Methods for analysis and control of dynamical systems Lecture 4: The root locus design method


 Sheena Burke
 1 years ago
 Views:
Transcription
1 Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE o.sename 5th February 2015
2 Outline
3 References Some interesting books: G. Franklin, J. Powell, A. EmamiNaeini, Feedback Systems, Prentice Hall, 2005 R.C. Dorf and R.H. Bishop, Modern Control Systems, Prentice Hall, USA, P.Borne, G.DauphinTanguy, J.P.Richard, F.Rotella, I.Zambettakis, Analyse et Régulation des processus industriels. Tome 1: Régulation continue, Méthodes et pratiques de l ingénieur, Editions Technip, 1993.
4 Definition Consider a simple one degreeoffreedom control structure, with G(s) the plant model, C(s) the controller, and K a constant gain, which is the parameter of the controller to be analyzed. Let us write L(s) = C(s)G(s) the looptransfer function. Then the closedloop transfer function is : T (s) = KL(s) 1 + KL(s) and the solution of the characteristic equation 1 + K.L(s) = 0 is: Then the solution of this equation is given by: {s Cs.t.L(s) = 1 K } which implies KL(s) = 1 and KL(s) = π + 2.k.π
5 Definition (2) Rewrite L as L(s) = B(s) A(s) where B(s) and A(s) are the numerator and denominator of L. Then the characteristic equation becomes: A(s) + K.B(s) = 0 In all what follows: m B(s) = (s z i ) i=1 n A(s) = (s p j ) j=1
6 Definition (3) The root locus of L(s) is the set of points in the splane where the phase of L(s) is π ({s Cs.t.L(s) = 1 K }) Then, arg(b(s)) arg(a(s)) = π + 2π(k 1) If we define the angle to the test point from a zero as ψ i and the angle to the test point from a pole as φ i, then: i ψ i φ j = π + 2π(k 1) j
7 First example Consider the looptransfer function: L(s) = 1 s(s + 1) Write the characteristic equation and calculate the set of solutions {s Cs.t.L(s) = K 1 } as a function of K. Illustration in Matlab using rlocus(l) or rltool(l)
8 Guidelines for the root locus plot There are 6 major rules to sketch a rootlocus. The beginning equation is : n m (s p j ) + K. (s z i ) = 0 (1) j=1 i=1 Two different cases have to be considered: K is positive and then L(s) = π + 2.k.π K is negative and then L(s) = k.π The number of branches (loci) is equal to the number of poles (i.e. the number of solutions of the characteristic equation).
9 Rule 1: departure and arrival Rule 1 The n branches of the locus start at the poles of L(s) and m of these branches end on the zeros of L(s) Indeed: 1. When K = 0, the solution of equation (1) are the poles p j. 2. from L(s) = K 1, as K, the equation reduces to L(s) = 0, i.e. B(s) = 0 which corresponds to the zeros of L Example : L(s) = 1 s(s 2 + 8s + 32)
10 Rule 2: branches on the real axis Rule 2 The loci are on the real axis to the left of an odd number of poles and zeros. On the examples: L(s) = L(s) = 1 s(s 2 + 8s + 32) (s + 1) s(s + 2)(s + 4) 2
11 Rule 3: asymptotes We consider here large s and K, i.e when they reaches infinity. Rule 3 Let N = n m 0 of the loci are asymptotic to lines at angles φ A centered at a point on the real axis given by: with φ A = σ A = p j z i n m (2k + 1)π n m, k = 0,1,2,...,n m
12 Rule 4: angle of departures of the branch Rule 4 The angle of locus departure from a pole is the difference between the net angle due to all other poles and zeros and the criterion angle of ±π. The angles of departure of a branch of the locus from a pole of multiplicity q is given by: qφ l,dep = ψ i φ j π 2π(k 1) j l and the angles of arrival of a branch a a zero of multiplicity q is given by: qψ l,arr = ψ i φ j + π + 2π(k 1) i l
13 Rule 5 Rule 5 The root locus crosses the jω axis at points where the Routh criterion shows a transition from roots in the leftplane to roots in the right half plane. 1 Example: L(s) = s(s 2 +8s+32). Routh s s 2 8 K s K 8 0 s 0 K For K = 0, there is a root at s = 0. No RHP roots for 0 < K < 8 32 = 256. When K = 256 roots on the jω axis (ω c = 5.66).
14 Rule 6: breakaway point Rule 6 The equation to be solved can be rewritten as: A(s) B(s) = K which means that the set of solutions changes of direction (tangents) whenever ds d ( A(s) B(s) ) = 0 The locus will have multiple roots at points on the locus where the derivative is zero, or: B da ds A db ds = 0
15 Root locus for satellite attitude control with PD control The characteristic equation is : 1 + [k p + k d s] 1 s 2 = 0 Assume k p /k d = α is known, and note K = k d. Then it leads 1 + K s + α s 2 = 0 R1: There are 2 branches that start at s = 0 and 1 which ends at s = α R2: The real axis to the left of s = α is on the locus R3: There is one asymptote (nm=1) at σ A = α of angle φ A = π
16 Example (cont.) R4: the angles of departure from the double pole at s = 0 are ±π/2 R5: Routh criterion: s 2 1 K.α s 1 K 0 s 0 K α. which does not cross the imaginary axis. R6: using B = s + α and A = s 2 it leads that the breakaway points stand at s = 0 and s = 2.α.
17 The required closedloop performances should be chosen in the following zone which ensures a damping greater than ξ = sinφ. γ implies that the real part of the CL poles are sufficiently negatives.
18 (2) Some useful rules for selection the desired pole/zero locations (for a second order system): Rise time : t r 1.8 ω n Seetling time : t s 4.6 ξ ω n Overshoot M p = exp( πξ /sqrt(1 ξ 2 )): ξ = 0.3 M p = 35%, ξ = 0.5 M p = 16%, ξ = 0.7 M p = 5%.
19 (3) Some rules do exist to shape the transient response. The ITAE (Integral of Time multiplying the Absolute value of the Error), defined as: ITAE = t e(t) dt 0 can be used to specify a dynamic response with relatively small overshoot and relatively little oscillation (there exist other methods to do so). The optimum coefficients for the ITAE criteria are given below (see Dorf & Bishop 2005). Order Characteristic polynomials d k (s) 1 d 1 = [s + ω n ] 2 d 2 = [s ω n s + ω 2 n ] 3 d 3 = [s ω n s ω 2 n s + ω 3 n ] 4 d 4 = [s ω n s ω 2 n s ω 3 n s + ω 4 n ] 5 d 5 = [s ω n s 4 + 5ω 2 n s ω 3 n s ω 4 n s + ω 5 n ] 6 d 6 = [s ω n s ω 2 n s ω 3 n s ω 4 n s ω 5 n s + ω 6 n ] and the corresponding transfer function is of the form: H k (s) = ωk n, k = 1,...,6 d k (s)
20 (4) STEP RESPONSE OF TRANSFER FUNCTIONS WITH ITAE CHARACTERISTIC POLYNOMIALS H1 H2 H3 H4 H5 H NORMALIZED TIME ω n t
21 PID controller A PID controller is given by: C(s) = K p (1 + 1 T i s + T d s) = K p + K D s + K I s For convenience it will be rewritten as : C(s) = K D (s + z 1 )(s + z 2 ) s which has one pole at the origine and two stable zeros.
22 with z < p. C(s) = K ( s + z s + p ) Derivativetype controller : if p is placed well outside the frequency range of the design, the controller looks like a PD controller. The effect of the zero is to move the locus to the left (towards more stable zones). To be chosen directly below the desired root location. p should be located left far on the real axis. It should ensure that the total angle at the desired root location is π
23 with z > p. Integrationtype controller: C(s) = K ( s + z s + p ) p should be closed to the origine. z sufficiently far. z/p is chosen to be between 3 and 10 (according to the need of boosting the steadystate gain).
24 Matlab example a small airplane (pitch attitude): where G(s) = θ = G(s)(δ + M d ) 160(s + 2.5)(s + 0.7) (s 2 + 5s + 40)(s s ) θ is the pitch attitude, δ the elevator angle and M d the disturbance moment. : rise time 1sec and overshoot less than 10% Design an autopilot so that the steady state value of δ is zero for an arbitrary constant moment.
25 Matlab example t r 1sec implies ω n 1.8. M p 0.1 implies ξ 0.6. Steps Polynomial controller lead Compensation Leadlag
Methods for analysis and control of. Lecture 4: The root locus design method
Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March
More information7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM
ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)
More informationCourse roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs
ME451: Control Systems Modeling Course roadmap Analysis Design Lecture 18 Root locus: Sketch of proofs Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Laplace transform
More informationPole placement control: state space and polynomial approaches Lecture 2
: state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.fr www.gipsalab.fr/ o.sename based November 21, 2017 Outline : a state
More informationOutline. Classical Control. Lecture 5
Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8
Learning Objectives ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Dr. Oishi oishi@unm.edu November 2, 203 State the phase and gain properties of a root locus Sketch a root locus, by
More informationRoot Locus Methods. The root locus procedure
Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain
More informationRoot Locus. Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering
Root Locus Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie Recall, the example of the PI controller car cruise control system.
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationModule 3F2: Systems and Control EXAMPLES PAPER 2 ROOTLOCUS. Solutions
Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOTLOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the rootlocus
More informationSECTION 5: ROOT LOCUS ANALYSIS
SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path
More informationCHAPTER # 9 ROOT LOCUS ANALYSES
F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closedloop system is closely related to the location of the closedloop poles. If the system
More informationChemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University
Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this
More informationECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
More informationStep input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?
IC6501 CONTROL SYSTEM UNITII TIME RESPONSE PARTA 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationSchool of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See
More informationMethods for analysis and control of. Lecture 6: Introduction to digital control
Methods for analysis and of Lecture 6: to digital O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.inpg.fr www.lag.ensieg.inpg.fr/sename 6th May 2009 Outline Some interesting books:
More informationIf you need more room, use the backs of the pages and indicate that you have done so.
EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty
More informationSoftware Engineering 3DX3. Slides 8: Root Locus Techniques
Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationController Design using Root Locus
Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27
1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system
More informationModule 07 Control Systems Design & Analysis via RootLocus Method
Module 07 Control Systems Design & Analysis via RootLocus Method Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha March
More informationEE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginallystable
More informationControl Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. KwangChun Ho Tel: Fax:
Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. KwangChun Ho kwangho@hansung.ac.kr Tel: 027604253 Fax:027604435 Introduction In this lesson, you will learn the following : The
More informationLecture 3: The Root Locus Method
Lecture 3: The Root Locus Method Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 56001 This draft: March 1, 008 1 The Root Locus method The Root Locus method,
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationa. Closedloop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a
Root Locus Simple definition Locus of points on the s plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation
More informationProblems XO («) splane. splane *~8 X 5. id) X splane. splane. * Xtg) FIGURE P8.1. jplane. JO) k JO)
Problems 1. For each of the root loci shown in Figure P8.1, tell whether or not the sketch can be a root locus. If the sketch cannot be a root locus, explain why. Give all reasons. [Section: 8.4] *~8 XO
More informationRoot Locus Techniques
4th Edition E I G H T Root Locus Techniques SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Transient Design via Gain a. From the Chapter 5 Case Study Challenge: 76.39K G(s) = s(s+50)(s+.32) Since
More informationAutomatic Control Systems, 9th Edition
Chapter 7: Root Locus Analysis Appendix E: Properties and Construction of the Root Loci Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois
More informationLecture 1 Root Locus
Root Locus ELEC304Alper Erdogan 1 1 Lecture 1 Root Locus What is RootLocus? : A graphical representation of closed loop poles as a system parameter varied. Based on RootLocus graph we can choose the
More informationPole placement control: state space and polynomial approaches Lecture 1
: state space and polynomial approaches Lecture 1 dynamical O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.fr www.gipsalab.fr/ o.sename November 7, 2017 Outline dynamical dynamical
More informationFeedback Control of Dynamic Systems
THIRD EDITION Feedback Control of Dynamic Systems Gene F. Franklin Stanford University J. David Powell Stanford University Abbas EmamiNaeini Integrated Systems, Inc. TT AddisonWesley Publishing Company
More informationBangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory
Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationPD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada
PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closedloop
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationI What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF
EE C28 / ME C34 Feedback Control Systems Lecture Chapter 8 Root Locus Techniques Lecture abstract Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley
More informationECE 380: Control Systems
ECE 380: Control Systems Winter 2011 Course Notes, Part II Section 002 Prof. Shreyas Sundaram Department of Electrical and Computer Engineering University of Waterloo ii Acknowledgments Parts of these
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design
AERO 422: Active Controls for Aerospace Vehicles Basic Feedback Analysis & Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University Routh s Stability
More informationChapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steadystate Steadystate errors errors Type Type k k systems systems Integral Integral
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : RouthHurwitz stability criterion Examples Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling
More informationAutomatic Control Systems. Part III: Root Locus Technique
www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By ShihMin Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root
More information2.004 Dynamics and Control II Spring 2008
MT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control Spring 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Reading: ise: Chapter 8 Massachusetts
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles
More informationAutomatic Control (TSRT15): Lecture 4
Automatic Control (TSRT15): Lecture 4 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13282226 Office: Bhouse extrance 2527 Review of the last
More informationCourse Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: SteadyState Error Unit 7: Root Locus Techniques
More informationControl Systems. Root Locus & Pole Assignment. L. Lanari
Control Systems Root Locus & Pole Assignment L. Lanari Outline rootlocus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS  Root
More informationChapter 7 : Root Locus Technique
Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci
More informationMAK 391 System Dynamics & Control. Presentation Topic. The Root Locus Method. Student Number: Group: IB. Name & Surname: Göksel CANSEVEN
MAK 391 System Dynamics & Control Presentation Topic The Root Locus Method Student Number: 9901.06047 Group: IB Name & Surname: Göksel CANSEVEN Date: December 2001 The RootLocus Method Göksel CANSEVEN
More informationEE402  Discrete Time Systems Spring Lecture 10
EE402  Discrete Time Systems Spring 208 Lecturer: Asst. Prof. M. Mert Ankarali Lecture 0.. Root Locus For continuous time systems the root locus diagram illustrates the location of roots/poles of a closed
More information2.004 Dynamics and Control II Spring 2008
MT OpenCourseWare http://ocw.mit.edu.004 Dynamics and Control Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts nstitute of Technology
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root
More informationDynamic Compensation using root locus method
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Steadystate error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace
More informationRobust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
More informationCompensator Design to Improve Transient Performance Using Root Locus
1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More informationControl Systems. University Questions
University Questions UNIT1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationDesign of a Model of a System to Control the Pitch angle of Helicopter using State Estimator
American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 23283491, ISSN (Online): 23283580, ISSN (CDROM): 23283629
More informationRoot Locus U R K. Root Locus: Find the roots of the closedloop system for 0 < k < infinity
Background: Root Locus Routh Criteria tells you the range of gains that result in a stable system. It doesn't tell you how the system will behave, however. That's a problem. For example, for the following
More informationCourse roadmap. Step response for 2ndorder system. Step response for 2ndorder system
ME45: Control Systems Lecture Time response of ndorder systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
More informationEXAMPLE PROBLEMS AND SOLUTIONS
Similarly, the program for the fourthorder transfer function approximation with T = 0.1 sec is [num,denl = pade(0.1, 4); printsys(num, den, 'st) numlden = sa42o0sa3 + 1 80O0sA2840000~ + 16800000 sa4
More informationControl Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control DMAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:
More informationControl Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control
More informationSECTION 8: ROOTLOCUS ANALYSIS. ESE 499 Feedback Control Systems
SECTION 8: ROOTLOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closedloop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 6: Generalized and Controller Design Overview In this Lecture, you will learn: Generalized? What about changing OTHER parameters
More informationEE302  Feedback Systems Spring Lecture KG(s)H(s) = KG(s)
EE3  Feedback Systems Spring 19 Lecturer: Asst. Prof. M. Mert Ankarali Lecture 1.. 1.1 Root Locus In control theory, root locus analysis is a graphical analysis method for investigating the change of
More informationRoot locus Analysis. P.S. Gandhi Mechanical Engineering IIT Bombay. Acknowledgements: Mr Chaitanya, SYSCON 07
Root locus Analysis P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: Mr Chaitanya, SYSCON 07 Recap R(t) + _ k p + k s d 1 s( s+ a) C(t) For the above system the closed loop transfer function
More informationEE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO
EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationProfessor Fearing EE C128 / ME C134 Problem Set 4 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley. control input. error Controller D(s)
Professor Fearing EE C18 / ME C13 Problem Set Solution Fall 1 Jansen Sheng and Wenjie Chen, UC Berkeley reference input r(t) + Σ error e(t) Controller D(s) grid 8 pixels control input u(t) plant G(s) output
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More informationControl of Electromechanical Systems
Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance
More informationExample on Root Locus Sketching and Control Design
Example on Root Locus Sketching and Control Design MCE44  Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We
More informationLecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
More informationRoot Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples
Root Locu Content Root locu, ketching algorithm Root locu, example Root locu, proof Root locu, control example Root locu, influence of zero and pole Root locu, lead lag controller deign 9 Spring ME45 
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationRoot Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus  1
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position
More informationControl Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute
More informationRoot Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 12: Overview In this Lecture, you will learn: Review of Feedback Closing the Loop Pole Locations Changing the Gain
More informationCYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
More informationTopic # Feedback Control
Topic #5 6.3 Feedback Control StateSpace Systems Fullstate Feedback Control How do we change the poles of the statespace system? Or,evenifwecanchangethepolelocations. Where do we put the poles? Linear
More informationRobust and Optimal Control, Spring A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization
Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5303B) A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization A.2 Sensitivity and Feedback Performance A.3
More information