A representation theorem for lattices via set-colored posets

Size: px
Start display at page:

Download "A representation theorem for lattices via set-colored posets"

Transcription

1 A representtion theorem for ltties vi set-olore posets Mihel Hi n Lhouri Nourine Astrt This pper proposes representtion theory for ny lttie vi set-olore posets, in the spirit of Birkhoff for istriutive ltties, n Korte n Lovász [1985], Eelmn n Sks [1988] for upper lolly istriutive ltties n onvex geometries. We show tht set-olore posets ptures the orer inue y join-irreuile elements of lttie s Birkhoff s representtion oes for istriutive ltties, i.e. to stuy ltties theory is relte to the oloring of the join-irreuile elements. We lso survey some onsequenes of this representtion on lttie theory n the lttie of Moore fmilies. Keywors: lttie, representtion theory, upper lolly istriutive lttie, losure system, ntimtroi, setolore poset. This pper is motivte y representtion theory n its lgorithmi onsequenes for omintoril ojets struture s ltties. Whenever you re fmilir with Birkhoff s theorem, the intuition ehin this new representtion is the following: Tke poset, sy P = (X, ), set of olors M n olor the elements of P y susets of M. Then the set of olors of ll iels of P hs lttie struture n every lttie n e otine in this wy. For exmple if eh element of P hs only extly one olor then the otine lttie is n ntimtroi. Moreover, if ny pir of elements hve ifferent olors, then the lttie is istriutive. The question " Why evelop lttie theory?" ws onsiere y Birkhoff [5, 6] n extene y Wille [40, 1] using Forml Conept Anlysis (FCA). LIAFA, UMR 7089 CNRS & Université Pris Dierot, F-7505 Pris Ceex 13, Frne LIMOS, UMR 6158 CNRS & Université e Clermont, Cmpus es ézeux F63173 Auière Ceex, Frne 1

2 The purpose of this pper is to present new representtion of ltties tht llow us to unerstn ltties theory from n lgorithmi point of view. Let us first rell the fmous Birkhoff s representtion theorem for istriutive ltties. All results in this pper n e stte for the ul, y repling join-irreuile with meet-irreuile elements. Theorem 1 [3] Any istriutive lttie L is isomorphi to the lttie of ll orer iels I(J(L)), where J(L) is the poset inue y the set of join-irreuile elements of L. Birkhoff s theorem hs een wiely use to erive lgorithms in mny res. In ft, whenever set of ojets hs struture isomorphi to istriutive lttie, then there exists poset where the set of its orer iels is isomorphi to the lttie, e.g. stle mrrige [15], stle llotion [1], minimum uts in network [19], et... For generl ltties, the unique well known representtion is se on sets [4] or inry reltion etween join-irreuile n meet-irreuile elements; lle the iprtite irreuile poset Bip(L) = (J(L), M(L), L ) y Mrkowsky [8, 9, 30] or ontext B(L) = (J(L), M(L), L ) y Wille in the frmework of Forml Conept Anlysis (FCA) [40, 1]. From the FCA perspetive, elements in J(L) re interprete s ojets n those of M(L) re unerstoo s properties or ttriutes hrterizing these ojets. Severl other lttie representtions hve een propose suh s losure systems, implitionl systems, join-ore, ut ll of them use exponentil size (see [10, 8,, 6]). Ltties representtion, FCA n its lgorithmi spets re essentil topis in t nlysis, s they im t ientifying knowleges n restruturing them s hierrhy (the reer is referre for exmples to the ICFCA series of onferenes). Over the pst two ees, mny lgorithms hve een introue to onsier the reonstrution of lttie from its representtion. Fortuntely there exist liner time reonstrution lgorithms for istriutive lttie (see for exmple [17, 0, 39]). Enumertion or reonstrution lgorithms for generl ltties re equivlent to enumerte mximl iliques of iprtite grphs (see [13] for etile nlysis). Compre to the representtion of istriutive ltties, the iprtite irreuile poset oes not tke into ount the orer inue y join-irreuile elements n the ft tht the elements of the lttie orrespon to some orer iels of the poset J(L) = (J(L), ). In this sense the propose lgorithms for the generl se hve ehvior whenever the lttie is istriutive or ner to e istriutive. In this pper, we propose new representtion for generl ltties vi set-olore posets whih generlizes the notion of olore posets for representing upper lolly

3 istriutive lttie in [34, 35]. For lttie L, this representtion ptures the orer inue y join-irreuile elements J(L) s Birkhoff s representtion oes for istriutive ltties. First, we rgue tht this representtion y the ft tht the elements of lttie L orrespon to some orer iels of J(L). When restrite to istriutive ltties, we otin n isomorphism etween L n the orer iels of J(L). Dilworth [9] hs introue upper lolly istriutive ltties n hs oserve tht they re lose to istriutive ltties. Using set-olore posets we onfirm this ie n for upper lolly istriutive ltties, we otin hrteriztion strongly linke to tht of istriutive ltties, whih n e lso eue from Korte n Lovász [5] n Eelmn n Sks [11] works. Reently, Knuer [4, 3] hs onfirme this oservtion using ntihins prtition. Moreover Mgnien et l. [7] hve shown tht onfigurtions of Chip-Firing gme re struture s upper lolly istriutive lttie (see Kolj[4]). The rest of the pper is struture s follows: in Setion 1, we introue the set-olore posets n the lttie of iel olor sets. We lso hrterize set-olore posets whih re ssoite to lttie. In Setion, we list some pplitions of set-olore posets n the lst setion is evote to some lgorithmi onsequenes of our representtion Theorem. 1 Set-Colore Posets In this setion we first introue the notion of set-olore posets n some nottions tht will e use throughout this pper. For efinitions on ltties n orere sets not given here, see [8, 38, 3]. A prtil orer (or poset) on set X is inry reltion on X whih is reflexive, nti-symmetri n trnsitive, enote y P = (X, ). A set I X is si to e n iel if x I n y x implies y I. For n element x X we ssoite the unique iel x = {y X y x}. The set of ll iels of P is enote y I(P ). Let A X, n element z X is n upper oun of A if x z for ny x A. If z is si to e the lest upper oun if z z for ll upper ouns z of A. Dully, we efine the gretest lower oun. A prtil orer L = (X, ) is lle lttie if for every two elements x, y X oth the lest upper oun n the gretest lower oun exist, enote y x y n x y. Let L = (X, ) e lttie. The element z X is join-irreuile (resp. meet-irreuile) if z = x y (resp. z = x y) implies z = x or z = y. The set of ll join-irreuile (resp. meet-irreuile) elements of L is enote y J(L) (resp. M(L)). 3

4 Let L e finite lttie n x, y L. We will use the following rrow reltions [1], tht re wekening of the so lle perspetivities reltions efine in ltties (see [14]) : x y mens tht x is miniml element of {z L z y}, x y mens tht y is mximl element of {z L z x} n x y mens tht x y n x y. Rell tht,, re reltions efine on J(L) M(L). A set-oloring γ for poset P = (X, ) is funtion tht ssigns set of olors to every element in X suh tht for ll x, y X, the sets of olors γ(x) n γ(y) re isjoint whenever x < y. In other wors, γ is set-oloring of the omprility grph of P, s introue in [37]. Definition 1 A set-olore poset, enote y P = (X,, γ, M), is the poset (X, ) equippe with set oloring γ : X M where M is set of olors. A set-olore poset is si to e proper olore poset if the olor set of ny element is singleton, i.e., the oloring γ is funtion from X to M. Figures 1() n 1() show two exmples of set-olore posets f 5 f 5 f e e e () () () Figure 1: () olore poset, () set-olore poset n () the lttie of iel olor sets of the set-olore poset in (). Let P = (X,, γ, M) e set-olore poset. A suset C M is si to e n iel olor set if there exists n iel I of P suh tht C = γ(i) = x I γ(x). In Figure 1(), C = {1, 3, 4, 5} is n iel olor set, sine C = γ({, }). Note tht two ifferent iels of P n hve the sme olor set, i.e. if γ({, e}) = γ({, }) = {1, 3, 4, 5}. The set of ll iel olor sets of P, enote y C(P ) hs lttie struture s shown in the following: 4

5 Proposition 1 Let P = (X, <, γ, M) e set-olore poset. uner set-inlusion is lttie. Then C(P ) orere Proof: It suffies to show tht C(P ) is lose uner union n ontining the empty set. First we show tht C(P ) is lose uner union. Let C 1, C e two iel olors sets of P. Then there exist two iels I 1 n I suh tht γ(i 1 ) = C 1 n γ(i ) = C. Sine iels re lose uner union, thus I 1 I is n iel n therefore C 1 C re its olors. Moreover the iel olor set orresponing to the empty orer iel is empty. Figure 1() shows the lttie of the iel olors sets of the set-olore poset in Figure 1(). Proposition Let P = (X, <, γ, M) e set-olore poset. The mpping gen : C(P ) I(P ) efine y gen(c) = {x X γ( x) C} is n orer emeing. Moreover, gen(c) is the unique lrgest iel I of P with γ(i) = C. Proof: Let C 1, C e two iel olors sets of P. We show tht C 1 C iff gen(c 1 ) gen(c ). First suppose C 1 C n let x gen(c 1 ). Then γ( x) C 1 C whih implies tht x gen(c ). Now suppose tht C 1 C. Then there exists C 1 \ C n x X suh tht γ(x), whih implies tht γ(x) C n therefore gen(c 1 ) gen(c ) sine x / gen(c ). Assume tht there exist two ifferent mximl (uner inlusion) iels I n J with γ(i) = γ(j) = C. Then γ(i J) = C sine iels re lose uner union, n thus ontrits the ft tht I n J re mximl uner inlusion with γ(i) = γ(j) = C. Let us now exmine the onsequenes of these efinitions. Representing lttie y set-olore poset In this setion we show tht ny lttie L n e represente y set-olore poset P L suh tht its ssoite lttie C(P L ) is isomorphi to L. Definition Let L = (X, ) e lttie. We enote P L = (J(L),, γ, M(L)), the set-olore poset efine y the following set-oloring : γ : J(L) M(L), with γ(j) = {m M(L) j m} 5

6 () 34 () 1 Figure : () lttie L in whih join-irreuile (resp. meet-irreuile) elements re lelle with letters (resp. numers) n () its ssoite set-olore poset P L. Lemm 1 Let L = (X, ) e lttie n the mpping ϕ : L C(P L ) with ϕ() = γ(j()), where J() = {j J(L) j }, then: 1. For every X, ϕ() = {m M(L) m}. For every, X, iff ϕ() ϕ(), i.e. ϕ is n orer emeing. Proof: 1. Let m M(L) n m. Then there exists j suh tht j m. Thus m γ(j) whih implies m γ(j()) = ϕ(), sine j J(). Now let m ϕ(). Then there exists j J() suh tht j m. This mens tht j m n then m sine j.. Let, for, L. Then m implies m. So ϕ() ϕ(). Now let ϕ() ϕ(). This mens, tht for ll m M(L), m implies m. Suppose. Then there exists m M(L) with m et m, whih is ontrition. We n now formulte our min representtion theorem : 6

7 Theorem Any lttie L is isomorphi to the lttie of olore iels of its poset P L. Proof: To this im, let us prove tht for lttie L = (X, ), ϕ : L C(P L ) is n orer-isomorphism, with ϕ() = γ(j()) n ϕ 1 (C) = gen(c). Using Lemm 1, the mpping ϕ is n orer emeing n therefore one-to-one. It remins to show tht ϕ is onto. Let C C(P L ) n = gen(c). Then L sine the supremum lwys exists for finite lttie. It suffies to show tht ϕ() = C. Let m C. Then there exists j suh tht m γ(j), i.e. j m. Thus m n m ϕ(). Conversely, let m ϕ(). Then there exists j suh tht j m. Suppose m C. This implies tht j m for ll j gen(c). Therefore = gen(c) m whih ontrits m n then m ϕ(). As Birkhoff s Theorem 1 whih provies for istriutive ltties not only ompt representtion vi poset ut lso some struturl insights tht n e use lgorithmilly [17], our Theorem oes the sme for ritrry ltties. This representtion is ompt sine L n e exponentil in P L. Before isussing some of the onsequenes of this result, let us first hrterize set-olore posets whih re isomorphi to the set-olore poset P L for some lttie L. Figure 3 shows three set-oloring of the sme poset n none of them is isomorphi to some P L for lttie L. Rell the hrteriztion of those iprtite posets whih re isomorphi to Bip(L) = (J(L), M(L), ) for some lttie L. Theorem 3 [30] Let B = (X, Y, E) e iprtite poset. B is isomorphi to Bip(L) = (J(L), M(L), ) for some lttie L if n only if the following hols: 1. For ll x X, if W X is suh tht N(x) = N(W ), then x W.. For ll y Y, if V Y is suh tht N(y) = N(V ), then y V. where N(x) is the neighoorhoo of x in B. Using the hrteriztion of Theorem 3, we erive hrteriztion of setolore posets whih re isomorphi to P L for some lttie L. Theorem 4 Let Q = (X,, γ, M) e set-olore poset. Then Q is isomorphi to P L for some lttie L iff the following onitions re stisfie : 7

8 3 4 3 e e e ) ) ) () () () e e e () (e) (f) Figure 3: (), (e) n (f) re respetively the ltties of iel olor sets of set-olore posets in (),() n (). In () the element is not join-irreuile, in () the element is not omprle to e n in () the numer of olors is greter thn the numer of meet-irreuile elements. 1. For ll A X n x X, γ( x) = γ( A) implies x A (irreuile onition), where x = {y X y x} n γ( A) = A γ().. For ll x, y X, γ( x) γ( y) implies x y (orering onition). 3. For ll m, n, p M, β(m) β(n) or β(m) = β(n) β(p) implies m = n or m = p, where β(m) = { X m γ( )}. Proof: These onitions re oviously neessry, let us exmine their suffiieny. Using irreuile onition n Lemm 1, there is ijetion etween X n J(L), n y () (X ) is isomorphi to (J(L), ). Similrly there is ijetion etween 8

9 Y n M(L), tht ssoite to m Y the iel olor set C = γ({ m γ( )}). Now, let m γ(), X. Then γ( ) C sine m C. Clerly onitions of Theorem 4 n e heke in polynomil time in the size of the olore poset n thus it n e reognize in polynomil time wether given set-olore poset is isomorphi to some P L for lttie L. 3 Applitions on prtiulr lsses of ltties We show in this setion how Theorem unifies mny results of lttie theory. First, we erive the fmous Birkhoff s representtion for istriutive ltties Theorem 1, then we onsier Korte n Lovász s results [5] or Eelmn n Sks s results [11] for upper lolly istriutive ltties. We lso show tht Theorem yiels hrteriztion of the lttie of ll Moore fmilies n lso of extreml n semiistriutive ltties. 3.1 Distriutive ltties Distriutive ltties hve use either theoretilly or lgorithmilly in severl res. In ft severl omintoril ojets n e struture s istriutive ltties (see for exmple, Knuer [4] who gives list of prolems from grphs). Theorem 5 Let L e lttie. Then the following re equivlents: 1. L is istriutive. L is isomorphi to the lttie of ll iels of the poset inue y join-irreuile elements of L 3. For eh j J(L) there exists unique m M(L) suh tht j m n ully, for eh m M(L) there exists unique j J(L) suh tht j m. 4. P L = (J(L),, γ, M) is proper olore poset n γ is ijetive. Proof: The equivlene etween 1. n. is ue to Birkhoff s Theorem 1. The equivlene etween 1. n 3. is ue to Theorem of Wille [1]. To show tht. is equivlent to 4., it suffies to note tht there is ijetion etween orer iels of (J(L), ) n the iel olor sets of P L. Inee, two ifferent iels hve ifferent olors sine γ is ijetive. The equivlene etween 3. n 4. is y efinition of P L. 9

10 Figure 4: The istriutive se 3. Upper lolly istriutive ltties Dilworth [9] hs introue upper lolly istriutive ltties n hs oserve tht they were lose to istriutive ltties. Upper lolly istriutive ltties hve een reisovere mny times, n hve severl nmes in the literture (suh s joinistriutive ltties [11], or ntimtrois [5],... ). For survey, see Monjret [31] whih ontins mny hrteriztions. Here we will onsier n upper lolly istriutive lttie s n ntimtroi. Bse on our work [34], Knuer [4] hs given n equivlent hrteriztion n gives list of pplitions of upper lolly istriutive ltties. Using the hrteriztion of upper lolly istriutive lttie y rrows reltions, we otin the following: Figure 5: An exmple of lolly istriutive lttie n its ssoite proper olore poset Theorem 6 [34] For lttie L, the following sttements re equivlent: 10

11 1. L is upper lolly istriutive.. For eh j J(L) there exists unique m M(L) suh tht j m. 3. P L = (J(L),, γ, M(L)) is proper olore poset. Proof: The equivlene etween 1. n. is ue to Gnter n Wille [1] (ul of Theorem 44). The equivlene etween 3. n 4. is y efinition of P L. Therefore, istriutive n upper lolly istriutive ltties n e represente y proper olore posets. Furthermore, Theorem 6 onfirms Dilworth s oservtion, sine it iffers only slightly from Theorem The lttie of Moore fmilies In this setion we rell the hrteriztion of the lttie of Moore fmilies using proper olore poset [16]. Let X e n n-set n X its power set. A Moore fmily on X is fmily of susets of X lose uner set-intersetion n ontining the set X. A Moore fmily is lso known s losure system; i.e. the set of ll lose sets of losure opertor. The set M n of ll possile Moore fmilies on n n-set X, orere y set-inlusion is lower lolly istriutive lttie. By Theorem 6 there exists olore poset P n suh tht the lttie M n is ully isomorphi to the set of its iel olor sets. Let Q e oolen lttie on n toms, sy 0, 1,..., n 1. We onsier the mpping γ : Q [0, n 1] s follows : 0 if x is the ottom element γ(x) = i if x = i for some i [0, n 1] (eq 1) J(x) γ() otherwise where J(x) is the set of ll toms elow x in Q. The pplition γ is properly oloring sine eh element of X hs only one olor. Moreover x < Q y implies J(x) J(y) n therefore γ(x) γ(y). The poset P n is efine s the isjoint sum of ll intervls [, ] of Q where is n tom of Q n the top element of Q, i.e. P n = n 1 0 Q i where Q i is the inue poset y [ i, ] in Q n the oloring is inherite from the oloring of Q (see Figure 6). Proposition 3 [16] There is ijetion etween the iel olors sets of P n n the set of Moore fmilies on n n-set. 11

12 {1,,3} 3 {1,3} {,3} {1,} {1} {} 0 ) 1 ) {} ) {},{1},{},{1,} {},{},{1,} {},{1,} {},{1},{1,} {},{} {},{1} ) {} Figure 6: ) the oolen lttie hving two toms, ) P the properly olore poset, ) the iel olor sets lttie of P, n ) the lttie of Moore fmilies on the set X = {1, }. By pplying the lgorithm to generte iel olor sets for olore poset, we foun tht the numer of Moore fmilies on 6 elements is extly (see [16] for more etils). Reently, Colom et l. [7] hve otine the numer of Moore fmilies on n = 7 using reursive eomposition of M n. Now we erive n expliit hrteriztion the lttie of ll Moore fmilies using the inry reltion R n = (J n, M n, ) where J n n M n re respetively the set of joinirreuile n meet-irreuile elements. This is rewriting of Proposition 3 using inry reltion inste of olore poset. Let J n = { ij suh tht i [0, n 1], j [0, n 1 1]}, M n = {k [1, n 1]} n ij k iff ( i OR j ) AND k = k where OR n AND re the logil inry opertions. Corollry 1 There is ijetion etween mximl ntihins (iliques ) of R n = (J n, M n, ) ( R n = (J n, M n, )) n the set of ll Moore fmilies on n-set. 3.4 Semiistriutivity n extremlity In [18] meet-simpliil ltties were introue. This lss of ltties generlizes mny known lsses of ltties suh s meet-extreml n meet-semiistriutive ltties. Using set-olore posets the uthors in [18] hve hrterize meet-semiistriutive ltties s Ntion [33] i for semiistriutive ltties. 1

13 A lttie L is si to e meet-semiistriutive if for ll elements x, y, z L, x y = x z implies x y = x (y z). A meet-semiistriutive lttie is si semiistriutive if for ll elements x, y, z, x y = x z implies x y = x (y z). L is lle meetextreml if for ll x L h(l) = M(L) where h(l) is the size of mximl hin in L. A meet-extreml lttie L is lle extreml if h(l) = J(L). Let L e lttie with n join-irreuiles n σ = j 1, j,..., j n e n orering of J(L). We enote y i the olors tht not pper in the i-1 first join-irreuiles in P L, ie. i = γ(j i ) \ i 1 h=1 γ(j h). L is lle meet-simpliil if there is totl orering σ = (j 1,..., j J(L) ) suh tht i 1. The following results on extreml n meet-extreml theorems re written in terms of set-olore posets [30]. Theorem 7 [18] A lttie L is semiistriutive (resp. extreml) then there exists n orering (resp. liner extension) σ = j 1, j,..., j n of J(L) suh tht i = 1. Theorem 8 [18] If L is meet-extreml (resp. meet-semiistriutive) lttie then there exists n orering (resp. liner extension) σ = j 1, j,..., j n of J(L) suh tht i 1. We onlue tht meet-extreml n meet-semiistriutive istriutive ltties re meet-simpliil. 4 Disussion n opens prolems 1. In orer to formlize the proximity to istriutive ltties, let us efine new lttie invrint lle hromti inex : For ny ltttie L n its ssoite olore poset P = (X, <, γ, M), we efine χ(l) s mx x X γ(x). We hve notie tht for upper lolly istriutive ltties the hromti inex is one. A nturl prolem rises: Fin hrteriztion of ltties hving hromti inex k, for every k? Reently, Beuou et l [] hve shown tht omputing miniml implitionl sis from set-olore poset n the opposite n e one in polynomil time whenever the hromti inex is onstnt.. Cn we list the set of ll iel olors sets in O(n ) per element using polynomil spe, where n is the numer of verties of J(L)? The est known omplexity is relte to the mtries prout, i.e. O(n.38 ). Nourine n Rynu [36] hve given n O(n ) lgorithm ut using exponentil spe. 13

14 3. Cn we ompute for lttie given y its set-olore poset, miniml implitionl sis in qusi-polynomil? The unique qusi-polynomil time lgorithm for ltties orrespons to ltties isomorphi to n inepenene system (or hypergrph), where miniml sis is the set of ll miniml trnsversl of the hypergrph. Reently, Knte et. l [1] hve shown tht the enumertion of miniml trnsversl of n hypergrph is polynomilly equivlent to the enumertion of miniml ominting sets of grph. Connete miniml ominting sets n e nite for the generl se? We hope tht this representtion of ltties using set-olore posets oul e helpful for stuying lttie theory n its lgorithmi spets using the ft tht setolore posets is simple generliztion of Birkhoff s representtion for istriutive ltties. Referenes [1] Mour Bïou n Mihel Blinski. The stle llotion (or orinl trnsporttion) prolem. Mth. Oper. Res., 7(4):66 680, Novemer 00. [] Lurent Beuou, Arnu Mry, n Lhouri Nourine. Algorithms for k-meetsemiistriutive lttie. Sumitte, 015. [3] G. Birkhoff. Lttie Theory, volume 5 of Coll. Pul. XXV. Amerin Mthemtil Soiety, Proviene, 3r eition, [4] G. Birkhoff n O. Frink. Representtions of ltties y sets. Trns. Amer. Mth. So., [5] Grret Birkhoff. Ltties n their pplitions. Bull. Amer. Mth. So, 44: , [6] Grret Birkhoff. Wht n lttie o for you? In In Trens in Lttie Theory (J.C. Aot, e.), pges Vn Nostrn-Reinhol, New York, [7] Pierre Colom, Alexis Irlne, n Olivier Rynu. Counting of moore fmilies for n=7. In ICFCA, pges 7 87, 010. [8] B. A. Dvey n H. A. Priestley. Introution to ltties n orers. Cmrige University Press, seon eition,

15 [9] R. P. Dilworth. Ltties with unique irreuile eompositions. Ann. Of Mth., (41): , [10] V. Duquenne. The ore of finite lttie. Disrete Mth., 88: , [11] P. H. Eelmn n M. E. Sks. Comintoril representtion n onvex imension of onvex geometries. Orer, [1] B. Gnter n R. Wille. Forml Conept Anlysis: Mthemtil Fountions. Springer-Verlg Berlin, [13] Alin Gély, Lhouri Nourine, n Bhir Si. Enumertion spets of mximl liques n iliques. Disrete Applie Mthemtis, 157(7): , 009. [14] G. Grätzer. Generl Lttie Theory. Birkhäuser, [15] Dn Gusfiel, Roert Irving, Pul Lether, n Mihel Sks. Every finite istriutive lttie is set of stle mthings for smll stle mrrige instne. Journl of Comintoril Theory, Series A, 44(): , [16] M. Hi n L. Nourine. The numer of moore fmilies on =6. Disrete Mthemtis, 94(3):91 96, 005. [17] Mihel Hi, Roul Mein, Lhouri Nourine, n George Steiner. Effiient lgorithms on istriutive ltties. Disrete Applie Mthemtis, 110(-3): , 001. [18] P. Jnssen n L. Nourine. A simpliil elimintion sheme for meetsemiistriutive ltties n intervl ollpsing. Alger Universlis, 003. [19] Pir Jen-Clue n Queyrnne Murie. On the struture of ll minimum uts in network n pplitions. In V.J. Rywr-Smith, eitor, Comintoril Optimiztion II, volume 13 of Mthemtil Progrmming Stuies, pges [0] R. Jégou, R. Mein, n L. Nourine. Liner spe lgorithm for on-line etetion of glol preites. pges Strutures in Conurreny Theory, Berlin 1995, J. Desel e. Workshops in Computing, Springer, [1] Mmou Moustph Knté, Vinent Limouzy, Arnu Mry, n Lhouri Nourine. On the enumertion of miniml ominting sets n relte notions. SIAM J. Disrete Mth., 8(4): ,

16 [] D. Kelly. Comprility grphs. In I. Rivl, eitor, Grphs n Orers, pges D. Reiel Pulishing Compny, [3] Kolj B. Knuer. Chip-firing, ntimtrois, n polyher. Eletroni Notes in Disrete Mthemtis, 34:9 13, 009. [4] Kolj B. Knuer. Ltties n Polyher from grphs. PhD thesis, Tehnishen universitt Berlin, 010. [5] B. Korte n L. Lovász. Homomorphisms n rmsey properties of ntimtrois. Dis. Appl. Mth, 15:83 90, [6] H.M. MNeille. Prtilly orere sets. Trns. of the Amer. Mth. So., 4:90 96, [7] Clémene Mgnien, H Duong Phn, n Lurent Vuillon. Chrteriztion of ltties inue y (extene) hip firing gmes. In DM-CCG, pges 9 44, 001. [8] G. Mrkowsky. Comintoril spets of lttie theory with pplitions to the enumertion of free istriutive ltties. PhD thesis, Hrvr University, Cmrige, Msshsetts, [9] G. Mrkowsky. Some omintoril spets of lttie theory. In Houston Lttie Theory Conf., eitor, Pro. Univ. of Houston, pges 36 68, [30] G. Mrkowsky. Primes, irreuiles n extreml ltties. Orer, 9:65 90, 199. [31] B. Monjret. The onsequenes of ilworth s work on ltties with irreuile eompositions. In R. Freese K.P. Bogr n J. Kung, eitors, The Dilworth theorems selete ppers of Roert P. Dilworth, pges Birkhäuser, [3] B. Leler N. Cspr n B. Monjret. Finite Orere Sets Conepts, Results n Uses. Cmrige University Press, 01. [33] J. B. Ntion. Unoune semiistriutive ltties. Alger n Logi, 000. [34] L. Nourine. Colore posets n upper lolly istriutive ltties. Tehnil Report RR LIRMM 00060, Université Montpellier II, LIRMM,

17 [35] L. Nourine. Une Struturtion Algorithmique e l Théorie es Treillis. Hilittion à iriger es reherhes, Université e Montpellier II, Frne, July 000. [36] L. Nourine n O. Rynu. A fst lgorithm for uiling ltties. IPL, [37] F.S. Roerts. T-olourings of grphs : Reent results n open prolems. Disrete Mthemtis, [38] B. S. W. Shröer. Orere sets, n introution. Birkhäuser, 00. [39] M. B. Squire. Enumerting the iels of poset. Preprint. North Crolin Stte University, [40] R. Wille. Restruturing lttie theory: An pproh se on hierrhies of ontexts. in Orere sets,i. Rivl, Es. NATO ASI No 83, Reiel, Doreht, Holln, pges ,

Logic, Set Theory and Computability [M. Coppenbarger]

Logic, Set Theory and Computability [M. Coppenbarger] 14 Orer (Hnout) Definition 7-11: A reltion is qusi-orering (or preorer) if it is reflexive n trnsitive. A quisi-orering tht is symmetri is n equivlene reltion. A qusi-orering tht is nti-symmetri is n orer

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS Bull. Koren Mth. So. 35 (998), No., pp. 53 6 POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS YOUNG BAE JUN*, YANG XU AND KEYUN QIN ABSTRACT. We introue the onepts of positive

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

Compression of Palindromes and Regularity.

Compression of Palindromes and Regularity. Compression of Plinromes n Regulrity. Kyoko Shikishim-Tsuji Center for Lierl Arts Eution n Reserh Tenri University 1 Introution In [1], property of likstrem t t view of tse is isusse n it is shown tht

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

On the Spectra of Bipartite Directed Subgraphs of K 4

On the Spectra of Bipartite Directed Subgraphs of K 4 On the Spetr of Biprtite Direte Sugrphs of K 4 R. C. Bunge, 1 S. I. El-Znti, 1, H. J. Fry, 1 K. S. Kruss, 2 D. P. Roerts, 3 C. A. Sullivn, 4 A. A. Unsiker, 5 N. E. Witt 6 1 Illinois Stte University, Norml,

More information

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

A Short Introduction to Self-similar Groups

A Short Introduction to Self-similar Groups A Short Introution to Self-similr Groups Murry Eler* Asi Pifi Mthemtis Newsletter Astrt. Self-similr groups re fsinting re of urrent reserh. Here we give short, n hopefully essile, introution to them.

More information

Lecture 8: Abstract Algebra

Lecture 8: Abstract Algebra Mth 94 Professor: Pri Brtlett Leture 8: Astrt Alger Week 8 UCSB 2015 This is the eighth week of the Mthemtis Sujet Test GRE prep ourse; here, we run very rough-n-tumle review of strt lger! As lwys, this

More information

Obstructions to chordal circular-arc graphs of small independence number

Obstructions to chordal circular-arc graphs of small independence number Ostrutions to horl irulr-r grphs of smll inepenene numer Mthew Frnis,1 Pvol Hell,2 Jurj Stho,3 Institute of Mth. Sienes, IV Cross Ro, Trmni, Chenni 600 113, Ini Shool of Comp. Siene, Simon Frser University,

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Bisimulation, Games & Hennessy Milner logic

Bisimulation, Games & Hennessy Milner logic Bisimultion, Gmes & Hennessy Milner logi Leture 1 of Modelli Mtemtii dei Proessi Conorrenti Pweł Soboiński Univeristy of Southmpton, UK Bisimultion, Gmes & Hennessy Milner logi p.1/32 Clssil lnguge theory

More information

Solutions to Problem Set #1

Solutions to Problem Set #1 CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors

More information

2.4 Theoretical Foundations

2.4 Theoretical Foundations 2 Progrmming Lnguge Syntx 2.4 Theoretil Fountions As note in the min text, snners n prsers re se on the finite utomt n pushown utomt tht form the ottom two levels of the Chomsky lnguge hierrhy. At eh level

More information

SOME COPLANAR POINTS IN TETRAHEDRON

SOME COPLANAR POINTS IN TETRAHEDRON Journl of Pure n Applie Mthemtis: Avnes n Applitions Volume 16, Numer 2, 2016, Pges 109-114 Aville t http://sientifivnes.o.in DOI: http://x.oi.org/10.18642/jpm_7100121752 SOME COPLANAR POINTS IN TETRAHEDRON

More information

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area Journl of Grph Algorithms n Applitions http://jg.info/ vol. 13, no. 2, pp. 153 177 (2009) On Clss of Plnr Grphs with Stright-Line Gri Drwings on Liner Are M. Rezul Krim 1,2 M. Siur Rhmn 1 1 Deprtment of

More information

Analysis of Temporal Interactions with Link Streams and Stream Graphs

Analysis of Temporal Interactions with Link Streams and Stream Graphs Anlysis of Temporl Intertions with n Strem Grphs, Tiphine Vir, Clémene Mgnien http:// ltpy@ LIP6 CNRS n Soronne Université Pris, Frne 1/23 intertions over time 0 2 4 6 8,,, n for 10 time units time 2/23

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES Avne Mth Moels & Applitions Vol3 No 8 pp63-75 SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVE STOCHASTIC PROCESSES ON THE CO-ORDINATES Nurgül Okur * Imt Işn Yusuf Ust 3 3 Giresun University Deprtment

More information

arxiv: v2 [math.co] 31 Oct 2016

arxiv: v2 [math.co] 31 Oct 2016 On exlue minors of onnetivity 2 for the lss of frme mtrois rxiv:1502.06896v2 [mth.co] 31 Ot 2016 Mtt DeVos Dryl Funk Irene Pivotto Astrt We investigte the set of exlue minors of onnetivity 2 for the lss

More information

arxiv: v1 [cs.cg] 28 Apr 2009

arxiv: v1 [cs.cg] 28 Apr 2009 Orienttion-Constrine Retngulr Lyouts Dvi Eppstein 1 n Elen Mumfor 2 1 Deprtment of Computer Siene, University of Cliforni, Irvine, USA 2 Deprtment of Mthemtis n Computer Siene, TU Einhoven, The Netherlns

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

If the numbering is a,b,c,d 1,2,3,4, then the matrix representation is as follows:

If the numbering is a,b,c,d 1,2,3,4, then the matrix representation is as follows: Reltions. Solutions 1. ) true; ) true; ) flse; ) true; e) flse; f) true; g) flse; h) true; 2. 2 A B 3. Consier ll reltions tht o not inlue the given pir s n element. Oviously, the rest of the reltions

More information

arxiv: v1 [cs.dm] 24 Jul 2017

arxiv: v1 [cs.dm] 24 Jul 2017 Some lsses of grphs tht re not PCGs 1 rxiv:1707.07436v1 [s.dm] 24 Jul 2017 Pierluigi Biohi Angelo Monti Tizin Clmoneri Rossell Petreshi Computer Siene Deprtment, Spienz University of Rome, Itly pierluigi.iohi@gmil.om,

More information

Monochromatic Plane Matchings in Bicolored Point Set

Monochromatic Plane Matchings in Bicolored Point Set CCCG 2017, Ottw, Ontrio, July 26 28, 2017 Monohromti Plne Mthings in Biolore Point Set A. Krim Au-Affsh Sujoy Bhore Pz Crmi Astrt Motivte y networks interply, we stuy the prolem of omputing monohromti

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

Implication Graphs and Logic Testing

Implication Graphs and Logic Testing Implition Grphs n Logi Testing Vishwni D. Agrwl Jmes J. Dnher Professor Dept. of ECE, Auurn University Auurn, AL 36849 vgrwl@eng.uurn.eu www.eng.uurn.eu/~vgrwl Joint reserh with: K. K. Dve, ATI Reserh,

More information

Lecture 2: Cayley Graphs

Lecture 2: Cayley Graphs Mth 137B Professor: Pri Brtlett Leture 2: Cyley Grphs Week 3 UCSB 2014 (Relevnt soure mteril: Setion VIII.1 of Bollos s Moern Grph Theory; 3.7 of Gosil n Royle s Algeri Grph Theory; vrious ppers I ve re

More information

Random subgroups of a free group

Random subgroups of a free group Rndom sugroups of free group Frédérique Bssino LIPN - Lortoire d Informtique de Pris Nord, Université Pris 13 - CNRS Joint work with Armndo Mrtino, Cyril Nicud, Enric Ventur et Pscl Weil LIX My, 2015 Introduction

More information

s the set of onsequenes. Skeptil onsequenes re more roust in the sense tht they hold in ll possile relities desried y defult theory. All its desirle p

s the set of onsequenes. Skeptil onsequenes re more roust in the sense tht they hold in ll possile relities desried y defult theory. All its desirle p Skeptil Rtionl Extensions Artur Mikitiuk nd Miros lw Truszzynski University of Kentuky, Deprtment of Computer Siene, Lexington, KY 40506{0046, frtur mirekg@s.engr.uky.edu Astrt. In this pper we propose

More information

Linear choosability of graphs

Linear choosability of graphs Liner hoosility of grphs Louis Esperet, Mikel Montssier, André Rspud To ite this version: Louis Esperet, Mikel Montssier, André Rspud. Liner hoosility of grphs. Stefn Felsner. 2005 Europen Conferene on

More information

A Graphical Characterization of Lattice Conditional Independence Models

A Graphical Characterization of Lattice Conditional Independence Models A Grphil Chrteriztion of Lttie Conitionl Inepenene Moels Steen A. Anersson, Dvi Mign, Mihel D. Perlmn *, n Christopher M. Triggs Inin University, University of Wshington, n University of Aukln Astrt Lttie

More information

Hyers-Ulam stability of Pielou logistic difference equation

Hyers-Ulam stability of Pielou logistic difference equation vilble online t wwwisr-publitionsom/jns J Nonliner Si ppl, 0 (207, 35 322 Reserh rtile Journl Homepge: wwwtjnsom - wwwisr-publitionsom/jns Hyers-Ulm stbility of Pielou logisti differene eqution Soon-Mo

More information

Generalized Kronecker Product and Its Application

Generalized Kronecker Product and Its Application Vol. 1, No. 1 ISSN: 1916-9795 Generlize Kroneker Prout n Its Applition Xingxing Liu Shool of mthemtis n omputer Siene Ynn University Shnxi 716000, Chin E-mil: lxx6407@163.om Astrt In this pper, we promote

More information

Greedoid polynomial, chip-firing, and G-parking function for directed graphs. Connections in Discrete Mathematics

Greedoid polynomial, chip-firing, and G-parking function for directed graphs. Connections in Discrete Mathematics Greedoid polynomil, hip-firing, nd G-prking funtion for direted grphs Swee Hong Chn Cornell University Connetions in Disrete Mthemtis June 15, 2015 Motivtion Tutte polynomil [Tut54] is polynomil defined

More information

Geodesics on Regular Polyhedra with Endpoints at the Vertices

Geodesics on Regular Polyhedra with Endpoints at the Vertices Arnol Mth J (2016) 2:201 211 DOI 101007/s40598-016-0040-z RESEARCH CONTRIBUTION Geoesis on Regulr Polyher with Enpoints t the Verties Dmitry Fuhs 1 To Sergei Thnikov on the osion of his 60th irthy Reeive:

More information

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France) Grph Sttes EPIT 2005 Mehdi Mhll (Clgry, Cnd) Simon Perdrix (Grenole, Frne) simon.perdrix@img.fr Grph Stte: Introdution A grph-sed representtion of the entnglement of some (lrge) quntum stte. Verties: quits

More information

Symmetrical Components 1

Symmetrical Components 1 Symmetril Components. Introdution These notes should e red together with Setion. of your text. When performing stedy-stte nlysis of high voltge trnsmission systems, we mke use of the per-phse equivlent

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

Separable discrete functions: recognition and sufficient conditions

Separable discrete functions: recognition and sufficient conditions Seprle isrete funtions: reognition n suffiient onitions Enre Boros Onřej Čepek Vlimir Gurvih Novemer 21, 217 rxiv:1711.6772v1 [mth.co] 17 Nov 217 Astrt A isrete funtion of n vriles is mpping g : X 1...

More information

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line APPENDIX D Preclculus Review APPENDIX D.1 Rel Numers n the Rel Numer Line Rel Numers n the Rel Numer Line Orer n Inequlities Asolute Vlue n Distnce Rel Numers n the Rel Numer Line Rel numers cn e represente

More information

COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE

COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE M. STISSING, C. N. S. PEDERSEN, T. MAILUND AND G. S. BRODAL Bioinformtis Reserh Center, n Dept. of Computer Siene, University

More information

SEMI-EXCIRCLE OF QUADRILATERAL

SEMI-EXCIRCLE OF QUADRILATERAL JP Journl of Mthemtil Sienes Volume 5, Issue &, 05, Pges - 05 Ishn Pulishing House This pper is ville online t http://wwwiphsiom SEMI-EXCIRCLE OF QUADRILATERAL MASHADI, SRI GEMAWATI, HASRIATI AND HESY

More information

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic Chpter 3 Vetor Spes In Chpter 2, we sw tht the set of imges possessed numer of onvenient properties. It turns out tht ny set tht possesses similr onvenient properties n e nlyzed in similr wy. In liner

More information

COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE

COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE M. STISSING, C. N. S. PEDERSEN, T. MAILUND AND G. S. BRODAL Bioinformtis Reserh Center, n Dept. of Computer Siene, University

More information

Directed acyclic graphs with the unique dipath property

Directed acyclic graphs with the unique dipath property Direte yli grphs with the unique ipth property Jen-Clue Bermon, Mihel Cosnr, Stéphne érennes To ite this version: Jen-Clue Bermon, Mihel Cosnr, Stéphne érennes. Direte yli grphs with the unique ipth property.

More information

CM10196 Topic 4: Functions and Relations

CM10196 Topic 4: Functions and Relations CM096 Topic 4: Functions nd Reltions Guy McCusker W. Functions nd reltions Perhps the most widely used notion in ll of mthemtics is tht of function. Informlly, function is n opertion which tkes n input

More information

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS Krgujev Journl of Mthemtis Volume 38() (204), Pges 35 49. DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS MOHAMMAD W. ALOMARI Abstrt. In this pper, severl bouns for the ifferene between two Riemn-

More information

On the Revision of Argumentation Systems: Minimal Change of Arguments Status

On the Revision of Argumentation Systems: Minimal Change of Arguments Status On the Revision of Argumenttion Systems: Miniml Chnge of Arguments Sttus Sylvie Coste-Mrquis, Séstien Koniezny, Jen-Guy Milly, n Pierre Mrquis CRIL Université Artois CNRS Lens, Frne {oste,koniezny,milly,mrquis}@ril.fr

More information

Total score: /100 points

Total score: /100 points Points misse: Stuent's Nme: Totl sore: /100 points Est Tennessee Stte University Deprtment of Computer n Informtion Sienes CSCI 2710 (Trnoff) Disrete Strutures TEST 2 for Fll Semester, 2004 Re this efore

More information

Automata and Regular Languages

Automata and Regular Languages Chpter 9 Automt n Regulr Lnguges 9. Introution This hpter looks t mthemtil moels of omputtion n lnguges tht esrie them. The moel-lnguge reltionship hs multiple levels. We shll explore the simplest level,

More information

GRUPOS NANTEL BERGERON

GRUPOS NANTEL BERGERON Drft of Septemer 8, 2017 GRUPOS NANTEL BERGERON Astrt. 1. Quik Introution In this mini ourse we will see how to ount severl ttriute relte to symmetries of n ojet. For exmple, how mny ifferent ies with

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

Maximum size of a minimum watching system and the graphs achieving the bound

Maximum size of a minimum watching system and the graphs achieving the bound Mximum size of minimum wthing system n the grphs hieving the oun Tille mximum un système e ontrôle minimum et les grphes tteignnt l orne Dvi Auger Irène Chron Olivier Hury Antoine Lostein 00D0 Mrs 00 Déprtement

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233, Surs n Inies Surs n Inies Curriulum Rey ACMNA:, 6 www.mthletis.om Surs SURDS & & Inies INDICES Inies n surs re very losely relte. A numer uner (squre root sign) is lle sur if the squre root n t e simplifie.

More information

Aperiodic tilings and substitutions

Aperiodic tilings and substitutions Aperioi tilings n sustitutions Niols Ollinger LIFO, Université Orléns Journées SDA2, Amiens June 12th, 2013 The Domino Prolem (DP) Assume we re given finite set of squre pltes of the sme size with eges

More information

Introduction to Graphical Models

Introduction to Graphical Models Introution to Grhil Moels Kenji Fukumizu The Institute of Sttistil Mthemtis Comuttionl Methoology in Sttistil Inferene II Introution n Review 2 Grhil Moels Rough Sketh Grhil moels Grh: G V E V: the set

More information

CS261: A Second Course in Algorithms Lecture #5: Minimum-Cost Bipartite Matching

CS261: A Second Course in Algorithms Lecture #5: Minimum-Cost Bipartite Matching CS261: A Seon Course in Algorithms Leture #5: Minimum-Cost Biprtite Mthing Tim Roughgren Jnury 19, 2016 1 Preliminries Figure 1: Exmple of iprtite grph. The eges {, } n {, } onstitute mthing. Lst leture

More information

The vertex leafage of chordal graphs

The vertex leafage of chordal graphs The vertex lefge of horl grphs Steven Chplik, Jurj Stho b Deprtment of Physis n Computer Siene, Wilfri Lurier University, 75 University Ave. West, Wterloo, Ontrio N2L 3C5, Cn b DIMAP n Mthemtis Institute,

More information

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS #A42 INTEGERS 11 (2011 ON THE CONDITIONED BINOMIAL COEFFICIENTS Liqun To Shool of Mthemtil Sienes, Luoyng Norml University, Luoyng, Chin lqto@lynuedun Reeived: 12/24/10, Revised: 5/11/11, Aepted: 5/16/11,

More information

On the Construction of Substitutes

On the Construction of Substitutes On the Constrution of Sustitutes Eri Blknski Hrvr University Rento Pes Leme Google Reserh Astrt Gross sustitutility is entrl onept in Eonomis n is onnete to importnt notions in Disrete Convex Anlysis,

More information

Model Reduction of Finite State Machines by Contraction

Model Reduction of Finite State Machines by Contraction Model Reduction of Finite Stte Mchines y Contrction Alessndro Giu Dip. di Ingegneri Elettric ed Elettronic, Università di Cgliri, Pizz d Armi, 09123 Cgliri, Itly Phone: +39-070-675-5892 Fx: +39-070-675-5900

More information

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

Computing the Quartet Distance between Evolutionary Trees in Time O(n log n)

Computing the Quartet Distance between Evolutionary Trees in Time O(n log n) Computing the Qurtet Distne etween Evolutionry Trees in Time O(n log n) Gerth Stølting Brol, Rolf Fgererg Christin N. S. Peersen Mrh 3, 2003 Astrt Evolutionry trees esriing the reltionship for set of speies

More information

Slope Lengths for 2-Bridge Parent Manifolds. Martin D. Bobb

Slope Lengths for 2-Bridge Parent Manifolds. Martin D. Bobb Cliorni Stte University, Sn Bernrino Reserh Experiene or Unergrutes Knot Theory Otoer 28, 2013 Hyperoli Knot Complements Hyperoli Knots Deinition A knot or link K is hyperoli i hyperoli metri n e ple on

More information

Hybrid Systems Modeling, Analysis and Control

Hybrid Systems Modeling, Analysis and Control Hyrid Systems Modeling, Anlysis nd Control Rdu Grosu Vienn University of Tehnology Leture 5 Finite Automt s Liner Systems Oservility, Rehility nd More Miniml DFA re Not Miniml NFA (Arnold, Diky nd Nivt

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Surface maps into free groups

Surface maps into free groups Surfce mps into free groups lden Wlker Novemer 10, 2014 Free groups wedge X of two circles: Set F = π 1 (X ) =,. We write cpitl letters for inverse, so = 1. e.g. () 1 = Commuttors Let x nd y e loops. The

More information

EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED

EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED Astrt. The GCD Str of Dvi Theorem n the numerous ppers relte to it hve lrgel een evote to shoing the equlit

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA Common intervls of genomes Mthieu Rffinot CNRS LIF Context: omprtive genomis. set of genomes prtilly/totlly nnotte Informtive group of genes or omins? Ex: COG tse Mny iffiulties! iology Wht re two similr

More information

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005 RLETON UNIVERSIT eprtment of Eletronis ELE 2607 Swithing iruits erury 28, 05; 0 pm.0 Prolems n Most Solutions, Set, 2005 Jn. 2, #8 n #0; Simplify, Prove Prolem. #8 Simplify + + + Reue to four letters (literls).

More information

Computing all-terminal reliability of stochastic networks with Binary Decision Diagrams

Computing all-terminal reliability of stochastic networks with Binary Decision Diagrams Computing ll-terminl reliility of stohsti networks with Binry Deision Digrms Gry Hry 1, Corinne Luet 1, n Nikolos Limnios 2 1 LRIA, FRE 2733, 5 rue u Moulin Neuf 80000 AMIENS emil:(orinne.luet, gry.hry)@u-pirie.fr

More information

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4 Am Blnk Leture 13 Winter 2016 CSE 332 CSE 332: Dt Astrtions Sorting Dt Astrtions QuikSort Cutoff 1 Where We Are 2 For smll n, the reursion is wste. The onstnts on quik/merge sort re higher thn the ones

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Fun Gme Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Fun Gme Properties Arrow s Theorem Leture Overview 1 Rep 2 Fun Gme 3 Properties

More information

The Word Problem in Quandles

The Word Problem in Quandles The Word Prolem in Qundles Benjmin Fish Advisor: Ren Levitt April 5, 2013 1 1 Introdution A word over n lger A is finite sequene of elements of A, prentheses, nd opertions of A defined reursively: Given

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

On the existence of a cherry-picking sequence

On the existence of a cherry-picking sequence On the existene of herry-piking sequene Jnosh Döker, Simone Linz Deprtment of Computer Siene, University of Tüingen, Germny Deprtment of Computer Siene, University of Aukln, New Zeln Astrt Reently, the

More information

Can one hear the shape of a drum?

Can one hear the shape of a drum? Cn one her the shpe of drum? After M. K, C. Gordon, D. We, nd S. Wolpert Corentin Lén Università Degli Studi di Torino Diprtimento di Mtemti Giuseppe Peno UNITO Mthemtis Ph.D Seminrs Mondy 23 My 2016 Motivtion:

More information

Bounded single-peaked width and proportional representation 1

Bounded single-peaked width and proportional representation 1 Boune single-peke with n proportionl representtion 1 Denis Cornz, Luie Gln n Olivier Spnjr Astrt This pper is evote to the proportionl representtion (PR) prolem when the preferenes re lustere single-peke.

More information