: Chapter 1 HTF: Chapter 1.5 Principal Component Analysis Barnabás Póczos University of Alberta Nov, 009 Contents Motivation PCA algorithms Applications Face recognition Facial expression recognition

More information

Deriving Principal Component Analysis (PCA)

Deriving Principal Component Analysis (PCA) -0 Mathematical Foundations for Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deriving Principal Component Analysis (PCA) Matt Gormley Lecture 11 Oct.

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation)

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) PCA transforms the original input space into a lower dimensional space, by constructing dimensions that are linear combinations

More information

Lecture 17: Face Recogni2on

Lecture 17: Face Recogni2on Lecture 17: Face Recogni2on Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei-Fei Li Stanford Vision Lab Lecture 17-1! What we will learn today Introduc2on to face recogni2on Principal Component Analysis

More information

Karhunen-Loève Transform KLT. JanKees van der Poel D.Sc. Student, Mechanical Engineering

Karhunen-Loève Transform KLT. JanKees van der Poel D.Sc. Student, Mechanical Engineering Karhunen-Loève Transform KLT JanKees van der Poel D.Sc. Student, Mechanical Engineering Karhunen-Loève Transform Has many names cited in literature: Karhunen-Loève Transform (KLT); Karhunen-Loève Decomposition

More information

Lecture 17: Face Recogni2on

Lecture 17: Face Recogni2on Lecture 17: Face Recogni2on Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei-Fei Li Stanford Vision Lab Lecture 17-1! What we will learn today Introduc2on to face recogni2on Principal Component Analysis

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

20 Unsupervised Learning and Principal Components Analysis (PCA)

20 Unsupervised Learning and Principal Components Analysis (PCA) 116 Jonathan Richard Shewchuk 20 Unsupervised Learning and Principal Components Analysis (PCA) UNSUPERVISED LEARNING We have sample points, but no labels! No classes, no y-values, nothing to predict. Goal:

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Salvador Dalí, Galatea of the Spheres CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy and Lisa Zhang Some slides from Derek Hoiem and Alysha

More information

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision)

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision) CS4495/6495 Introduction to Computer Vision 8B-L2 Principle Component Analysis (and its use in Computer Vision) Wavelength 2 Wavelength 2 Principal Components Principal components are all about the directions

More information

Face Detection and Recognition

Face Detection and Recognition Face Detection and Recognition Face Recognition Problem Reading: Chapter 18.10 and, optionally, Face Recognition using Eigenfaces by M. Turk and A. Pentland Queryimage face query database Face Verification

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Recognition Using Class Specific Linear Projection Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Articles Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection, Peter N. Belhumeur,

More information

CSE446: Clustering and EM Spring 2017

CSE446: Clustering and EM Spring 2017 CSE446: Clustering and EM Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin, Dan Klein, and Luke Zettlemoyer Clustering systems: Unsupervised learning Clustering Detect patterns in unlabeled

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Lecture: Face Recognition

Lecture: Face Recognition Lecture: Face Recognition Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 12-1 What we will learn today Introduction to face recognition The Eigenfaces Algorithm Linear

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Eigenimaging for Facial Recognition

Eigenimaging for Facial Recognition Eigenimaging for Facial Recognition Aaron Kosmatin, Clayton Broman December 2, 21 Abstract The interest of this paper is Principal Component Analysis, specifically its area of application to facial recognition

More information

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition ace Recognition Identify person based on the appearance of face CSED441:Introduction to Computer Vision (2017) Lecture10: Subspace Methods and ace Recognition Bohyung Han CSE, POSTECH bhhan@postech.ac.kr

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Additional reading can be found from non-assessed exercises (week 8) in this course unit teaching page. Textbooks: Sect. 6.3 in [1] and Ch. 12 in [2] Outline Introduction

More information

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Eigenface and

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Image Analysis. PCA and Eigenfaces

Image Analysis. PCA and Eigenfaces Image Analysis PCA and Eigenfaces Christophoros Nikou cnikou@cs.uoi.gr Images taken from: D. Forsyth and J. Ponce. Computer Vision: A Modern Approach, Prentice Hall, 2003. Computer Vision course by Svetlana

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Example: Face Detection

Example: Face Detection Announcements HW1 returned New attendance policy Face Recognition: Dimensionality Reduction On time: 1 point Five minutes or more late: 0.5 points Absent: 0 points Biometrics CSE 190 Lecture 14 CSE190,

More information

COS 429: COMPUTER VISON Face Recognition

COS 429: COMPUTER VISON Face Recognition COS 429: COMPUTER VISON Face Recognition Intro to recognition PCA and Eigenfaces LDA and Fisherfaces Face detection: Viola & Jones (Optional) generic object models for faces: the Constellation Model Reading:

More information

PCA Review. CS 510 February 25 th, 2013

PCA Review. CS 510 February 25 th, 2013 PCA Review CS 510 February 25 th, 2013 Recall the goal: image matching Probe image, registered to gallery Registered Gallery of Images 3/7/13 CS 510, Image Computa5on, Ross Beveridge & Bruce Draper 2 Getting

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

Principal Component Analysis (PCA) CSC411/2515 Tutorial

Principal Component Analysis (PCA) CSC411/2515 Tutorial Principal Component Analysis (PCA) CSC411/2515 Tutorial Harris Chan Based on previous tutorial slides by Wenjie Luo, Ladislav Rampasek University of Toronto hchan@cs.toronto.edu October 19th, 2017 (UofT)

More information

PCA FACE RECOGNITION

PCA FACE RECOGNITION PCA FACE RECOGNITION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Shree Nayar (Columbia) including their own slides. Goal

More information

Gaussian Mixture Models, Expectation Maximization

Gaussian Mixture Models, Expectation Maximization Gaussian Mixture Models, Expectation Maximization Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Andrew Ng (Stanford), Andrew Moore (CMU), Eric Eaton (UPenn), David Kauchak

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Bayesian Networks Structure Learning (cont.)

Bayesian Networks Structure Learning (cont.) Koller & Friedman Chapters (handed out): Chapter 11 (short) Chapter 1: 1.1, 1., 1.3 (covered in the beginning of semester) 1.4 (Learning parameters for BNs) Chapter 13: 13.1, 13.3.1, 13.4.1, 13.4.3 (basic

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Face recognition Computer Vision Spring 2018, Lecture 21

Face recognition Computer Vision Spring 2018, Lecture 21 Face recognition http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 21 Course announcements Homework 6 has been posted and is due on April 27 th. - Any questions about the homework?

More information

Department of Computer Science and Engineering

Department of Computer Science and Engineering Linear algebra methods for data mining with applications to materials Yousef Saad Department of Computer Science and Engineering University of Minnesota ICSC 2012, Hong Kong, Jan 4-7, 2012 HAPPY BIRTHDAY

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 Some slides courtesy of Eric Xing, Carlos Guestrin (One) bad case for K- means Clusters may overlap Some

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

Uncorrelated Multilinear Principal Component Analysis through Successive Variance Maximization

Uncorrelated Multilinear Principal Component Analysis through Successive Variance Maximization Uncorrelated Multilinear Principal Component Analysis through Successive Variance Maximization Haiping Lu 1 K. N. Plataniotis 1 A. N. Venetsanopoulos 1,2 1 Department of Electrical & Computer Engineering,

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision A/Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh Lecture 06 Object Recognition Objectives To understand the concept of image based object recognition To learn how to match images

More information

Reconnaissance d objetsd et vision artificielle

Reconnaissance d objetsd et vision artificielle Reconnaissance d objetsd et vision artificielle http://www.di.ens.fr/willow/teaching/recvis09 Lecture 6 Face recognition Face detection Neural nets Attention! Troisième exercice de programmation du le

More information

CSC 411 Lecture 12: Principal Component Analysis

CSC 411 Lecture 12: Principal Component Analysis CSC 411 Lecture 12: Principal Component Analysis Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 12-PCA 1 / 23 Overview Today we ll cover the first unsupervised

More information

Dimensionality Reduction

Dimensionality Reduction Dimensionality Reduction Le Song Machine Learning I CSE 674, Fall 23 Unsupervised learning Learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification of

More information

Announcements (repeat) Principal Components Analysis

Announcements (repeat) Principal Components Analysis 4/7/7 Announcements repeat Principal Components Analysis CS 5 Lecture #9 April 4 th, 7 PA4 is due Monday, April 7 th Test # will be Wednesday, April 9 th Test #3 is Monday, May 8 th at 8AM Just hour long

More information

Classification 2: Linear discriminant analysis (continued); logistic regression

Classification 2: Linear discriminant analysis (continued); logistic regression Classification 2: Linear discriminant analysis (continued); logistic regression Ryan Tibshirani Data Mining: 36-462/36-662 April 4 2013 Optional reading: ISL 4.4, ESL 4.3; ISL 4.3, ESL 4.4 1 Reminder:

More information

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014 Principal Component Analysis and Singular Value Decomposition Volker Tresp, Clemens Otte Summer 2014 1 Motivation So far we always argued for a high-dimensional feature space Still, in some cases it makes

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Principal Component Analysis

Principal Component Analysis CSci 5525: Machine Learning Dec 3, 2008 The Main Idea Given a dataset X = {x 1,..., x N } The Main Idea Given a dataset X = {x 1,..., x N } Find a low-dimensional linear projection The Main Idea Given

More information

Lecture 13 Visual recognition

Lecture 13 Visual recognition Lecture 13 Visual recognition Announcements Silvio Savarese Lecture 13-20-Feb-14 Lecture 13 Visual recognition Object classification bag of words models Discriminative methods Generative methods Object

More information

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University Heeyoul (Henry) Choi Dept. of Computer Science Texas A&M University hchoi@cs.tamu.edu Introduction Speaker Adaptation Eigenvoice Comparison with others MAP, MLLR, EMAP, RMP, CAT, RSW Experiments Future

More information

Artificial Intelligence Module 2. Feature Selection. Andrea Torsello

Artificial Intelligence Module 2. Feature Selection. Andrea Torsello Artificial Intelligence Module 2 Feature Selection Andrea Torsello We have seen that high dimensional data is hard to classify (curse of dimensionality) Often however, the data does not fill all the space

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 26, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 55 High dimensional

More information

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 18: Principal Component Analysis (PCA) Dr. Yanjun Qi. University of Virginia

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 18: Principal Component Analysis (PCA) Dr. Yanjun Qi. University of Virginia UVA CS 6316/4501 Fall 2016 Machine Learning Lecture 18: Principal Component Analysis (PCA) Dr. Yanjun Qi University of Virginia Department of Computer Science 1 Kmeans + GMM + Hierarchical next aper classificaron?

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Expectation Maximization Algorithm

Expectation Maximization Algorithm Expectation Maximization Algorithm Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer and Dan Weld The Evils of Hard Assignments? Clusters

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

CS 559: Machine Learning Fundamentals and Applications 5 th Set of Notes

CS 559: Machine Learning Fundamentals and Applications 5 th Set of Notes CS 559: Machine Learning Fundamentals and Applications 5 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 25 Project:

More information

ECE 661: Homework 10 Fall 2014

ECE 661: Homework 10 Fall 2014 ECE 661: Homework 10 Fall 2014 This homework consists of the following two parts: (1) Face recognition with PCA and LDA for dimensionality reduction and the nearest-neighborhood rule for classification;

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016 CPSC 340: Machine Learning and Data Mining More PCA Fall 2016 A2/Midterm: Admin Grades/solutions posted. Midterms can be viewed during office hours. Assignment 4: Due Monday. Extra office hours: Thursdays

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 Discriminative vs Generative Models Discriminative: Just learn a decision boundary between your

More information

2D Image Processing Face Detection and Recognition

2D Image Processing Face Detection and Recognition 2D Image Processing Face Detection and Recognition Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS 121 CHAPTER 11 PRINCIPAL COMPONENTS ANALYSIS We now have the tools necessary to discuss one of the most important concepts in mathematical statistics: Principal Components Analysis (PCA). PCA involves

More information

Lecture 8: Principal Component Analysis; Kernel PCA

Lecture 8: Principal Component Analysis; Kernel PCA Lecture 8: Principal Component Analysis; Kernel PCA Lester Mackey April 23, 2014 Stats 306B: Unsupervised Learning Sta306b April 19, 2011 Principal components: 16 PCA example: digit data 130 threes, a

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA Tobias Scheffer Overview Principal Component Analysis (PCA) Kernel-PCA Fisher Linear Discriminant Analysis t-sne 2 PCA: Motivation

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson PCA Review! Supervised learning! Fisher linear discriminant analysis! Nonlinear discriminant analysis! Research example! Multiple Classes! Unsupervised

More information

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation Clustering by Mixture Models General bacground on clustering Example method: -means Mixture model based clustering Model estimation 1 Clustering A basic tool in data mining/pattern recognition: Divide

More information

Eigenface-based facial recognition

Eigenface-based facial recognition Eigenface-based facial recognition Dimitri PISSARENKO December 1, 2002 1 General This document is based upon Turk and Pentland (1991b), Turk and Pentland (1991a) and Smith (2002). 2 How does it work? The

More information

Mixtures of Gaussians continued

Mixtures of Gaussians continued Mixtures of Gaussians continued Machine Learning CSE446 Carlos Guestrin University of Washington May 17, 2013 1 One) bad case for k-means n Clusters may overlap n Some clusters may be wider than others

More information

Lecture 11: Unsupervised Machine Learning

Lecture 11: Unsupervised Machine Learning CSE517A Machine Learning Spring 2018 Lecture 11: Unsupervised Machine Learning Instructor: Marion Neumann Scribe: Jingyu Xin Reading: fcml Ch6 (Intro), 6.2 (k-means), 6.3 (Mixture Models); [optional]:

More information

Pattern Classification

Pattern Classification Pattern Classification Introduction Parametric classifiers Semi-parametric classifiers Dimensionality reduction Significance testing 6345 Automatic Speech Recognition Semi-Parametric Classifiers 1 Semi-Parametric

More information

Dimensionality reduction

Dimensionality reduction Dimensionality Reduction PCA continued Machine Learning CSE446 Carlos Guestrin University of Washington May 22, 2013 Carlos Guestrin 2005-2013 1 Dimensionality reduction n Input data may have thousands

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks Delivered by Mark Ebden With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable

More information

PCA and LDA. Man-Wai MAK

PCA and LDA. Man-Wai MAK PCA and LDA Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S.J.D. Prince,Computer

More information

Pattern Recognition 2

Pattern Recognition 2 Pattern Recognition 2 KNN,, Dr. Terence Sim School of Computing National University of Singapore Outline 1 2 3 4 5 Outline 1 2 3 4 5 The Bayes Classifier is theoretically optimum. That is, prob. of error

More information

When Dictionary Learning Meets Classification

When Dictionary Learning Meets Classification When Dictionary Learning Meets Classification Bufford, Teresa 1 Chen, Yuxin 2 Horning, Mitchell 3 Shee, Liberty 1 Mentor: Professor Yohann Tendero 1 UCLA 2 Dalhousie University 3 Harvey Mudd College August

More information

CS168: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA)

CS168: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA) CS68: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA) Tim Roughgarden & Gregory Valiant April 0, 05 Introduction. Lecture Goal Principal components analysis

More information

Pattern recognition. "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher

Pattern recognition. To understand is to perceive patterns Sir Isaiah Berlin, Russian philosopher Pattern recognition "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher The more relevant patterns at your disposal, the better your decisions will be. This is hopeful news to

More information