Design Guidelines A Scandinavian Approach

Size: px
Start display at page:

Download "Design Guidelines A Scandinavian Approach"

Transcription

1 Design Guidelines A Scandinavian Approach Pro. Björn Täljsten Luleå University o Technology SWEDEN Presented by Tech. Lic Anders Carolin 1 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

2 Agenda Coninement Saety actors Strengthening in Strengthening in Strengthening in Saety actors Acknowledgement 2 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

3 Why the need or design guidelines? Coninement Saety actors Increased need or strengthening and rehabilitation New materials introduced Knowledge how to use these materials or strengthening is relative limited compared to traditional building materials To gain acceptance within the building industry 3 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

4 Strengthening o Structures in General Holes Slabs NSMR Coninement Saety actors Beams Columns Brick Walls Steel Collar 4 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

5 The start The work with the guidelines started 1998 in relation to a strengthening work o a rail road bridge Coninement Saety actors It was elt rom the Rail Road authorities that a guideline was needed i the techniques should be accepted to be used on railroad and the like 5 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

6 The start The guideline is divided in our main parts Coninement Saety actors part that explain the use o advanced composites or strengthening Comprehensive theoretical part that give a clear understanding o the design process part which explain how the strengthening work shall be carried out Finally appendices with design examples and material data or use 6 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

7 The start The most essential in the codes considered to be: P 1 DP Strengthening or bending DP q Coninement Saety actors Saety actors d Strengthening or shear ηγ k m γ n But But also also atigue, torsion and and coninement are are considered and quality control 7 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

8 Strengthening or bending Failure modes Coninement Saety actors 1. Compressive ailure 2. Yielding, tensile rein. 3. Yielding, compressive rein. 4. Tensile ailure, laminate 5. Anchorage ailure 6. Peeling ailure 7. Delamination In general: M A ' s ' y ( ) 0.4x d + A ( d 0.4x) + ε E A ( h 0.4x) ' s s y s 8 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

9 Strengthening or bending Design Coninement Saety actors In general (depending on expected ailure mode): M A ' s ' y ( ) 0.4x d + A ( d 0.4x) + ε E A ( h 0.4x) ' s s y s 9 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

10 Anchorage l a l cr 0.2 ct E d w t Coninement Saety actors Based on racture mechanics 10 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

11 4,0 End-peeling 3,0 Analytical calculation 2,0 Coninement 1,0 FE - analysis 0, Saety actors 2,0 1,5 1,0 0,5 0,0 Analytical calculation FE - analysis Peeling τ max Ga P 2sE W c c ( 2l + a b)( aλ + 1) l + a λ 2-0, λ G a s b E 1 A + 1 E A c c + z c 0 E W c 11 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

12 Failure criteria Coninement σ 1 σ 1 < ct 2 σ x + σ y σ x σ y 2 xy τ 1 2 Saety actors σ x M I 2 x ( h x) 12 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

13 - Design Failure modes Coninement Saety actors 1. Compressive ailure in the concrete 2. Tensile ailure (ibre) in composite 3. Anchorage ailure 13 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

14 - Design In general: V V + V + d c s V q(x) q(x) Coninement Saety actors VA V0 τζη ση z V0 Fζη VA α β' α β' zcotα zcotβ' σζ τζη T θ τζη ση Fζ How to calculate V? A B A B θ θ 90 β V 90 β V 90 α 90 α α β α β ση σζ L 14 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

15 - Design Derivation o V : Equilibrium equations gives: Coninement Saety actors V 2t 0.9d cot ( σ α ) ς τ ςη Assumptions: The composite only take up orce in the ibre direction The inclination o the shear crack, a 45 The principal tensile strain is perpendicular to this plane V ( + cotβ) A σ 0.9d 1 e sinβ s 15 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

16 - Design Coninement Saety actors The eective stress can be expressed as: σ and with: s e σ b sin α cos 2 θ ε E cos The ollowing equation is obtained: 2 θ V 2t ε E 0.9d ( + cotβ) sin βcos θ 16 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

17 - Design P P σ sy σ sy Coninement Saety actors V V σ (ε) σ (ε) P P ε(y) ε(y) σ σ CFRP CFRP xc3 xc3 x C2, C4 x C2, C4 x C1, C5 x C1, C5 S1, S5 S3 S1, x S5 x xs3 3 x S2, S4 x x 2, 43 S2, S4 1, 52, 4 1, 5 V1 V1 x V2 > V1 x V2 > V1 Steel Steel ε ε V V The ollowing equation is obtained: V 1.2t ε E 0.9d ( + cotβ) sin βcos θ 17 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

18 - Design Similar to shear however, dierent crack path Coninement Saety actors Examples or strengthen in torsion 18 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

19 - Design Design Coninement Saety actors 1.2t b s b ε u E T 2bh 1 ( cot α + cot β) sin β Dierent ailure modes are also considered 19 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

20 Coninement - Design Design Coninement Saety actors Dierent shapes are considered 20 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

21 Coninement - Design Design Coninement Saety actors The design is valid or short columns i.e: l c /h < Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

22 Column Strengthening - Design Design Coninement Ac cc N u kc kϕϕe k s A s sc Saety actors 22 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

23 and quality control Handling and protection BEFORE STRENGTHENING Examination o existing documentation, structure, loads and material data etc. FRP Strengthening NO Coninement Saety actors Accidents measures Strengthening work Quality control Poisonous Caustic Flammable Health Risk DURING STRENGTHENING Surace Preparation Remove weak concrete and contaminations, round corners when needed - make the surace dust and grease ree. Concrete surace treated depending on strengthening material used: Laminates: Sandblasting Sheets: Sandblasting and grinding NSMR: Saw cuts in the concrete cover Externally bonded reinorcement All materials must be dust and solvent ree and when applicable cleaned with a solvent beore mounting Bonding procedure Laminates: Apply primer when recommended. Apply adhesive on both laminate and the concrete surace. Mount together. Sheets: Apply primer. Level out the surace with putty when needed. Apply adhesive and mount the sheet in the wet adhesive - apply a new layer o adhesive, repeat the procedure or numbers o layers needed. NSMR: Apply adhesive or cement mortar in the cleaned and dry slot. Mount the NSMR laminate in the slot. QUALITY CONTROL (Beore, during and ater Strengthening) Other Methods Qualiy Plan AFTER STRENGTHENING Finishing layer Paint, shotcrete, resistant to wear etc. Fire Protection Due to regulations and demand rom client Final Result 23 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

24 Saety - Factors Partial coeicients Material properties d γ m ηγ k m γ n Coninement Saety class (1,2,3) γ n Saety actors 24 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

25 Coninement Saety actors Saety - Factors Material properties is divided into: γ m1 γ m2 γ m3 γ m4 γ m5 γ m6 : : : : : : Consider uncertainties in material characteristics Uncertainties in calculation model Consider the ailure type Consider inluence o control Consider short or long term loading Consider the implementation process, e.g laminates, abrics etc. Saety class (1,2,3) Class 1: Class 2: Class 3: γ n 1.0 γ n 1.1 γ n Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

26 Saety - Factors Partial coeicients Coninement Saety actors Example: Example: Calculate Calculate the the resistance resistance parameter parameter γ m γ or m or a a composite composite strengthening strengthening with with carbon carbon ibre ibre sheets sheets in in a a hand hand lay-up lay-up application, application, in in order order to to bear bear an an increased increased traic traic load. load. Strengthening Strengthening is is perormed perormed or or increased increased bending bending moment moment capacity. capacity. Good Good control control during during implementation implementation is is expected. expected. Solution: Solution: high high conormity conormity between between strength strength in in γ m1 γ m test test bodies bodies and and structure structure normal normal accuracy accuracy in in calculation calculation model model γ m2 γ m ductile ductile ailure ailure without without bearing bearing capacity capacity reserve γ reserve m3 γ m high high control control over over materials materials and and implementation implementation γ m4 γ m carbon carbon ibre ibre as as well well as as dynamic dynamic load γ load m5 γ m hand hand lay-up, lay-up, normal normal accuracy accuracy γ m6 γ m Together Together this this gives gives the the saety saety actor: actor: γ m Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

27 Field Applications The design guideline has been used here Coninement Saety actors 27 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

28 Coninement Saety actors Design guidelines are essential or increased use o FRP s in the building industry We have noticed a increased interest o the FRP strengthening method since the design guidelines were introduced It is recommended to use calculation examples in the guidelines or clariication The guidelines need to be a living document that should and can be changed depending on new knowledge. 28 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

29 Acknowledgements The presenter greatly acknowledge SKANSKA, the Development Fund o the Swedish Construction Industry (SBUF) and the Nordic Network or Composites in Civil Engineering Coninement Saety actors 29 Pro. B. Täljsten Departmento Civiland Mining Engineering Division ostructuralengineering

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SUMMER 2014 Mechanics o Materials MECHNICS MTERIS lecture ive mechanics o materials www.carttalk.com Mechanics o Materials 1 rchitectural

More information

Professor, Institute of Engineering Mechanics, Harbin. China 2. Ph.D Student, Institute of Engineering Mechanics, Harbin. China 3

Professor, Institute of Engineering Mechanics, Harbin. China 2. Ph.D Student, Institute of Engineering Mechanics, Harbin. China 3 The 14 th World Conerence on Earthquake Engineering COMPARISON OF FRP-RETROFITTING STRATEGIES IN CHINESE AND ITALIAN CODES J. W. DAI 1, Y.R. WANG 2, B. JIN 1, 3, D.F.ZU 4, Silvia Alessandri 5, Giorgio

More information

Bond strength model for interfaces between nearsurface mounted (NSM) CFRP strips and concrete

Bond strength model for interfaces between nearsurface mounted (NSM) CFRP strips and concrete University o Wollongong Research Online Faculty o Engineering and Inormation Sciences - Papers: Part A Faculty o Engineering and Inormation Sciences 2014 Bond strength model or interaces between nearsurace

More information

four mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

four mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS EEMENTS OF RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SRING 2016 Mechanics o Materials MECHNICS MTERIS lecture our mechanics o materials www.carttalk.com Mechanics o Materials 1 S2009abn

More information

Calculation Example. Strengthening for flexure

Calculation Example. Strengthening for flexure 01-08-1 Strengthening or lexure 1 Lat 1 L Sektion 1-1 (Skala :1) be h hw A bw FRP The beam i a part o a lab in a parking garage and need to be trengthened or additional load. Simply upported with L=8.0

More information

10/14/2011. Types of Shear Failure. CASE 1: a v /d 6. a v. CASE 2: 2 a v /d 6. CASE 3: a v /d 2

10/14/2011. Types of Shear Failure. CASE 1: a v /d 6. a v. CASE 2: 2 a v /d 6. CASE 3: a v /d 2 V V Types o Shear Failure a v CASE 1: a v /d 6 d V a v CASE 2: 2 a v /d 6 d V a v CASE 3: a v /d 2 d V 1 Shear Resistance Concrete compression d V cz = Shear orce in the compression zone (20 40%) V a =

More information

Reliability of Axially Loaded Fiber-Reinforced-Polymer Confined Reinforced Concrete Circular Columns

Reliability of Axially Loaded Fiber-Reinforced-Polymer Confined Reinforced Concrete Circular Columns American J. o Engineering and Applied Sciences (1): 31-38, 009 ISSN 1941-700 009 Science Publications Reliability o Axially Loaded Fiber-Reinorced-Polymer Conined Reinorced Concrete Circular Columns Venkatarman

More information

Strengthening of columns with FRP

Strengthening of columns with FRP with FRP Professor Dr. Björn Täljsten Luleå University of Technology Sto Scandinavia AB 9/12/2013 Agenda Case study Restrained transverse expansion (confinement) Circular and rectangular cross sections

More information

twenty one concrete construction: materials & beams ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014

twenty one concrete construction: materials & beams ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture twenty one concrete construction: http:// nisee.berkeley.edu/godden materials & beams Concrete Beams

More information

NUMERICAL ASSESSMENT OF REINFORCED CONCRETE MEMBERS RETROFITTED WITH FIBER REINFORCED POLYMER FOR RESISTING BLAST LOADING

NUMERICAL ASSESSMENT OF REINFORCED CONCRETE MEMBERS RETROFITTED WITH FIBER REINFORCED POLYMER FOR RESISTING BLAST LOADING NUMERICAL ASSESSMENT OF REINFORCED CONCRETE MEMBERS RETROFITTED WITH FIBER REINFORCED POLYMER FOR RESISTING BLAST LOADING By GRAHAM LONG A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA

More information

FATIGUE DURABILITY OF CONCRETE EXTERNALLY STRENGTHENED WITH FRP SHEETS

FATIGUE DURABILITY OF CONCRETE EXTERNALLY STRENGTHENED WITH FRP SHEETS FATIGUE DURABILITY OF CONCRETE EXTERNALLY STRENGTHENED WITH FRP SHEETS H. Diab () and Zhishen Wu () () Department o Urban and Civil Engineering, Ibaraki University, Japan Abstract A primary concern o the

More information

Explanatory Examples for Ductile Detailing of RC Buildings

Explanatory Examples for Ductile Detailing of RC Buildings Document No. :: IITK-GSD-EQ-V3.0 Final Report :: - Earthquake Codes IITK-GSD Project on Building Codes Explanatory Examples or Ductile Detailing o RC Buildings by Dr. R. K. Ingle Department o pplied echanics

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

3.5 Analysis of Members under Flexure (Part IV)

3.5 Analysis of Members under Flexure (Part IV) 3.5 Analysis o Members under Flexure (Part IV) This section covers the ollowing topics. Analysis o a Flanged Section 3.5.1 Analysis o a Flanged Section Introduction A beam can have langes or lexural eiciency.

More information

AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS

AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS Bernát Csuka Budapest University o Technology and Economics Department o Mechanics Materials and Structures Supervisor: László P. Kollár 1.

More information

Calibration of Bond Coefficient for Deflection Control of FRP RC Members

Calibration of Bond Coefficient for Deflection Control of FRP RC Members Fourth International Conerence on FRP Composites in Civil Engineering (CICE008) -4July 008, Zurich, Switzerland Calibration o Bond Coeicient or Delection Control o FRP RC Members R. Fico, A. Prota & G.

More information

Behavior of RC Columns Confined with CFRP Sheets and Subjected to Eccentric Loading

Behavior of RC Columns Confined with CFRP Sheets and Subjected to Eccentric Loading Lie Science Journal 2018;15(6) http:www.liesciencesite.com Behavior o RC Columns Conined with CFRP Sheets and Subjected to Eentric Loading Omar A. Farghal 1 and Mamdouh A. Kenawi 2 1 Civil Engineering

More information

Chapter 6 Reliability-based design and code developments

Chapter 6 Reliability-based design and code developments Chapter 6 Reliability-based design and code developments 6. General Reliability technology has become a powerul tool or the design engineer and is widely employed in practice. Structural reliability analysis

More information

Available online at ScienceDirect. Transportation Research Procedia 14 (2016 )

Available online at   ScienceDirect. Transportation Research Procedia 14 (2016 ) Available online at www.sciencedirect.com ScienceDirect Transportation Research Procedia 14 (016 ) 411 40 6th Transport Research Arena April 18-1, 016 Resistance o reinorced concrete columns subjected

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

OUTLINE DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE 12/21/ Introduction 2. Base plates. 3. Anchor Rods

OUTLINE DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE 12/21/ Introduction 2. Base plates. 3. Anchor Rods DESIGN OF COLUMN BSE PLTES ND STEEL NCHORGE TO CONCRETE OUTLINE 1. Introduction 2. Base plates a. Material b. Design using ISC Steel Design Guide Concentric axial load xial load plus moment xial load plus

More information

Title. Author(s)Dai, Jianguo; Ueda, Tamon; Sato, Yasuhiko. CitationJournal of Composites for Construction, 9(1): Issue Date Doc URL.

Title. Author(s)Dai, Jianguo; Ueda, Tamon; Sato, Yasuhiko. CitationJournal of Composites for Construction, 9(1): Issue Date Doc URL. Title Development o the Nonlinear Bond Stress-Slip Model Simple Method Author(s)Dai, Jianguo; Ueda, Tamon; Sato, Yasuhiko CitationJournal o Composites or Construction, 9(1): 52-62 Issue Date 2005 Doc URL

More information

- Rectangular Beam Design -

- Rectangular Beam Design - Semester 1 2016/2017 - Rectangular Beam Design - Department of Structures and Material Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction The purposes

More information

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

More information

8.3 Design of Base Plate for Thickness

8.3 Design of Base Plate for Thickness 8.3 Design o Base Plate or Thickness 8.3.1 Design o base plate or thickness (Elastic Design) Upto this point, the chie concern has been about the concrete oundation, and methods o design have been proposed

More information

ULTIMATE SHEAR OF BEAMS STRENGTHENED WITH CFRP SHEETS

ULTIMATE SHEAR OF BEAMS STRENGTHENED WITH CFRP SHEETS ULTIMATE SHEAR OF BEAMS STRENGTHENED WITH CFRP SHEETS U. Ianniruberto and M. Imbimbo Department of Civil Engineering, University of Rome Tor Vergata Via di Tor Vergata 0, 0033, Rome, Italy SUMMARY: The

More information

Combined Stresses and Mohr s Circle. General Case of Combined Stresses. General Case of Combined Stresses con t. Two-dimensional stress condition

Combined Stresses and Mohr s Circle. General Case of Combined Stresses. General Case of Combined Stresses con t. Two-dimensional stress condition Combined Stresses and Mohr s Circle Material in this lecture was taken from chapter 4 of General Case of Combined Stresses Two-dimensional stress condition General Case of Combined Stresses con t The normal

More information

THREE DIMENSIONAL MECHANICAL MODEL TO SIMULATE THE NSM FRP STRIPS SHEAR STRENGTH CONTRIBUTION TO A RC BEAM: PARAMETRIC STUDIES

THREE DIMENSIONAL MECHANICAL MODEL TO SIMULATE THE NSM FRP STRIPS SHEAR STRENGTH CONTRIBUTION TO A RC BEAM: PARAMETRIC STUDIES THREE DIMENSIONA MECHANICA MODE TO SIMUATE THE NSM FRP STRIPS SHEAR STRENGTH CONTRIBUTION TO A RC BEAM: PARAMETRIC STUDIES Vincenzo Bianco 1, J.A.O. Barros 2 and Giorgio Monti 3 Abstract: This paper presents

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Life Prediction Under Multiaxial Fatigue

Life Prediction Under Multiaxial Fatigue Lie Prediction Under Multiaxial Fatigue D. Ramesh and M.M. Mayuram Department o Mechanical Engineering Indian Institute o Technology, Madras Chennai-600 036 (India) e-mail: mayuram@iitm.ac.in ABSTRACT

More information

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS - Technical Paper - Tidarut JIRAWATTANASOMKUL *1, Dawei ZHANG *2 and Tamon UEDA *3 ABSTRACT The objective of this study is to propose a new

More information

EVALUATION OF DEBONDING ENERGY RELEASE RATE OF EXTERNALLY BONDED FRP SHEETS FOR REHABILITATION OF INFRASTRUCTURES

EVALUATION OF DEBONDING ENERGY RELEASE RATE OF EXTERNALLY BONDED FRP SHEETS FOR REHABILITATION OF INFRASTRUCTURES EVALUATION OF DEBONDING ENERGY RELEASE RATE OF EXTERNALLY BONDED FRP SHEETS FOR REHABILITATION OF INFRASTRUCTURES Koji YAMAGUCHI 1, Isao KIMPARA 1, and Kazuro KAGEYAMA 1 1 Department of Environmental &

More information

Failure Diagrams of FRP Strengthened RC Beams

Failure Diagrams of FRP Strengthened RC Beams Failure Diagrams o FRP Strengthened RC Beams Abstract Bo GAO a, Christopher K. Y. LEUNG b and Jang-Kyo KIM a* a Department o Mechanical Engineering and b Department o Civil Engineering Hong Kong University

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

DESIGN MODELS FOR SHEAR STRENGTHENING OF REINFORCED CONCRETE BEAMS WITH EXTERNALLY BONDED FRP COMPOSITES: A STATISTICAL VS RELIABILITY APPROACH

DESIGN MODELS FOR SHEAR STRENGTHENING OF REINFORCED CONCRETE BEAMS WITH EXTERNALLY BONDED FRP COMPOSITES: A STATISTICAL VS RELIABILITY APPROACH FRPRCS-8 University o Patras, Patras, Greece, July -8, 7 DESIGN MODELS FOR SHEAR STRENGTHENING OF REINFORCED CONCRETE BEAMS WITH EXTERNALLY BONDED FRP COMPOSITES: A STATISTICAL VS RELIABILITY APPROACH

More information

A PROPOSAL OF DESIGN PROCEDURE FOR FLEXURAL STRENGTHENING RC BEAMS WITH FRP SHEET

A PROPOSAL OF DESIGN PROCEDURE FOR FLEXURAL STRENGTHENING RC BEAMS WITH FRP SHEET N. Kishi, E-89, 1/8 A PROPOSAL OF DESIGN PROCEDURE FOR FLEXURAL STRENGTHENING RC BEAMS WITH FRP SHEET Yusuke Kurihashi Norimitsu Kishi Hiroshi Mikami Sumiyuki Sawada Civil Engrg. Research Muroran Inst.

More information

Chapter 8. Shear and Diagonal Tension

Chapter 8. Shear and Diagonal Tension Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.1-4.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR

More information

Editorial Manager(tm) for The Arabian Journal for Science and Engineering B:

Editorial Manager(tm) for The Arabian Journal for Science and Engineering B: Engineering Editorial Manager(tm) or The Arabian Journal or Science and Engineering B: Manuscript Drat Manuscript Number: AJSE-ENG-D-0-00R Title: Shear strengthening o short span reinorced concrete beams

More information

Finite Element Analysis of FRP Debonding Failure at the Tip of Flexural/Shear Crack in Concrete Beam

Finite Element Analysis of FRP Debonding Failure at the Tip of Flexural/Shear Crack in Concrete Beam Marquette University e-publications@marquette Civil and Environmental Engineering Faculty Research and Publications Civil and Environmental Engineering, Department of 12-1-2013 Finite Element Analysis

More information

FRACTURE MECHANICS APPROACHES STRENGTHENING USING FRP MATERIALS

FRACTURE MECHANICS APPROACHES STRENGTHENING USING FRP MATERIALS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICATIO Publishers, D-79104 Freiburg, Germany FRACTURE MECHANICS APPROACHES STRENGTHENING USING FRP MATERIALS Triantafillou Department

More information

Seismic Design, Assessment & Retrofitting of Concrete Buildings. fctm. h w, 24d bw, 175mm 8d bl, 4. w 4 (4) 2 cl

Seismic Design, Assessment & Retrofitting of Concrete Buildings. fctm. h w, 24d bw, 175mm 8d bl, 4. w 4 (4) 2 cl Seismic Design, Assessment & Retroitting o Concrete Buildings Table 5.1: EC8 rules or detailing and dimensioning o primary beams (secondary beams: as in DCL) DC H DCM DCL critical region length 1.5h w

More information

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014 Universit of Pretoria Department of Mechanical & Aeronautical Engineering MOW 7, nd Semester 04 Semester Test Date: August, 04 Total: 00 Internal eaminer: Duration: hours Mr. Riaan Meeser Instructions:

More information

Reliability assessment on maximum crack width of GFRPreinforced

Reliability assessment on maximum crack width of GFRPreinforced Fourth International Conerence on FRP Composites in Civil Engineering (CICE2008) 22-24July 2008, Zurich, Switzerland Reliability assessment on maximum crack width o GFRPreinorced concrete beams Z. He and

More information

Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP

Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP Proceedings of the World Congress on Engineering 21 Vol II WCE 21, June 2 - July 1, 21, London, U.K. Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP Lihua Huang,

More information

Fayoum University. Dr.: Youssef Gomaa Youssef

Fayoum University. Dr.: Youssef Gomaa Youssef Fayoum University Faculty o Engineering Department o Civil Engineering CE 40: Part Shallow Foundation Design Lecture No. (6): Eccentric Footing Dr.: Yousse Gomaa Yousse Eccentric Footing Eccentric ooting:

More information

S. Srinivasan, Technip Offshore, Inc., Houston, TX

S. Srinivasan, Technip Offshore, Inc., Houston, TX 9 th ASCE Specialty Conerence on Probabilistic Mechanics and Structural Reliability PROBABILISTIC FAILURE PREDICTION OF FILAMENT-WOUND GLASS-FIBER Abstract REINFORCED COMPOSITE TUBES UNDER BIAXIAL LOADING

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

MICROMECHANICAL FAILURE ANALYSIS OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES UNDER IN-PLANE AND TRANSVERSE SHEAR

MICROMECHANICAL FAILURE ANALYSIS OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES UNDER IN-PLANE AND TRANSVERSE SHEAR THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MICROMECHANICAL FAILURE ANALYSIS OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES UNDER IN-PLANE AND TRANSVERSE SHEAR Lei Yang*, Ying Yan, Zhiguo

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

CHAPTER 4. Design of R C Beams

CHAPTER 4. Design of R C Beams CHAPTER 4 Design of R C Beams Learning Objectives Identify the data, formulae and procedures for design of R C beams Design simply-supported and continuous R C beams by integrating the following processes

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur Module Stresses in machine elements Lesson Compound stresses in machine parts Instructional Objectives t the end of this lesson, the student should be able to understand Elements of force system at a beam

More information

WP6 - Thought for Eurocodes Upgrade

WP6 - Thought for Eurocodes Upgrade February 20-21, 2014, Cracow (Poland) WP6 - Thought for Eurocodes Upgrade Emidio Nigro, Antonio Bilotta, Giuseppe Cefarelli New Eurocode on structures that incorporate FRP: Flexural resistance of FRP reinforced

More information

University of Sheffield The development of finite elements for 3D structural analysis in fire

University of Sheffield The development of finite elements for 3D structural analysis in fire The development of finite elements for 3D structural analysis in fire Chaoming Yu, I. W. Burgess, Z. Huang, R. J. Plank Department of Civil and Structural Engineering StiFF 05/09/2006 3D composite structures

More information

CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

More information

Notched Strength Estimation of Graphite/Epoxy Laminated Composite with Central Crack under Uniaxial Tensile Loading

Notched Strength Estimation of Graphite/Epoxy Laminated Composite with Central Crack under Uniaxial Tensile Loading International Journal o Composite Materials 5, 5(6): 77-8 DOI:.593/j.cmaterials.556.6 Notched Strength Estimation o Graphite/Epoxy Laminated Composite with Central Crack under Uniaxial Tensile Loading

More information

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS Atsuhiko MACHIDA And Khairy H ABDELKAREEM SUMMARY Nonlinear D FEM was utilized to carry out inelastic

More information

Static Failure (pg 206)

Static Failure (pg 206) Static Failure (pg 06) All material followed Hookeʹs law which states that strain is proportional to stress applied, until it exceed the proportional limits. It will reach and exceed the elastic limit

More information

Improving fire resistance of existing concrete slabs by concrete topping

Improving fire resistance of existing concrete slabs by concrete topping Improving fire resistance of existing concrete slabs by concrete topping Is EN 1992-1-2 annex E telling the truth, and can it be used? Tom Molkens StuBeCo bvba, Overpelt - Belgium Structures in Fire Forum

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 36 EXPERIMENTAL STUDY OF THE BEHAVIOUR OF INTERFACES BETWEEN CARBON FIBRE REINFORCED POLYMERS AND SC SOIL S. Subburaj

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES

CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES S. Kakay et al. Int. J. Comp. Meth. and Exp. Meas. Vol. 5 No. (017) 116 14 CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES SAMDAR KAKAY DANIEL BÅRDSEN

More information

Finite element modeling incorporating nonlinearity of material behavior based on the fib Model Code 2010

Finite element modeling incorporating nonlinearity of material behavior based on the fib Model Code 2010 Peer-reviewed & Open access journal www.academicpublishingplatorms.com Finite element modeling incorporating non-linearity o material behavior ATI - Applied Technologies & Innovations Volume 5 Issue November

More information

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections STRESS! Stress Evisdom! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1 Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support

More information

Manufacturing Remaining Stresses in Truck Frame Rail's Fatigue Life Prediction

Manufacturing Remaining Stresses in Truck Frame Rail's Fatigue Life Prediction Manuacturing Remaining Stresses in Truck Frame Rail's Fatigue Lie Prediction Claudiomar C. Cunha & Carlos A. N. Dias MSX International & Department o Naval Engineering EPUSP/USP/Brazil Department o Mechanical

More information

Fire resistance assessment of composite steel-concrete structures

Fire resistance assessment of composite steel-concrete structures Workshop Structural Fire Design of Buildings according to the Eurocodes Brussels, 78 November 0 Fire resistance assessment of composite steelconcrete structures Basic design methods Worked examples CAJOT

More information

Strain Gauges and Accessories

Strain Gauges and Accessories Strain Gauges and Accessories Nurgül Er nurguel.er@hbm.com www.hbm.com 19.03.2008, Folie 1 Hottinger Baldwin Messtechnik GmbH Nurgül Er How to find the right strain gauge a wide range of of strain gauges

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

Bending and Shear in Beams

Bending and Shear in Beams Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

Direct Design and Indirect Design of Concrete Pipe Part 2 Josh Beakley March 2011

Direct Design and Indirect Design of Concrete Pipe Part 2 Josh Beakley March 2011 Direct Design and Indirect Design of Concrete Pipe Part 2 Josh Beakley March 2011 Latest in Design Methods? AASHTO LRFD Bridge Design Specifications 2010 Direct Design Method for Concrete Pipe 1993? LRFD5732FlexuralResistance

More information

FLEXURAL STRENGTHENING OF REINFORCED CONCRETE STRUCTURES BY PLATE BONDING

FLEXURAL STRENGTHENING OF REINFORCED CONCRETE STRUCTURES BY PLATE BONDING CHAPTER 2 FLEXURAL STRENGTHENING OF REINFORCED CONCRETE STRUCTURES BY PLATE BONDING 2.1. Introduction Although composite materials have been successfully used in practice for strengthening (Gómez Pulido

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding (1997) (Rev.1 1997) (Rev.1.1 Mar 1998 /Corr.1) (Rev. Sept 000) (Rev.3 eb 001) (Rev.4 Nov 001) (Rev.5 July 003) (Rev.6 July 004) (Rev.7 eb 006) (Corr.1 Oct 009) (Rev.8 May 010) (Rev.9 Apr 014) Evaluation

More information

WELDED ALUMINUM ALLOY PLATE GIRDERS SUBJECTED TO SHEAR FORCE

WELDED ALUMINUM ALLOY PLATE GIRDERS SUBJECTED TO SHEAR FORCE Advanced Steel Construction Vol. 8, No. 1, pp. 71-94 (2012) 71 WELDED ALUMINUM ALLOY PLATE GIRDERS SUBJECTED TO SHEAR FORCE Feng Zhou 1a, 1b, Ben Young 2,* and Hin-Chung Lam 3 1a Department o Building

More information

2/28/2006 Statics ( F.Robilliard) 1

2/28/2006 Statics ( F.Robilliard) 1 2/28/2006 Statics (.Robilliard) 1 Extended Bodies: In our discussion so far, we have considered essentially only point masses, under the action of forces. We now broaden our considerations to extended

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 6: SHEAR AND TORSION Reinforced

More information

Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

More information

Observational Methods and

Observational Methods and Observational Methods and NATM System for Observational approach to tunnel design Eurocode 7 (EC7) includes the following remarks concerning an observational method. Four requirements shall all be made

More information

Reliability-Based Load and Resistance Factor Design (LRFD) Guidelines for Stiffened Panels and Grillages of Ship Structures

Reliability-Based Load and Resistance Factor Design (LRFD) Guidelines for Stiffened Panels and Grillages of Ship Structures Reliability-Based Load and Resistance actor Design (LRD) Guidelines or Stiened Panels and Grillages o Ship Structures Ibrahim A. Assakka 1, Bilal M. Ayyub 2, Paul E. Hess, III, 3 and Khaled Atua 4 ABSTRACT

More information

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings International Journal o Mechanical Engineering and Applications 7; 5(): 6-67 http://www.sciencepublishinggroup.com/j/ijmea doi:.648/j.ijmea.75.4 ISSN: -X (Print); ISSN: -48 (Online) Non-newtonian Rabinowitsch

More information

Critical problem in EB-FRP technique

Critical problem in EB-FRP technique Critical problem in EB-FRP technique Unle only a mall amount o FRP i ued, ull utilization o FRP material tenile trength cannot be realized. Failure o a trengthened member - a premature, udden and brittle

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents Mechanical Testing of Composites and their Constituents American Society for Testing and Materials (ASTM) Standards Tests done to determine intrinsic material properties such as modulus and strength for

More information

Thermal loads on optical glass

Thermal loads on optical glass Version October 2018 1 Introduction In some applications optical glasses have to endure thermal loads: Finishing procedures for optical elements like lenses, prisms, beam splitters and so on involve thermal

More information

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6.

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6. Delft University of Technology Faculty of Civil Engineering and Geosciences Structural Mechanics Section Write your name and study number at the top right-hand of your work. Exam CT4143 Shell Analysis

More information

A STUDY OF 0 -FIBRE MICROBUCKLING IN MULTIDIRECTIONAL COMPOSITE LAMINATES

A STUDY OF 0 -FIBRE MICROBUCKLING IN MULTIDIRECTIONAL COMPOSITE LAMINATES A STUDY OF -FIBRE MICROBUCKLING IN MULTIDIRECTIONAL COMPOSITE LAMINATES P. Berbinau and C. Soutis Department o Aeronautics, Imperial College o Science, Technology & Medicine Prince Consort Rd, London SW7

More information

1. ARRANGEMENT. a. Frame A1-P3. L 1 = 20 m H = 5.23 m L 2 = 20 m H 1 = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m. b. Frame P3-P6

1. ARRANGEMENT. a. Frame A1-P3. L 1 = 20 m H = 5.23 m L 2 = 20 m H 1 = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m. b. Frame P3-P6 Page 3 Page 4 Substructure Design. ARRANGEMENT a. Frame A-P3 L = 20 m H = 5.23 m L 2 = 20 m H = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m b. Frame P3-P6 L = 25 m H 3 = 8.39 m L 2 = 3 m H 4 = 8.5 m L

More information

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS The 3 rd International Conerence on DIAGNOSIS AND PREDICTION IN MECHANICAL ENGINEERING SYSTEMS DIPRE 12 SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF Valeriu DULGHERU, Viorel BOSTAN, Marin GUŢU Technical

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

Module 5: Theories of Failure

Module 5: Theories of Failure Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information