feedback cannot be maintained. If loop 2 is reduced, the signal between G

Size: px
Start display at page:

Download "feedback cannot be maintained. If loop 2 is reduced, the signal between G"

Transcription

1 ME 3600 Control Systems Block Diagram eduction Examples Example :.C. Dorf and.h. Bishop, Modern Control Systems, th Ed., Pearson Prentice-Hall, 008. Given: The system shown in the block diagram has one input signal, s, () and one output signal, () s. Find: Using block diagram reduction, find the transfer function () s. Example.7 from Dorf and Bishop Solution: First, it should be noted that there are many solution paths that can be taken to reduce complex systems using block diagram reduction techniques. The system shown here is not very complex, and yet, there are at least half a dozen approaches that can be taken. To encourage the reader to consider different solution paths, multiple approaches are presented here. As shown, the system has three feedback loops. Loops and are nested in loop 3, but loops and are overlapping. To determine if two loops are overlapping, consider collapsing one of the two loops. If any signals required by the second loop would be removed by collapsing of the first, then the two loops are overlapping. In this system, if loop is reduced, the summing block between G and G 3 is eliminated, so the H feedback cannot be maintained. If loop is reduced, the signal between G 3 and G is eliminated, so the H feedback cannot be maintained. Approach : In this first approach, loop is nested within loop by expanding loop as shown in the diagram below. This is accomplished by moving the pick-off point of loop to be behind G. This requires that feedback transfer function H be divided by G. Loop is now nested within loop which is nested within loop 3. Hence, reduction of loop, followed by reduction of loop, and finally the reduction of loop 3 will produce the system transfer function. Kamman Control Systems Block Diagram Examples page: /8

2 Loop transfer function: G G3G GH H G G 3 (positive feedback) Transfer functions G 3 and G are combined, then the positive feedback loop is collapsed. Now, substitute this result into the original diagram and then reduce the modified loop. Loop transfer function: G GH 3G HG3G G G G H H G G G 3 3 3G H G G H G G 3 3 Now, substitute this result into the diagram and reduce the modified loop 3 to find the system transfer function. Approach : G3G G HG3G H3 G3G s GH G H G G H G G H G G G G 3G H3 HG3G H3 In this approach, loop is nested within loop by contracting loop as shown in the diagram. This is accomplished by moving the pick-off point of loop ahead of G. This requires that feedback transfer function H be multiplied by G As in the first approach, loop is now nested within loop which is nested within loop 3. Kamman Control Systems Block Diagram Examples page: /8

3 Loop transfer function: G G3 GH H G G 3 (positive feedback) Now, substitute this result into the original diagram and then reduce the modified loop. Loop transfer function: 3 G H G3G 3 GH H G G H G G 3 H HG3G 3 3 Substituting this result into the diagram and reducing loop 3 gives the system transfer function. G3G G HG3G H3 G3G s GH G H G G H G G H G G G G 3G H3 HG3G H3 Approach 3: Loop can also be nested within loop by expanding loop as shown in the diagram below. This is accomplished by moving the summing block of loop ahead of G. This requires that feedback transfer function H be divided by G. Now, loop is nested within loop which is nested within loop Kamman Control Systems Block Diagram Examples page: 3/8

4 Loop transfer function: G 3 GH H G G 3 Now, substitute this result into the original diagram and then reduce the modified loop. Loop transfer function: G GH 3G H3 H G 3 G H G G 3 3G H G G H G G 3 3 (positive feedback) Substituting this result into the diagram and reducing loop 3 gives the system transfer function. G3G G H3 HG3G G3G s GH G H G G H G G H G G G G 3G H3 H3 HG3G Example : Benjamin C. Kuo, Automatic Control Systems, 7 th Ed., Prentice-Hall, 995. Given: The system shown in the block diagram has two input signals, s () and Ns, () and one output signal, () s Find: Using block diagram reduction, find the transfer functions () s N and () s. Problem 3-7 from Kuo Kamman Control Systems Block Diagram Examples page: /8

5 Solution: When a system has more than one input signal, transfer functions are found by setting all but one of the input signals to zero. So, in this case, if both input signals are non-zero, then the output can be written as ( s) s N( s) s ( s) N It is understood (but not always written) that ( ) 0 finding N s N s when finding s, and Ns ( ) 0 when s. So, each transfer function contains information about a single input, only. : Approach Setting s ( ) 0 in the diagram above gives the diagram on the right. The diagram shows the output () s is fed back through the transfer functions G and H, and those two signals are combined at a summing block before passing through G. To show this more clearly, the system is redrawn with the input signal on the left and the output signal on the right. Note that in the second diagram the signals are added before passing them through G, and then the combined signal is negated at the next summing block. This is equivalent to the sign changes made in the original diagram. To simplify this diagram, note in the feedback loop that () s is passed through both G and H, and then the two signals are added together. This process is the same as passing () s through the transfer function G H. The system transfer function can now be calculated as follows. Kamman Control Systems Block Diagram Examples page: 5/8

6 G s N GH G G H G G HG Note here that the transfer functions G and G are forward-path transfer functions for the input s, () but they are feedback-path transfer functions for the input Ns. () N s : Approach In the solution above, Ns () was kept at the same summing block as in the original diagram. As an alternative, consider moving Ns () to the middle summing block. To do this, Ns () must be divided by G as shown in the next diagram. Also, the signals for the H and G paths have been added together before negating the sum of the two signals at the next summing block. As noted above, the transfer functions in the parallel paths can be summed. G s N G GH G G G G H G G HG (as before) Note that Ns () could also be moved to the first summing block. In this case, it would have to be divided by the product. s : Approach Setting Ns ( ) 0 in the original diagram gives the diagram on the right. To get started, the input signal s () needs to be isolated to a single summing block. Kamman Control Systems Block Diagram Examples page: 6/8

7 Moving the output of G 3 to the summing block ahead of G requires the new signal be divided by G. Isolating the input diagram for s () gives the diagram on the right. 3 3 Input transfer function: G G G (parallel paths) G G Substituting this result into the original diagram gives the diagram on the right. Now, the two feedback loops can be reduced, and that result can be cascaded with the input transfer function. G G Inner feedback loop transfer function: GH HG Outer feedback loop transfer function: G G HG GH G HG G G HG s G G G 3 s G G G G G3 HG G G HG G G : Approach In this second approach, consider moving the outer feedback loop return to the second summing block as shown in the diagram. This requires the signal to be multiplied by G. In the diagram, the two feedback signals are added first and then negated at the next summing block. (negative unity feedback) Note here that the signal entering G (which ultimately gets fed back through the two feedback loops) is the same in this diagram as it is in the original. Hence, the diagrams are equivalent. Kamman Control Systems Block Diagram Examples page: 7/8

8 Combining the parallel paths into single transfer functions, the diagram can be redrawn as shown here. The system transfer function can now be calculated by reducing the closed loop and cascading the result with G G3. s G G Example 3: G G G G G H G HG G G Given: The system shown in the block diagram has one input signal, s, () and one output signal, () s. Find: Using block diagram reduction, find the transfer function () s. 3 3 (as before) Solution: It is tempting with this system to simply separate the two feedback loops, but this approach leads to incorrect results. As the diagram indicates the two feedback loops are overlapping. If the upper loop is collapsed, the second summing block is removed and the lower loop cannot be completed, and if the lower loop is collapsed the pick-off point for the upper loop is removed and the upper loop cannot be completed. When two feedback loops overlap, one of the loops should be expanded to nest the other loop within it. In this example, the pick-off point for H could be moved behind G, or the output of H could be moved ahead of G. The latter approach is taken here. Inner loop transfer function: G G GH G H G GH s GH H G G G GH G H G H Kamman Control Systems Block Diagram Examples page: 8/8

Fig R 1fGH E 1 -=- R 1kGH B GH DGH k NGH = 0 (7.6)

Fig R 1fGH E 1 -=- R 1kGH B GH DGH k NGH = 0 (7.6) 156 BLOCK DIAGRAM ALGEBRA AND TRANSFER FUNCTIONS OF SYSTEMS [CHAP. 7 7.4 CANONICAL FORM OF A FEEDBACK CONTROL SYSTEM The two blocks in the forward path of the feedback system of Fig. 7-2 may be combined.

More information

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010 Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

More information

Steady State Errors. Recall the closed-loop transfer function of the system, is

Steady State Errors. Recall the closed-loop transfer function of the system, is Steady State Errors Outline What is steady-state error? Steady-state error in unity feedback systems Type Number Steady-state error in non-unity feedback systems Steady-state error due to disturbance inputs

More information

SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS

SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS MAE 4421 Control of Aerospace & Mechanical Systems 2 Block Diagram Manipulation Block Diagrams 3 In the introductory section we saw examples of block diagrams

More information

SECTION 4: STEADY STATE ERROR

SECTION 4: STEADY STATE ERROR SECTION 4: STEADY STATE ERROR MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Steady State Error Introduction 3 Consider a simple unity feedback system The error is the difference between

More information

LECTURE TWO BLOCK DIAGRAM REDUCTION

LECTURE TWO BLOCK DIAGRAM REDUCTION 3rd Yearomputer ommunication EngineeringU ontrol Theory LETUE TWO BLOK DIAGAM EDUTION Block diagram is a pictorial representation of a control system showing interrelation between the transfer function

More information

Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control

Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control 1 Cascade Control A disadvantage of conventional feedback

More information

Research Article On Complementary Root Locus of Biproper Transfer Functions

Research Article On Complementary Root Locus of Biproper Transfer Functions Mathematical Problems in Engineering Volume 9, Article ID 779, pages doi:.55/9/779 Research Article On Complementary Root Locus of Biproper Transfer Functions Marcelo C. M. Teixeira, Edvaldo Assunção,

More information

CHAP. 7] BLOCK DIAGRAM ALGEBRA AND TRANSFER FUNCTIONS OF SYSTEMS 157

CHAP. 7] BLOCK DIAGRAM ALGEBRA AND TRANSFER FUNCTIONS OF SYSTEMS 157 CHAP. 7] BLOCK DIAGAM ALGEBA AND TANSFE FUNCTIONS OF SYSTEMS 157 Transformation Equation Block Diagram Equivalent Block Diagram Combining Blocks in Cascade Y = (P1Pz)X Combining Blocks in Parallel; or

More information

Aim. Unit abstract. Learning outcomes. QCF level: 6 Credit value: 15

Aim. Unit abstract. Learning outcomes. QCF level: 6 Credit value: 15 Unit T23: Flight Dynamics Unit code: J/504/0132 QCF level: 6 Credit value: 15 Aim The aim of this unit is to develop learners understanding of aircraft flight dynamic principles by considering and analysing

More information

IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION. K. M. Yanev A. Obok Opok

IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION. K. M. Yanev A. Obok Opok IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION K. M. Yanev A. Obok Opok Considering marginal control systems, a useful technique, contributing to the method of multi-stage compensation is suggested. A

More information

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems Chapter two Laith Batareh Mathematical modeling The dynamic of many ytem, whether they are mechanical, electrical, thermal, economic, biological, and o on, may be decribed in term of differential equation

More information

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems SECTION 7: STEADY-STATE ERROR ESE 499 Feedback Control Systems 2 Introduction Steady-State Error Introduction 3 Consider a simple unity-feedback system The error is the difference between the reference

More information

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying

More information

Robust Performance Example #1

Robust Performance Example #1 Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants

More information

(a) Torsional spring-mass system. (b) Spring element.

(a) Torsional spring-mass system. (b) Spring element. m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional spring-mass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Spring-mass-damper system. (b)

More information

Transient Response of a Second-Order System

Transient Response of a Second-Order System Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

More information

MECHATRONICS CONTROL SYSTEM UNIT II

MECHATRONICS CONTROL SYSTEM UNIT II MECHATRONICS UNIT II CONTROL SYSTEM Prepared By Prof. Shinde Vishal Vasant Dept. of Mechanical Engg. NDMVP S Karmaveer Baburao Thakare College of Engg. Nashik Contact No- 8928461713 E mail:- nilvasant22@gmail.com

More information

Section Summary. Section 1.5 9/9/2014

Section Summary. Section 1.5 9/9/2014 Section 1.5 Section Summary Nested Quantifiers Order of Quantifiers Translating from Nested Quantifiers into English Translating Mathematical Statements into Statements involving Nested Quantifiers Translated

More information

Using MATLB for stability analysis in Controls engineering Cyrus Hagigat Ph.D., PE College of Engineering University of Toledo, Toledo, Ohio

Using MATLB for stability analysis in Controls engineering Cyrus Hagigat Ph.D., PE College of Engineering University of Toledo, Toledo, Ohio Using MATLB for stability analysis in Controls engineering Cyrus Hagigat Ph.D., PE College of Engineering University of Toledo, Toledo, Ohio Abstract Analyses of control systems require solution of differential

More information

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Ufuk Bakirdogen*, Matthias Liermann** *Institute for Fluid Power Drives and Controls (IFAS),

More information

Automatic Control Systems

Automatic Control Systems Automatic Control Sytem Lecture- Block Diagram Reduction Emam Fathy Department of Electrical and Control Engineering email: emfmz@yahoo.com Introduction A Block Diagram i a horthand pictorial repreentation

More information

Week 1 Factor & Remainder Past Paper Questions - SOLUTIONS

Week 1 Factor & Remainder Past Paper Questions - SOLUTIONS Question Solution Marks C2 JUNE 2010 Q2 f(3) = 3(3) 3 5(3) 2 58(3) + 40 f(3) = 98 So, the remainder is 98 Substitute x = 3 into 98 (If it is not stated that 98 is the remainder, do not give this C2 JUNE

More information

Using Mason's Rule to Analyze DSP Networks

Using Mason's Rule to Analyze DSP Networks Using Mason's Rule to Analyze DSP Networks by Richard Lyons, Besser Associates 1 α This article discusses a powerful analysis method (well known to our analog control system engineering brethren) to obtain

More information

DC CIRCUIT ANALYSIS. Loop Equations

DC CIRCUIT ANALYSIS. Loop Equations All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent

More information

Mathematical Induction

Mathematical Induction Mathematical Induction MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Mathematical Induction Fall 2014 1 / 21 Outline 1 Mathematical Induction 2 Strong Mathematical

More information

9.5 Radical Equations

9.5 Radical Equations Section 9.5 Radical Equations 945 9.5 Radical Equations In this section we are going to solve equations that contain one or more radical expressions. In the case where we can isolate the radical expression

More information

Design of a Model of a System to Control the Pitch angle of Helicopter using State Estimator

Design of a Model of a System to Control the Pitch angle of Helicopter using State Estimator American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

A Simple Design Approach In Yaw Plane For Two Loop Lateral Autopilots

A Simple Design Approach In Yaw Plane For Two Loop Lateral Autopilots A Simple Design Approach In Yaw Plane For Two Loop Lateral Autopilots Jyoti Prasad Singha Thakur 1, Amit Mukhopadhyay Asst. Prof., AEIE, Bankura Unnayani Institute of Engineering, Bankura, West Bengal,

More information

CLEP Precalculus - Problem Drill 15: Systems of Equations and Inequalities

CLEP Precalculus - Problem Drill 15: Systems of Equations and Inequalities CLEP Precalculus - Problem Drill 15: Systems of Equations and Inequalities No. 1 of 10 1. What are the methods to solve a system of equations? (A) Graphing, replacing, substitution and matrix techniques.

More information

4 Arithmetic of Feedback Loops

4 Arithmetic of Feedback Loops ME 132, Spring 2005, UC Berkeley, A. Packard 18 4 Arithmetic of Feedback Loops Many important guiding principles of feedback control systems can be derived from the arithmetic relations, along with their

More information

MAK 391 System Dynamics & Control. Presentation Topic. The Root Locus Method. Student Number: Group: I-B. Name & Surname: Göksel CANSEVEN

MAK 391 System Dynamics & Control. Presentation Topic. The Root Locus Method. Student Number: Group: I-B. Name & Surname: Göksel CANSEVEN MAK 391 System Dynamics & Control Presentation Topic The Root Locus Method Student Number: 9901.06047 Group: I-B Name & Surname: Göksel CANSEVEN Date: December 2001 The Root-Locus Method Göksel CANSEVEN

More information

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies. SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..

More information

Math 345 Sp 07 Day 7. b. Prove that the image of a homomorphism is a subring.

Math 345 Sp 07 Day 7. b. Prove that the image of a homomorphism is a subring. Math 345 Sp 07 Day 7 1. Last time we proved: a. Prove that the kernel of a homomorphism is a subring. b. Prove that the image of a homomorphism is a subring. c. Let R and S be rings. Suppose R and S are

More information

The parameterization of all. of all two-degree-of-freedom strongly stabilizing controllers

The parameterization of all. of all two-degree-of-freedom strongly stabilizing controllers The parameterization stabilizing controllers 89 The parameterization of all two-degree-of-freedom strongly stabilizing controllers Tatsuya Hoshikawa, Kou Yamada 2, Yuko Tatsumi 3, Non-members ABSTRACT

More information

Fast Sketching of Nyquist Plot in Control Systems

Fast Sketching of Nyquist Plot in Control Systems Journal of cience & Technology Vol ( No( 006 JT Fast ketching of Nyquist lot in Control ystems Muhammad A Eissa Abstract The sketching rules of Nyquist plots were laid-out a long time ago, but have never

More information

Teaching State Variable Feedback to Technology Students Using MATLAB and SIMULINK

Teaching State Variable Feedback to Technology Students Using MATLAB and SIMULINK Teaching State Variable Feedback to Technology Students Using MATLAB and SIMULINK Kathleen A.K. Ossman, Ph.D. University of Cincinnati Session 448 I. Introduction This paper describes a course and laboratory

More information

Parameter Derivation of Type-2 Discrete-Time Phase-Locked Loops Containing Feedback Delays

Parameter Derivation of Type-2 Discrete-Time Phase-Locked Loops Containing Feedback Delays Parameter Derivation of Type- Discrete-Time Phase-Locked Loops Containing Feedback Delays Joey Wilson, Andrew Nelson, and Behrouz Farhang-Boroujeny joey.wilson@utah.edu, nelson@math.utah.edu, farhang@ece.utah.edu

More information

Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process

Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process D.Angeline Vijula #, Dr.N.Devarajan * # Electronics and Instrumentation Engineering Sri Ramakrishna

More information

Trajectory Design using State Feedback for Satellite on a Halo Orbit

Trajectory Design using State Feedback for Satellite on a Halo Orbit Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2015, 2(12): 53-58 Research Article ISSN: 2394-658X Trajectory Design using State Feedback for Satellite on a

More information

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D. Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter

More information

Control and Measuring Systems I

Control and Measuring Systems I University of Babylon جامعة بابل College of Engineering / Al-Musayab كلية الهندسة / المسيب Department of Automobile Engineering قسم هندسة السيارات المرحلة الرابعة Control and Measuring Systems I Unit 1:

More information

Electrical Engg. Department Semester :4

Electrical Engg. Department Semester :4 Semester :4 Teaching Scheme for Electrical Engineering Semester I Course Code Course Title Lecture Hours Tutorial Hours Practical Hours Credit MA 2002 Mathematics I: Introduction to Numerical Analysis

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: CHAPTER16 Two-Port Networks THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: Calculate the admittance, impedance, hybrid, and transmission parameter for two-port networks. Convert

More information

Appendix 2: Linear Algebra

Appendix 2: Linear Algebra Appendix 2: Linear Algebra This appendix provides a brief overview of operations using linear algebra, and how they are implemented in Mathcad. This overview should provide readers with the ability to

More information

ECE382/ME482 Spring 2005 Homework 8 Solution December 11,

ECE382/ME482 Spring 2005 Homework 8 Solution December 11, ECE382/ME482 Spring 25 Homework 8 Solution December 11, 27 1 Solution to HW8 P1.21 We are given a system with open loop transfer function G(s) = K s(s/2 + 1)(s/6 + 1) and unity negative feedback. We are

More information

Control Systems. EC / EE / IN. For

Control Systems.   EC / EE / IN. For Control Systems For EC / EE / IN By www.thegateacademy.com Syllabus Syllabus for Control Systems Basic Control System Components; Block Diagrammatic Description, Reduction of Block Diagrams. Open Loop

More information

The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009

The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009 1 Bacground Material 1.1 Organization of the Trellis The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009 The Viterbi algorithm (VA) processes the (noisy) output sequence from a state machine

More information

MODELING AND IDENTIFICATION OF A MECHANICAL INDUSTRIAL MANIPULATOR 1

MODELING AND IDENTIFICATION OF A MECHANICAL INDUSTRIAL MANIPULATOR 1 Copyright 22 IFAC 15th Triennial World Congress, Barcelona, Spain MODELING AND IDENTIFICATION OF A MECHANICAL INDUSTRIAL MANIPULATOR 1 M. Norrlöf F. Tjärnström M. Östring M. Aberger Department of Electrical

More information

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum ISSN (Online): 347-3878, Impact Factor (5): 3.79 Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum Kambhampati Tejaswi, Alluri Amarendra, Ganta Ramesh 3 M.Tech, Department

More information

MATH 320, WEEK 6: Linear Systems, Gaussian Elimination, Coefficient Matrices

MATH 320, WEEK 6: Linear Systems, Gaussian Elimination, Coefficient Matrices MATH 320, WEEK 6: Linear Systems, Gaussian Elimination, Coefficient Matrices We will now switch gears and focus on a branch of mathematics known as linear algebra. There are a few notes worth making before

More information

CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS

CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS Objectives Students should be able to: Reduce a block diagram of multiple subsystems to a single block representing the transfer function from input to output

More information

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of

More information

Professor, Department of Mechanical Engineering

Professor, Department of Mechanical Engineering State Space Approach in Modelling Dr Bishakh Bhattacharya Professor, Departent of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD Answer of the Last Assignent Following

More information

Binary addition (1-bit) P Q Y = P + Q Comments Carry = Carry = Carry = Carry = 1 P Q

Binary addition (1-bit) P Q Y = P + Q Comments Carry = Carry = Carry = Carry = 1 P Q Digital Arithmetic In Chapter 2, we have discussed number systems such as binary, hexadecimal, decimal, and octal. We have also discussed sign representation techniques, for example, sign-bit representation

More information

Adaptive Inverse Control

Adaptive Inverse Control TA1-8:30 Adaptive nverse Control Bernard Widrow Michel Bilello Stanford University Department of Electrical Engineering, Stanford, CA 94305-4055 Abstract A plant can track an input command signal if it

More information

Domain and range of exponential and logarithmic function *

Domain and range of exponential and logarithmic function * OpenStax-CNX module: m15461 1 Domain and range of exponential and logarithmic function * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

6-3 Solving Systems by Elimination

6-3 Solving Systems by Elimination Another method for solving systems of equations is elimination. Like substitution, the goal of elimination is to get one equation that has only one variable. To do this by elimination, you add the two

More information

Root Locus Design Example #4

Root Locus Design Example #4 Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is

More information

Figure 1. Symmetries of an equilateral triangle

Figure 1. Symmetries of an equilateral triangle 1. Groups Suppose that we take an equilateral triangle and look at its symmetry group. There are two obvious sets of symmetries. First one can rotate the triangle through 120. Suppose that we choose clockwise

More information

SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester DAY floor

SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester DAY floor SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester-2014-2015 CONTROL SYSTEMS Course Code: Course Title: Control Systems Semester: V SEM B. Tech Third Year Course Timings: STAFF NAME: Anitha.G

More information

Stability Analysis of Nonlinear Systems with Transportation Lag

Stability Analysis of Nonlinear Systems with Transportation Lag ABSTRACT Stability Analysis of Nonlinear Systems with Transportation Lag Authors Dr.K.Sreekala 1, Dr.S.N.Sivanandam 2 1 Professor, Sreenarayana Gurukulam College of Engineering, Kadayiruppu,Kolenchery

More information

Chapter 3: Block Diagrams and Signal Flow Graphs

Chapter 3: Block Diagrams and Signal Flow Graphs Chapter 3: Block Diagrams and Signal Flow Graphs Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois ISBN: 978 0 470 04896 2 Introduction In this chapter, we discuss graphical

More information

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5. Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize

More information

FINITELY-GENERATED ABELIAN GROUPS

FINITELY-GENERATED ABELIAN GROUPS FINITELY-GENERATED ABELIAN GROUPS Structure Theorem for Finitely-Generated Abelian Groups Let G be a finitely-generated abelian group Then there exist a nonnegative integer t and (if t > 0) integers 1

More information

Outline. Control systems. Lecture-4 Stability. V. Sankaranarayanan. V. Sankaranarayanan Control system

Outline. Control systems. Lecture-4 Stability. V. Sankaranarayanan. V. Sankaranarayanan Control system Outline Control systems Lecture-4 Stability V. Sankaranarayanan Outline Outline 1 Outline Outline 1 2 Concept of Stability Zero State Response: The zero-state response is due to the input only; all the

More information

Enhanced Single-Loop Control Strategies Chapter 16

Enhanced Single-Loop Control Strategies Chapter 16 Enhanced Single-Loop Control Strategies Chapter 16 1. Cascade control 2. Time-delay compensation 3. Inferential control 4. Selective and override control 5. Nonlinear control 6. Adaptive control 1 Chapter

More information

Methods for analysis and control of dynamical systems Lecture 4: The root locus design method

Methods for analysis and control of dynamical systems Lecture 4: The root locus design method Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.gipsa-lab.fr/ o.sename 5th February 2015 Outline

More information

Numerical methods part 2

Numerical methods part 2 Numerical methods part 2 Alain Hébert alain.hebert@polymtl.ca Institut de génie nucléaire École Polytechnique de Montréal ENE6103: Week 6 Numerical methods part 2 1/33 Content (week 6) 1 Solution of an

More information

Automatic Control Systems (FCS) Lecture- 8 Steady State Error

Automatic Control Systems (FCS) Lecture- 8 Steady State Error Automatic Control Systems (FCS) Lecture- 8 Steady State Error Introduction Any physical control system inherently suffers steady-state error in response to certain types of inputs. A system may have no

More information

MATH 436 Notes: Cyclic groups and Invariant Subgroups.

MATH 436 Notes: Cyclic groups and Invariant Subgroups. MATH 436 Notes: Cyclic groups and Invariant Subgroups. Jonathan Pakianathan September 30, 2003 1 Cyclic Groups Now that we have enough basic tools, let us go back and study the structure of cyclic groups.

More information

1 Chapter 9: Design via Root Locus

1 Chapter 9: Design via Root Locus 1 Figure 9.1 a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment (B); b. responses from poles at A and B 2

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 13 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Bandwidth of op amps. R 1 R 2 1 k! 250 k!

Bandwidth of op amps. R 1 R 2 1 k! 250 k! Bandwidth of op amps An experiment - connect a simple non-inverting op amp and measure the frequency response. From the ideal op amp model, we expect the amp to work at any frequency. Is that what happens?

More information

Localizer Hold Autopilot

Localizer Hold Autopilot Localizer Hold Autopilot Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Localizer hold autopilot is one of the important

More information

Survey of Methods of Combining Velocity Profiles with Position control

Survey of Methods of Combining Velocity Profiles with Position control Survey of Methods of Combining Profiles with control Petter Karlsson Mälardalen University P.O. Box 883 713 Västerås, Sweden pkn91@student.mdh.se ABSTRACT In many applications where some kind of motion

More information

MATLAB: Operations. In this tutorial, the reader will learn about how to different matrix and polynomial operations.

MATLAB: Operations. In this tutorial, the reader will learn about how to different matrix and polynomial operations. MATLAB: Operations In this tutorial, the reader will learn about how to different matrix and polynomial operations. Addition and subtraction Create the following matrices in MATLAB: [ ], [ ] To create

More information

Burn Rate: Retrogrades in Astrology. Burn Rate. Retrogrades in Astrology. By Michael Erlewine

Burn Rate: Retrogrades in Astrology. Burn Rate. Retrogrades in Astrology. By Michael Erlewine Burn Rate Retrogrades in Astrology By Michael Erlewine 2 An ebook from Startypes.com 315 Marion Avenue Big Rapids, Michigan 49307 Fist published 2006 2006 Michael Erlewine ISBN 978-0-9798328-4-0 All rights

More information

Classical Dual-Inverted-Pendulum Control

Classical Dual-Inverted-Pendulum Control PRESENTED AT THE 23 IEEE CONFERENCE ON DECISION AND CONTROL 4399 Classical Dual-Inverted-Pendulum Control Kent H. Lundberg James K. Roberge Department of Electrical Engineering and Computer Science Massachusetts

More information

DECENTRALIZED PI CONTROLLER DESIGN FOR NON LINEAR MULTIVARIABLE SYSTEMS BASED ON IDEAL DECOUPLER

DECENTRALIZED PI CONTROLLER DESIGN FOR NON LINEAR MULTIVARIABLE SYSTEMS BASED ON IDEAL DECOUPLER th June 4. Vol. 64 No. 5-4 JATIT & LLS. All rights reserved. ISSN: 99-8645 www.jatit.org E-ISSN: 87-395 DECENTRALIZED PI CONTROLLER DESIGN FOR NON LINEAR MULTIVARIABLE SYSTEMS BASED ON IDEAL DECOUPLER

More information

2x + 5 = x = x = 4

2x + 5 = x = x = 4 98 CHAPTER 3 Algebra Textbook Reference Section 5.1 3.3 LINEAR EQUATIONS AND INEQUALITIES Student CD Section.5 CLAST OBJECTIVES Solve linear equations and inequalities Solve a system of two linear equations

More information

DESIGN AND DEVELOPMENT OF THE LQR OPTIMAL CONTROLLER FOR THE UNMANNED AERIAL VEHICLE

DESIGN AND DEVELOPMENT OF THE LQR OPTIMAL CONTROLLER FOR THE UNMANNED AERIAL VEHICLE Review of the Air Force Academy No.1 (36)/2018 DESIGN AND DEVELOPMENT OF THE LQR OPTIMAL CONTROLLER FOR THE UNMANNED AERIAL VEHICLE Róbert SZABOLCSI Óbuda University, Budapest, Hungary (szabolcsi.robert@bgk.uni-obuda.hu)

More information

EQ021 - Process Control

EQ021 - Process Control Coordinating unit: 295 - EEBE - Barcelona East School of Engineering Teaching unit: 707 - ESAII - Department of Automatic Control Academic year: 2018 Degree: ECTS credits: 6 Teaching languages: English

More information

Solution of Linear Systems

Solution of Linear Systems Solution of Linear Systems Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico May 12, 2016 CPD (DEI / IST) Parallel and Distributed Computing

More information

Start with the transfer function for a second-order high-pass. s 2. ω o. Q P s + ω2 o. = G o V i

Start with the transfer function for a second-order high-pass. s 2. ω o. Q P s + ω2 o. = G o V i aaac3xicbzfna9taeizxatkk7kec9tilqck4jbg5fjpca4ew0kmpdsrxwhlvxokl7titrirg69lr67s/robll64wmkna5jenndmvjstzyib9pfjntva/vzu6dzsnhj5/sdfefxhmvawzjpotsxeiliemxiucjpogkkybit3x5atow5w8xfugs5qmksecubqo7krlsfhkzsagxr4jne8wehaaxjqy4qq2svvl5el5qai2v9hy5tnxwb0om8igbiqfhhqhkoulcfs2zczhp26lwm7ph/hehffsbu90syo3hcmwvyxpawjtfbjpkm/wlbnximooweuygmsivnygqlpcmywvfppvrewjl3yqxti9gr6e2kgqbgrnlizqyuf2btqd/vgmo8cms4dllesrrdopz4ahyqjf7c66bovhzqznm9l89tqb2smixsxzk3tsdtnat4iaxnkk5bfcbn6iphqywpvxwtypgvnhtsvux234v77/ncudz9leyj84wplgvm7hrmk4ofi7ynw8edpwl7zt62o9klz8kl0idd8pqckq9krmaekz/kt7plbluf3a/un/d7ko6bc0zshbujz6huqq

More information

THE NATURE OF THERMODYNAMIC ENTROPY. 1 Introduction. James A. Putnam. 1.1 New Definitions for Mass and Force. Author of

THE NATURE OF THERMODYNAMIC ENTROPY. 1 Introduction. James A. Putnam. 1.1 New Definitions for Mass and Force. Author of THE NATURE OF THERMODYNAMIC ENTROPY James A. Putnam Author of http://newphysicstheory.com james@newphysicstheory.com Thermodynamic entropy is a pathway for transitioning from the mechanical world of fundamental

More information

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below.

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below. F 14 1250 QUIZ 1 SOLUTION EX: Find the numerical value of v 2 in the circuit below. Show all work. SOL'N: One method of solution is to use Kirchhoff's and Ohm's laws. The first step in this approach is

More information

Analysis of Stability &

Analysis of Stability & INC 34 Feedback Control Sytem Analyi of Stability & Steady-State Error S Wonga arawan.won@kmutt.ac.th Summary from previou cla Firt-order & econd order ytem repone τ ωn ζω ω n n.8.6.4. ζ ζ. ζ.5 ζ ζ.5 ct.8.6.4...4.6.8..4.6.8

More information

Observer-based quantized output feedback control of nonlinear systems

Observer-based quantized output feedback control of nonlinear systems Proceedings of the 17th World Congress The International Federation of Automatic Control Observer-based quantized output feedback control of nonlinear systems Daniel Liberzon Coordinated Science Laboratory,

More information

Prediction & Feature Selection in GLM

Prediction & Feature Selection in GLM Tarigan Statistical Consulting & Coaching statistical-coaching.ch Doctoral Program in Computer Science of the Universities of Fribourg, Geneva, Lausanne, Neuchâtel, Bern and the EPFL Hands-on Data Analysis

More information

WHITE PAPER: SLOA011 Author: Jim Karki Digital Signal Processing Solutions April 1998

WHITE PAPER: SLOA011 Author: Jim Karki Digital Signal Processing Solutions April 1998 OPerational AMPlifier lifiers Source: Understanding Operational Amplifier Specifications Source: Understanding Operational Amplifier Specifications WHITE PAPE: SLOA0 Author: Jim Karki Digital Signal Processing

More information

VSEPR Model. Valence-Shell Electron-Pair Repulsion Bonds (single or multiple) and lone pairs are thought of as charge clouds

VSEPR Model. Valence-Shell Electron-Pair Repulsion Bonds (single or multiple) and lone pairs are thought of as charge clouds Molecular Shapes VSEPR Model Valence-Shell Electron-Pair Repulsion Bonds (single or multiple) and lone pairs are thought of as charge clouds They repel each other and stay as far away from each other as

More information

Design and Implementation of PI and PIFL Controllers for Continuous Stirred Tank Reactor System

Design and Implementation of PI and PIFL Controllers for Continuous Stirred Tank Reactor System International Journal of omputer Science and Electronics Engineering (IJSEE olume, Issue (4 ISSN 3 48 (Online Design and Implementation of PI and PIFL ontrollers for ontinuous Stirred Tank Reactor System

More information

An LQ R weight selection approach to the discrete generalized H 2 control problem

An LQ R weight selection approach to the discrete generalized H 2 control problem INT. J. CONTROL, 1998, VOL. 71, NO. 1, 93± 11 An LQ R weight selection approach to the discrete generalized H 2 control problem D. A. WILSON², M. A. NEKOUI² and G. D. HALIKIAS² It is known that a generalized

More information

General CORDIC Description (1A)

General CORDIC Description (1A) General CORDIC Description (1A) Copyright (c) 2010, 2011, 2012 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Factor: x 2 11x + 30 = 0. Factoring Quadratic Equations. Fractional and Negative Exponents

Factor: x 2 11x + 30 = 0. Factoring Quadratic Equations. Fractional and Negative Exponents Factor: For each of the following, could the answer be an integer if x is an integer greater than 1? x 11x + 30 = 0 a) x 10 + x 10 = b) x 1/6 + x 1/ = Answer: (x 5)(x 6) = 0 Factoring Since the last sign

More information

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Ali Karimpour Associate Professor Ferdowsi University of Mashhad CONTROL IN INSTRUMENTATION Ali Karimpour Associate Professor Ferdowsi University of Mashhad Reference: - Advanced PID Control by Karl j. Astrom and Tore Hagglund, ISA, 2006 مدلسازی و کنترل صنعتی تالیف

More information

Objective. The student will be able to: solve systems of equations using elimination with multiplication. SOL: A.9

Objective. The student will be able to: solve systems of equations using elimination with multiplication. SOL: A.9 Objective The student will be able to: solve systems of equations using elimination with multiplication. SOL: A.9 Designed by Skip Tyler, Varina High School Solving Systems of Equations So far, we have

More information

SUBAREA I MATHEMATIC REASONING AND COMMUNICATION Understand reasoning processes, including inductive and deductive logic and symbolic logic.

SUBAREA I MATHEMATIC REASONING AND COMMUNICATION Understand reasoning processes, including inductive and deductive logic and symbolic logic. SUBAREA I MATHEMATIC REASONING AND COMMUNICATION 0001. Understand reasoning processes, including inductive and deductive logic and symbolic logic. Conditional statements are frequently written in "if-then"

More information