Strain Gauges and Accessories

Size: px
Start display at page:

Download "Strain Gauges and Accessories"

Transcription

1 Strain Gauges and Accessories Nurgül Er , Folie 1 Hottinger Baldwin Messtechnik GmbH Nurgül Er

2 How to find the right strain gauge a wide range of of strain gauges , Folie 2 Hottinger Baldwin Messtechnik GmbH Nurgül Er

3 Strain gauge Cover carrier Measuring grid Leads Grid width Grid length , Folie 3 Hottinger Baldwin Messtechnik GmbH Nurgül Er

4 Applications of Strain Gauges Experimental Test s Exp. stress analysis Determining Residual Stress Analysis of loading (e.g. life-time analysis) Transducers for Force Torque Pressure Strain... Determining thermal stress , Folie 4 Hottinger Baldwin Messtechnik GmbH Nurgül Er

5 Strain gauges for transducer manufactures , Folie 5 Hottinger Baldwin Messtechnik GmbH Nurgül Er

6 HBM-bending beam , Folie 6 Hottinger Baldwin Messtechnik GmbH Nurgül Er

7 Strain gauges for experimental tests , Folie 7 Hottinger Baldwin Messtechnik GmbH Nurgül Er

8 Strain gauges type designation L Type Geometry of the strain gauges Y Strain Gauges Series Material of the measuring grid and the carrier 1 Connections Leads / solder tabs / 1 Temperature adjusted to thermal expansion variation coefficient α of an material 6 Measuring grid in mm 120 Measuring grid resistance in Ohm Strain gauges type designation (example): LY11-6/ , Folie 8 Hottinger Baldwin Messtechnik GmbH Nurgül Er

9 Number of measuring grid and their relative position to each other L one measuring grid (linear strain gauges) D two measuring grid (direction: parallel) X two measuring grids (T-rosette (offset by 90 ) R V K M three measuring grids ( rosettes) four measuring grids (full bridge strain gauges) strain gauges chains for determining strain gradients full bridge strain gauges as diaphragm rosettes , Folie 9 Hottinger Baldwin Messtechnik GmbH Nurgül Er

10 Typical strain gauges types , Folie 10 Hottinger Baldwin Messtechnik GmbH Nurgül Er

11 Typical strain gauges types Linear strain gauge e.g. LY11-6/120 F Calculate the Young's Modulus on a tension / compression bar (Hooke s Law) measure strain ε calculate the mechanical stress σ = F A E = σ ε , Folie 11 Hottinger Baldwin Messtechnik GmbH Nurgül Er

12 Typical strain gauges types Dual-element linear strain gauge e.g. DY11-6/350 F Typical application: bending beam and the right strain gauge , Folie 12 Hottinger Baldwin Messtechnik GmbH Nurgül Er

13 Typical strain gauges types X-rosettes with 2 measuring grids e.g. XY11-6/120 Calculate the Young's Modulus and the Poisson s ratio on a tension bar measure strain ε calculate the mechanical stress σ = E = F A σ ε ν = ε ε q l , Folie 13 Hottinger Baldwin Messtechnik GmbH Nurgül Er

14 Typical strain gauges types X-rosettes with 2 measuring grids e.g. XY41-6/120 Example: torque transducer (torsions shaft with strain gauges mounted in the principal strain directions , Folie 14 Hottinger Baldwin Messtechnik GmbH Nurgül Er

15 Typical strain gauges types Rosettes with 3 measuring grids e.g. RY11-6/120 a c b (0º/45º/90º - rosette) σ 1/ 2 = E 1 ν ε a + ε 2 c ± 2 E ( 1+ ν) 2 ( ε ε ) + ( ε ε ) 2 a b c b , Folie 15 Hottinger Baldwin Messtechnik GmbH Nurgül Er

16 Typical strain gauges types Rosettes with 3 measuring grids e.g. RY11-6/120 (planar) 0º/45º/90º - rosettes 0º/60º/120º - rosettes determining a biaxial stress state with unknown principal directions , Folie 16 Hottinger Baldwin Messtechnik GmbH Nurgül Er

17 Typical strain gauges types Strain gauges chains, e.g. KY11-4/120 (for the determination of stress gradients) Shapes of strain gauges chains: measuring grids in a direction parallel to the chain s longitudinal axis measuring grids in a direction perpendicular to the chain s longitudinal axis measuring grids in a direction alternately parallel and perpendicular to the chain s longitudinal axis rosette chain , Folie 17 Hottinger Baldwin Messtechnik GmbH Nurgül Er

18 Typical strain gauges types Five 0 /60 /120 - rosette and one compensation strain gauges , Folie 18 Hottinger Baldwin Messtechnik GmbH Nurgül Er

19 strain measurement on on a gear gear wheel , Folie 19 Hottinger Baldwin Messtechnik GmbH Nurgül Er

20 Typical strain gauges types Diaphragm rosette e.g. MY21-6/120 Example: pressure transducer with diaphragm elastic elements , Folie 20 Hottinger Baldwin Messtechnik GmbH Nurgül Er

21 Strain gauge series Y C carrier polyimide / measuring grid constantan foil carrier polyimide / measuring grid CrNi special alloy G carrier phenolic resin, glass fibre reinforced / measuring grid constantan foil K carrier phenolic resin, glass fibre reinforced / measuring grid constantan foil, different creep adjustment V carrier polyimide / measuring grid constantan foil, embedded in plastic resin , Folie 21 Hottinger Baldwin Messtechnik GmbH Nurgül Er

22 Strain gauge series Strain gauges for harsh environments embedded in plastic resin carrier polyimide / measuring grid constantan foil with 3m cable , Folie 22 Hottinger Baldwin Messtechnik GmbH Nurgül Er

23 Type and position of connections with leads (aprox. 30mm) with integrated solder tabs pre-wired strain gauges new , Folie 23 Hottinger Baldwin Messtechnik GmbH Nurgül Er

24 Type and position of connections no soldering at the measuring point cable length from 0.5m to 10m available 2, 3 and 4 wire options Teflon insulated wires prevent unwanted cable bonding new! pre-wired strain gauges , Folie 24 Hottinger Baldwin Messtechnik GmbH Nurgül Er

25 Temperature compensated strain gauges Every strain gauge gives out a value when the temperature varies without any mechanical load. Cause: Work piece expansion with temperature Change in specific resistance of strain gauge Strain gauge grid expansion with temperature HBM, Thomas Kleckers (Januar 1999) , Folie 25 Hottinger Baldwin Messtechnik GmbH Nurgül Er

26 Temperature compensated strain gauges 1 for for ferritic steel α = 10,8 10, // K 3 for for aluminum α = // K 5 for for austenitic steel α = // K 6* 6* for for quartz α = 0,5 0, // K 7* 7* for for titanium/ gray cast iron α = // K 8* 8* for for plastic material α = // K 9* 9* for for molybdenum α = 5,4 5, // K * not for all measuring grid lengths available , Folie 26 Hottinger Baldwin Messtechnik GmbH Nurgül Er

27 Self Temperature Compensation , Folie 27 Hottinger Baldwin Messtechnik GmbH Nurgül Er

28 Measuring grid length of an strain gauge strain gauges application F F not correct correct point values, measured with short strain gauges (measuring stress peaks) a strain gauges with a long measuring grid giving an average value with inhomogeneous material, e.g. concrete , Folie 28 Hottinger Baldwin Messtechnik GmbH Nurgül Er

29 Measuring grid length of an strain gauge strain gauges application F F correct The strain gauges forms an arithmetic mean of the strain conditions existing under its measuring grid , Folie 29 Hottinger Baldwin Messtechnik GmbH Nurgül Er

30 , Folie 30 Hottinger Baldwin Messtechnik GmbH Nurgül Er

31 Resistance of the strain gauges Typically Values: 120Ω... preferred for stress analysis 350Ω 700Ω and 1000 Ω... preferred for transducer manufacturing... preferred in combination with telemetries systems and for the measurement on materials with low thermal conductivity The values have an historical origin, but they have proven useful and so they have been retained , Folie 31 Hottinger Baldwin Messtechnik GmbH Nurgül Er

32 HBM adhesive program , Folie 32 Hottinger Baldwin Messtechnik GmbH Nurgül Er

33 Adhesives cold curing adhesives preferred for experimental stress analysis easy to apply and require only little effort temperature range is smaller than hot curing adhesives hot curing adhesives preferred in the manufacture of transducers (based on strain gauges) can be used where the measured object can be brought up to the curing temperature greater temperature range than cold curing adhesives contact pressure needed , Folie 33 Hottinger Baldwin Messtechnik GmbH Nurgül Er

34 Cyano-acrylate Z70 single component adhesive, preferred for experimental stress analysis thin liquid very easy to handle temperature limits: contact pressure: curing period: -70 C up to +100 C (+120 C) thumb pressure 5 C: 10 minutes 20 C: 1 minutes 30 C: 0,5 minutes Humidity of more than 40% is necessary for curing , Folie 34 Hottinger Baldwin Messtechnik GmbH Nurgül Er

35 Cyano-acrylate Z , Folie 35 Hottinger Baldwin Messtechnik GmbH Nurgül Er

36 Methacrylate mixture X60 two components adhesive, preferred for experimental stress analysis pasty, even on absorbent or uneven surfaces easy to handle (mixing to components) temperature limits: contact pressure: curing period: -200 C up to +60 C (+80 C) thumb pressure 0 C: 60 minutes 20 C: 10 minutes 35 C: 2 minutes , Folie 36 Hottinger Baldwin Messtechnik GmbH Nurgül Er

37 Methacrylate mixture X , Folie 37 Hottinger Baldwin Messtechnik GmbH Nurgül Er

38 Epoxy resin X280 two components adhesive, preferred for experimental stress analysis for smooth and absorbent surfaces temperature limits: -70 C up to +200 C (+280 C) contact pressure: 0,05 2 N/mm 2 curing period: room temperature: 8 hours 95 C: 1 hour , Folie 38 Hottinger Baldwin Messtechnik GmbH Nurgül Er

39 Epoxy resin X , Folie 39 Hottinger Baldwin Messtechnik GmbH Nurgül Er

40 Epoxy resin EP250 two components adhesive, preferred in the manufacture of transducer or for stress analyses in a lager temperature range pasty, even on absorbent or uneven surfaces temperature limits: -240 C up to +250 C (+315 C) contact pressure: 0,1 1,5 N/mm 2 curing period: 95 C: 16 hours 200 C: 0,5 hour , Folie 40 Hottinger Baldwin Messtechnik GmbH Nurgül Er

41 Epoxy resin EP , Folie 41 Hottinger Baldwin Messtechnik GmbH Nurgül Er

42 Epoxy resin EP310S two components adhesive, preferred in the manufacture of transducer or for stress analyses in a lager temperature range thin liquid, very easy to handle temperature limits: -270 C up to +260 C (+310 C) contact pressure: 0,1 0,5 N/mm 2 curing period: 95 C: 5 hours 200 C: 0,5 hour , Folie 42 Hottinger Baldwin Messtechnik GmbH Nurgül Er

43 Epoxy resin EP310S , Folie 43 Hottinger Baldwin Messtechnik GmbH Nurgül Er

44 Protective coatings , Folie 44 Hottinger Baldwin Messtechnik GmbH Nurgül Er

45 Protective coatings it is recommended that strain gauges be protect against external effects (such as humidity, water, oil, mechanical influences) protect the polished metal of our application area against rust , Folie 45 Hottinger Baldwin Messtechnik GmbH Nurgül Er

46 The cover should be put on immediately after bonding of the strain gauge. The application area must clean as for the adhesive. Cover a large area surrounding the applied gauges. If bonding the strain gauges in humid ambient conditions the applied gauge should be dried with a hot air gun or hair dryer , Folie 46 Hottinger Baldwin Messtechnik GmbH Nurgül Er

47 Polyurethane paint curing conditions: air drying (room temperature +100 C) application method: brush application temperature range: -40 C C suitable for light protection against touching and dust, for normal air humidity; likewise useful as insulating layer under other covers PU , Folie 47 Hottinger Baldwin Messtechnik GmbH Nurgül Er

48 Nitrile rubber curing conditions: air drying at room temperature application method: brush application temperature range: -269 C C oil and petrol resistance, preferred in contact with liquid gases (excluding oxygen!) NG NG , Folie 48 Hottinger Baldwin Messtechnik GmbH Nurgül Er

49 Silicon Rubber curing conditions: air drying at room temperature transparent, solvent-free application method: tube application temperature range: -70 C C suitable as protection against humidity and weather, against water at room temperature, limited oil resistant very good mechanical protection SG SG , Folie 49 Hottinger Baldwin Messtechnik GmbH Nurgül Er

50 Permanently plastic putty curing conditions: - application method: kneading on by hand temperature range: -50 C C very good protection against humidity and weather, can be used under AK AK , Folie 50 Hottinger Baldwin Messtechnik GmbH Nurgül Er

51 Permanently plastic putty with aluminium foil curing conditions: - application method: pressing on by hand temperature range: -50 C C range of application and properties similar to AK22 ABM , Folie 51 Hottinger Baldwin Messtechnik GmbH Nurgül Er

52 Accessories cleaning agent RMS1 cleaning pads solder terminals cables and wires , Folie 52 Hottinger Baldwin Messtechnik GmbH Nurgül Er

53 thank you for your attention Hottinger Baldwin Messtechnik GmbH Im Tiefen See 45 D Darmstadt Nurgül Er Technical Support Center Tel / Dikkatiniz icin tesekkürler , Folie 53 Hottinger Baldwin Messtechnik GmbH Nurgül Er

Full-Bridge Strain Gauges for Force Transducers

Full-Bridge Strain Gauges for Force Transducers Full-ridge Strain s escription M SENSOR full-bridge strain gauges are specially developed for manufacturing precision force transducers which employ bending beam working principle. For the purpose of this

More information

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement Strain Measurement Prof. Yu Qiao Department of Structural Engineering, UCSD Strain Measurement The design of load-carrying components for machines and structures requires information about the distribution

More information

Applying the Wheatstone Bridge Circuit

Applying the Wheatstone Bridge Circuit Applying the Wheatstone Bridge Circuit by Karl Hoffmann W1569-1.0 en Applying the Wheatstone Bridge Circuit by Karl Hoffmann Contents: 1 Introduction...1 2 Elementary circuits with strain gages...5 2.1

More information

What is a Strain Gauge? Strain Gauge. Schematic View Of Strain Gauge

What is a Strain Gauge? Strain Gauge. Schematic View Of Strain Gauge ( ) : 1391-92 92 What is Strain? Strain is the amount of deformation of a body due to an applied force. More specifically, strain (ε) is defined as the fractional change in length. Strain can be positive

More information

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Material Strain Gages Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Young's Modulus, Y Shear Modulus, S Bulk Modulus, B Poisson's Ratio 10 11 N/m

More information

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2 When you bend a piece of metal, the Strain Gages Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Material Young's Modulus, (E) 10 11 N/m 2 Shear Modulus,

More information

MET 301 EXPERIMENT # 2 APPLICATION OF BONDED STRAIN GAGES

MET 301 EXPERIMENT # 2 APPLICATION OF BONDED STRAIN GAGES MET 301 EPERIMENT # 2 APPLICATION OF BONDED STRAIN GAGES 1. Objective To understand the working principle of bonded strain gauge and to study the stress and strain in a hollow cylindrical shaft under bending,

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

MET 487 Instrumentation and Automatic Controls. Lecture 13 Sensors

MET 487 Instrumentation and Automatic Controls. Lecture 13 Sensors MET 87 nstrumentation and utomatic Controls Lecture Sensors July 6-9, 00 Stress and Strain Measurement Safe Load Level monitoring Force (indirect measurement by measuring strain of a flexural element Pressure

More information

Industrial Instrumentation Dr. Alok Barua Department of Electrical Engineering Indian Institute of Technology Kharagpur. Lecture - 4 Strain Gauge

Industrial Instrumentation Dr. Alok Barua Department of Electrical Engineering Indian Institute of Technology Kharagpur. Lecture - 4 Strain Gauge Industrial Instrumentation Dr. Alok Barua Department of Electrical Engineering Indian Institute of Technology Kharagpur Lecture - 4 Strain Gauge Welcome to the lesson 4 of industrial instrumentation. In

More information

1 Force Sensing. Lecture Notes. 1.1 Load Cell. 1.2 Stress and Strain

1 Force Sensing. Lecture Notes. 1.1 Load Cell. 1.2 Stress and Strain Lecture Notes 1 Force Sensing 1.1 Load Cell A Load Cell is a structure which supports the load and deflects a known amount in response to applied forces and torques. The deflections are measured to characterize

More information

Principal Stress Separation in PhotoStress Measurements

Principal Stress Separation in PhotoStress Measurements PhotoStress Instruments Principal Stress Separation in PhotoStress Measurements TN-708-.0 Introduction Or, In addition to its unique capability as a full-field technique for visualizing stress distribution,

More information

Strain and Force San José State University A. Mysore Spring 2009

Strain and Force San José State University A. Mysore Spring 2009 Strain and Force Strain Gage Measures strain as a change in length L, observed by change in resistance R, for a given resistivity ρ and cross-sectional area A. For elastic materials that follow Hooke s

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

T20WN. Data Sheet. Torque transducers. Special features. Installation example with bellows couplings. B en

T20WN. Data Sheet. Torque transducers. Special features. Installation example with bellows couplings. B en T20WN Torque transducers Data Sheet Special features - Nominal (rated) torques 0.1 N m, 0.2 N m, 0. N m, 1 N m, 2 N m, N m, 10 N m, 20 N m, 0 N m, 100 N m, 200 N m - Accuracy class: 0.2 - Contactless transmission

More information

Experimental Stress Analysis of Curved Beams Using Strain Gauges

Experimental Stress Analysis of Curved Beams Using Strain Gauges Experimental Stress Analysis of Curved Beams Using Strain Gauges Srinivasa Prasad K S 1, Roshaan Subramanian 2, Sanjay Krishna 3, Prashanth S 4 1 Assistant Professor, Department of Mechanical Engineering,

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

ME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 9

ME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 9 ME411 Engineering Measurement & Instrumentation Winter 2017 Lecture 9 1 Introduction If we design a load bearing component, how do we know it will not fail? Simulate/predict behavior from known fundamentals

More information

MCE 403 MACHINERY LABORATORY EXPERIMENT 10

MCE 403 MACHINERY LABORATORY EXPERIMENT 10 1 1.OBJECTIVE The objective of this experiment is to become familiar with the electric resistance strain gauge techniques and utilize such gauges for the determination of unknown quantities (such as strain,

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents Mechanical Testing of Composites and their Constituents American Society for Testing and Materials (ASTM) Standards Tests done to determine intrinsic material properties such as modulus and strength for

More information

Strain sensors based on bragg gratings

Strain sensors based on bragg gratings IMEKO 20 th TC3, 3 rd TC16 and 1 st TC22 International Conference Cultivating metrological knowledge 27 th to 30 th November, 2007. Merida, Mexico. Strain sensors based on bragg gratings K. Haase Hottinger

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Z7A. Load cells. Special features. Data sheet. Wiring code

Z7A. Load cells. Special features. Data sheet. Wiring code Z7A Load cells Special features - Complies with OIML R60 regulations up to 3000 d - Max. capacities: 500 kg... 10 t - Fulfills EMC requirements in accordance to EN 45 501 - Low transducer height - Robust

More information

Bending Load & Calibration Module

Bending Load & Calibration Module Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

More information

Sensors, Signals and Noise 1 COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Strain Gauges. Signal Recovery, 2017/2018 Strain Gauges

Sensors, Signals and Noise 1 COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Strain Gauges. Signal Recovery, 2017/2018 Strain Gauges Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Strain Gauges Strain Gauges 2 Stress and strain in elastic materials Piezoresistive Effect Strain Gauge principle

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

Experiment Five (5) Principal of Stress and Strain

Experiment Five (5) Principal of Stress and Strain Experiment Five (5) Principal of Stress and Strain Introduction Objective: To determine principal stresses and strains in a beam made of aluminum and loaded as a cantilever, and compare them with theoretical

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

Force and Displacement Measurement

Force and Displacement Measurement Force and Displacement Measurement Prof. R.G. Longoria Updated Fall 20 Simple ways to measure a force http://scienceblogs.com/dotphysics/200/02/diy_force_probe.php Example: Key Force/Deflection measure

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

Chapter. Materials. 1.1 Notations Used in This Chapter

Chapter. Materials. 1.1 Notations Used in This Chapter Chapter 1 Materials 1.1 Notations Used in This Chapter A Area of concrete cross-section C s Constant depending on the type of curing C t Creep coefficient (C t = ε sp /ε i ) C u Ultimate creep coefficient

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

Laboratory 7 Measurement on Strain & Force. Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 7 Measurement on Strain & Force. Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Laboratory 7 Measurement on Strain & Force Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am May 17 th, 2015 Abstract:

More information

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material. Shear Strain. Dr. Attaullah Shah Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

I. MEASUREMENT OF TEMPERATURE

I. MEASUREMENT OF TEMPERATURE I. MEASUREMENT OF TEMPERATURE Most frequent measurement and control Direct contact: thermometer, Indirect contact: pyrometer (detect generated heat or sensing optical properties) 1. Definition of temperature

More information

New! 2010 Model. Model No

New! 2010 Model. Model No Model No. 15945 New! 2010 Model Features: Model #15945 is an advanced lightweight ultrasonic thickness gage that is designed to be convenient to use and rugged enough to operate in harsh environments.

More information

Experimental Stress Analysis Prof. K. Ramesh Department of Applied Mechanics Indian Institute of Technology, Madras

Experimental Stress Analysis Prof. K. Ramesh Department of Applied Mechanics Indian Institute of Technology, Madras Experimental Stress Analysis Prof. K. Ramesh Department of Applied Mechanics Indian Institute of Technology, Madras Module No. # 04 Lecture No. # 30 Analysis of Brittle Coatings Let us continue our discussion

More information

Strain Gauge Application and Measurement of Unknown Load

Strain Gauge Application and Measurement of Unknown Load University Diploma Program Electronic Equipment Maintenance Lab Instructor: Muhammad Ajmal Khan EET-027, Experiment # 6 Strain Gauge Application and Measurement of Unknown Load Objectives: 1. To find the

More information

Strain Gage Calibration Factors for Constant Room Temperature Conditions. Gage Resistance, Gage Factor and Transverse Sensitivity Coefficient)

Strain Gage Calibration Factors for Constant Room Temperature Conditions. Gage Resistance, Gage Factor and Transverse Sensitivity Coefficient) Strain Gage Calibration Factors for Constant Room Temperature Conditions (Or equivalently, measurement of the room temperature (Or equivalently, measurement of the room temperature Gage Resistance, Gage

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

CPO Science Foundations of Physics. Unit 8, Chapter 27

CPO Science Foundations of Physics. Unit 8, Chapter 27 CPO Science Foundations of Physics Unit 8, Chapter 27 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties

More information

Solid Mechanics Chapter 1: Tension, Compression and Shear

Solid Mechanics Chapter 1: Tension, Compression and Shear Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics

More information

Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF Section Properties and Bending Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

More information

Load Cell Design Using COMSOL Multiphysics

Load Cell Design Using COMSOL Multiphysics Load Cell Design Using COMSOL Multiphysics Andrei Marchidan, Tarah N. Sullivan and Joseph L. Palladino Department of Engineering, Trinity College, Hartford, CT 06106, USA joseph.palladino@trincoll.edu

More information

Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS

Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS MECHANICS OF MATERIALS Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA Keywords: Solid mechanics, stress, strain, yield strength Contents 1. Introduction 2. Stress

More information

Glossary Innovative Measurement Solutions

Glossary Innovative Measurement Solutions Glossary GLOSSARY OF TERMS FOR TRANSDUCERS, LOAD CELLS AND WEIGH MODULES This purpose of this document is to provide a comprehensive, alphabetical list of terms and definitions commonly employed in the

More information

3/4W, 2010 Low Resistance Chip Resistor

3/4W, 2010 Low Resistance Chip Resistor 1. Scope 3/4W, 2010 This specification applies to 2.5mm x 5.0mm size 3/4W, fixed metal film chip resistors rectangular type for use in electronic equipment. 2. Type Designation RL2550 L - Where (1) (2)

More information

Direct and Shear Stress

Direct and Shear Stress Direct and Shear Stress 1 Direct & Shear Stress When a body is pulled by a tensile force or crushed by a compressive force, the loading is said to be direct. Direct stresses are also found to arise when

More information

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING 1 YEDITEPE UNIVERSITY ENGINEERING FACULTY MECHANICAL ENGINEERING LABORATORY 1. Objective: Strain Gauges Know how the change in resistance

More information

MANUFACTURE OF STRAIN GAUGES & TRANSDUCERS

MANUFACTURE OF STRAIN GAUGES & TRANSDUCERS MANUFACTURE OF STRAIN GAUGES & TRANSDUCERS We produce sensors fitted with semiconductor or metal strain gauges for measuring forces, mass, pressure, torque, acceleration. We supply semiconductor silicon

More information

Which expression gives the elastic energy stored in the stretched wire?

Which expression gives the elastic energy stored in the stretched wire? 1 wire of length L and cross-sectional area is stretched a distance e by a tensile force. The Young modulus of the material of the wire is E. Which expression gives the elastic energy stored in the stretched

More information

2. (a) Differentiate between rare metal thermocouples and base metal thermocouples.

2. (a) Differentiate between rare metal thermocouples and base metal thermocouples. Code No: R05410304 Set No. 1 1. (a) Distinguish between direct and indirect methods of measurement with suitable examples. (b) What are desired, modifying and interfering inputs for an instrumentation

More information

MANUFACTURE OF STRAIN GAUGES & TRANSDUCERS

MANUFACTURE OF STRAIN GAUGES & TRANSDUCERS MANUFACTURE OF STRAIN GAUGES & TRANSDUCERS We produce sensors fitted with semiconductor or metal strain gauges for measuring forces, mass, pressure, torque, acceleration. We supply semiconductor silicon

More information

APPLICATION OF STRAIN GAUGES IN MEASUREMENTS

APPLICATION OF STRAIN GAUGES IN MEASUREMENTS JACSM 2014, Vol. 6, No. 2, pp. 135-145 10.1515/jacsm-2015-0004 APPLICATION OF STRAIN GAUGES IN MEASUREMENTS OF STRAIN DISTRIBUTION IN COMPLEX OBJECTS Piotr Tutak IT Institute, University of Social Sciences,

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). Lab Director: Coordinating Staff: Mr. Muhammad Farooq (Lecturer) Mr. Liaquat Qureshi (Lab Supervisor)

More information

ram reports in applied measurement

ram reports in applied measurement ram reports in applied measurement Introduction In the last decades, strain gage technology has developed into a standard procedure for experimental stress analysis. It is generally the case that three

More information

CS Series. Capacitance Type. Type. Proximity Sensor. Features

CS Series. Capacitance Type. Type. Proximity Sensor. Features INFORMATI Series Features Capacitance Type - Metal cylinder/resin cylinder/square type - Non-metal objects such as wood, paper, plastic and water can be detected. - The operating distance is adjustable

More information

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus PhysicsndMathsTutor.com Which of the following correctly defines the terms stress, strain and Young modulus? 97/1/M/J/ stress strain Young modulus () x (area) (extension) x (original length) (stress) /

More information

Chapter Two: Mechanical Properties of materials

Chapter Two: Mechanical Properties of materials Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material

More information

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure. CE6306 STREGNTH OF MATERIALS Question Bank Unit-I STRESS, STRAIN, DEFORMATION OF SOLIDS PART-A 1. Define Poison s Ratio May/June 2009 2. What is thermal stress? May/June 2009 3. Estimate the load carried

More information

Strain Measurements. Isaac Choutapalli

Strain Measurements. Isaac Choutapalli Note that for axial elongation (Eaxiai > 0), Erransverse (from Equation C.6), and therefore Strain Measurements Isaac Choutapalli Department of Mechanical Engineering The University of Texas - Pan American

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

INTRODUCTION TO STRAIN

INTRODUCTION TO STRAIN SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

More information

Introduction to Strain Gage (SG) Technology

Introduction to Strain Gage (SG) Technology IDMIL - Input Devices and Music Interaction Laboratory McGill University Introduction to Strain Gage (SG) Technology Carolina Brum Medeiros March 14, 2011 About this talk objective: present the essential

More information

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour)

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour) Part 2 Sensor and Transducer Instrument Selection Criteria (3 Hour) At the end of this chapter, you should be able to: Describe the definition of sensor and transducer Determine the specification of control

More information

TOP Transfer. Data sheet. Force transfer standard. Special features. B en

TOP Transfer. Data sheet. Force transfer standard. Special features. B en TOP Transfer Force transfer standard Data sheet Special features - Force transducer with ultimate precision for international comparison measurements - Tensile/compressive force transducer - Nominal forces

More information

Turbine Meter TRZ 03 PRODUCT INFORMATION. Reliable Measurement of Gas

Turbine Meter TRZ 03 PRODUCT INFORMATION. Reliable Measurement of Gas Turbine Meter TRZ 0 PRODUCT INFORMATION Reliable Measurement of Gas TURBINE METER TRZ 0 Method of operation, Construction Method of operation The TRZ 0 turbine meter is a flow meter suitable for gas measurement

More information

NUMERICAL AND EXPERIMENTAL METHOD TO ALIGN 2500 TF PRESS COLUMNS

NUMERICAL AND EXPERIMENTAL METHOD TO ALIGN 2500 TF PRESS COLUMNS Journal of Engineering Studies and Research Volume 18 (2012) No. 3 29 NUMERICAL AND EXPERIMENTAL METHOD TO ALIGN 2500 TF PRESS COLUMNS DOBROT OANA-MIRELA 1*, ŢOCU FLORENTINA 1, MOCANU COSTEL IULIAN 1 1

More information

Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

More information

Force Sensors. What is a force sensor?

Force Sensors. What is a force sensor? orce Sensors What is a force sensor? In physics, the definition of force is any agent that causes a mass to move. When you push an object, say a toy wagon, you re applying a force to make the wagon roll.

More information

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B PRODUCT FAMILY SPEFICIFATION SCB10H Series Pressure Elements SCB10H Series Pressure Elements Doc. No. 82 1250 00 B Table of Contents 1 General Description... 3 1.1 Introduction... 3 1.2 General Description...

More information

A New Methodology for Fiber Optic Strain Gage Measurements and its Characterization ABSTRACT

A New Methodology for Fiber Optic Strain Gage Measurements and its Characterization ABSTRACT .3 A New Methodology for Fiber Optic Strain Gage Measurements and its Characterization Van Roosbroeck Jan, C. Chojetzki, J. Vlekken, E. Voet, M. Voet Fiber Optic Sensors and Sensing Systems (FOS&S), Cipalstraat

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

1. ARRANGEMENT. a. Frame A1-P3. L 1 = 20 m H = 5.23 m L 2 = 20 m H 1 = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m. b. Frame P3-P6

1. ARRANGEMENT. a. Frame A1-P3. L 1 = 20 m H = 5.23 m L 2 = 20 m H 1 = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m. b. Frame P3-P6 Page 3 Page 4 Substructure Design. ARRANGEMENT a. Frame A-P3 L = 20 m H = 5.23 m L 2 = 20 m H = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m b. Frame P3-P6 L = 25 m H 3 = 8.39 m L 2 = 3 m H 4 = 8.5 m L

More information

2. be aware of the thermal properties of materials and their practical importance in everyday life;

2. be aware of the thermal properties of materials and their practical importance in everyday life; MODULE 3: THERMAL AND MECHANICAL PROPERTIES OF MATTER GENERAL OBJECTIVES On completion of this Module, students should: 1. understand the principles involved in the design and use of thermometers; 2. be

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

1W, 1206, Low Resistance Chip Resistor (Lead free / Halogen Free)

1W, 1206, Low Resistance Chip Resistor (Lead free / Halogen Free) 1W, 1206, (Lead free / Halogen Free) 1. Scope This specification applies to 1.6mm x 3.2mm size 1W, fixed metal film chip resistors rectangular type for use in electronic equipment. 2. Type Designation

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

More information

Failure analysis of serial pinned joints in composite materials

Failure analysis of serial pinned joints in composite materials Indian Journal of Engineering & Materials Sciences Vol. 18, April 2011, pp. 102-110 Failure analysis of serial pinned joints in composite materials Alaattin Aktaş* Department of Mechanical Engineering,

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

(Issued 1 June 1963) C 125 CRD-C METHOD OF TEST FOR COEFFICIENT OF LINEAR THERMAL EXPANSION OF COARSE AGGREGATE (STRAIN-GAGE METHOD)

(Issued 1 June 1963) C 125 CRD-C METHOD OF TEST FOR COEFFICIENT OF LINEAR THERMAL EXPANSION OF COARSE AGGREGATE (STRAIN-GAGE METHOD) CRD-C 125-63 METHOD OF TEST FOR COEFFICIENT OF LINEAR THERMAL EXPANSION OF COARSE AGGREGATE (STRAIN-GAGE METHOD) Scope 1. This test method covers a procedure for determining the coefficient of linear thermal

More information

Technical information CONCRETE / SOLID STONE. Reaction resin mortar, epoxy-acrylate-based with styrene USAGE INSTRUCTIONS

Technical information CONCRETE / SOLID STONE. Reaction resin mortar, epoxy-acrylate-based with styrene USAGE INSTRUCTIONS CONCRETE / SOLID STONE USAGE 1. AREAS OF APPLICATION Heavy load-carrying attachments in solid stone, concrete, porous concrete and light concrete Suitable for attachment points close to the edge, since

More information

Revision Guide for Chapter 4

Revision Guide for Chapter 4 Revision Guide for Chapter 4 Contents Student s Checklist Revision Notes Materials: properties and uses... 5 Materials selection charts... 5 Refraction... 8 Total internal reflection... 9 Conductors and

More information

Strain Measurement Techniques for Composite Coupon Testing

Strain Measurement Techniques for Composite Coupon Testing Strain Measurement Techniques for Composite Coupon Testing Introduction Characterization of the properties of anisotropic and inhomogeneous composite materials for use in demanding structural applications

More information

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS INTRODUCTION A rigid body generally means a hard solid object having a definite shape and size. But in reality, bodies can be stretched, compressed and bent. Even the appreciably rigid steel bar can be

More information

σ = F/A ε = L/L σ ε a σ = Eε

σ = F/A ε = L/L σ ε a σ = Eε Material and Property Information This chapter includes material from the book Practical Finite Element Analysis. It also has been reviewed and has additional material added by Sascha Beuermann. Hooke

More information