arxiv: v1 [cs.dm] 24 Jul 2017

Size: px
Start display at page:

Download "arxiv: v1 [cs.dm] 24 Jul 2017"

Transcription

1 Some lsses of grphs tht re not PCGs 1 rxiv: v1 [s.dm] 24 Jul 2017 Pierluigi Biohi Angelo Monti Tizin Clmoneri Rossell Petreshi Computer Siene Deprtment, Spienz University of Rome, Itly pierluigi.iohi@gmil.om, {lmo,monti,petreshi}@i.unirom1.it Astrt A grph G = (V,E) is pirwise omptiility grph (PCG) if there exists n ege-weighte tree T n two non-negtive rel numers min n mx, min mx, suh tht eh noe u V is uniquely ssoite to lef of T n there is n ege (u,v) E if n only if min T(u,v) mx, where T(u,v) is the sum of the weights of the eges on the unique pth P T(u,v) from u to v in T. Unerstning whih grph lsses lie insie n whih ones outsie the PCG lss is n importnt issue. In this pper we propose new proof tehnique tht llows us to show tht some interesting lsses of grphs hve empty intersetion with PCG. As n exmple, we use this tehnique to show tht wheels n grphs otine s strong prout etween yle n P 2 re not PCGs. keywors: Phylogeneti Tree Reonstrution Prolem, Pirwise Comptiility Grphs (PCGs), PCG Reognition Prolem, Wheel. 1 Introution Grphs we el with in this pper re motivte y funmentl prolem in omputtionl iology, tht is the reonstrution of nestrl reltionships [1]. It is known tht the evolutionry history of set of orgnisms is represente y phylogeneti tree, i.e. tree where leves represent istint known tx while the internl noes possile nestors tht might hve le through evolution to this set of tx. The eges of the tree re weighte in orer to represent kin of evolutionry istne mong speies. Given set of tx, the phylogeneti tree reonstrution prolem onsists in fining the est phylogeneti tree tht explins the given t. Sine it is not ompletely ler wht est mens, the performne of the reonstrution lgorithms is usully evlute experimentlly y ompring the tree proue y the lgorithm with those prtil sutrees tht re unnimously reognize s sure y iologists. However, the tree reonstrution prolem is prove to e NP-hr uner mny riteri of optimlity, moreover rel phylogeneti trees re usully huge, so testing these 1 Prtilly supporte y Spienz University of Rome, projet Comintoril strutures n lgorithms for prolems in o-phylogeny. Prt of the results of this pper hve een sumitte to onferene. 1

2 heuristis on rel t is in generl very iffiult. This is the reson why it is ommon to exploit smple tehniques, extrting reltively smll susets of tx from lrge phylogeneti trees, oring to some iologilly-motivte onstrints, n to test the reonstrution lgorithms only on the smller sutrees inue y the smple. The unerlying ie is tht the ehvior of the lgorithm on the whole tree will e more or less the sme s on the smple. It hs een oserve tht using in the smple very lose or very istnt tx n rete prolems for phylogeny reonstrution lgorithms [2] so, in seleting smple from the leves of the tree, the onstrint of keeping the pirwise istne etween ny two leves in the smple etween two given positive integers min n mx is use. This motivtes the introution of pirwise omptiility grphs (PCGs): given phylogeneti tree T, n integers min, mx we n ssoite grph G, lle the pirwise omptiility grph of T, whose noes re the leves of T n for whih there is n ege etween two noes if the orresponing leves in T re t weighte istne within the intervl [ min, mx ]. From more theoretil point of view, we highlight tht the prolem of smpling set of m leves from weighte tree T, suh tht their pirwise istne is within some intervl [ min, mx ], reues to seleting lique of size m uniformly t rnom from the ssoite pirwise omptiility grph. As the smpling prolem n e solve in polynomil time on PCGs [3], it follows tht the mx lique prolem is solve in polynomil time on this lss of grphs, if the ege-weighte tree T n the two vlues min, mx re known or n e provie in polynomil time. The previous resonings motivte the interest of reserhers in the so lle PCG reognition prolem, onsisting in unerstning whether, given grph G, it is possile to etermine n ege-weighte tree T n two integers min, mx suh tht G is the ssoite pirwise omptiility grph Figure 1:. A grph G.. An ege-weighte terpillr T suh tht G = P CG(T, 4, 5).. G where the PCG-oloring inue y triple T, 4, 5 is highlighte. In Figure 1. smll grph tht is PCG(T,4,5) is epite n, in Figure 1., T is shown. In generl, T is not unique; here T is terpillr, i.e. tree onsisting of entrl pth, lle spine, n noes iretly onnete to tht 2

3 ... Figure 2:. The first grph proven not to e PCG.. The grph of smllest size proven not to e PCG.. A plnr grph tht is not PCG. pth. Due to their simple struture, terpillrs re the most use witness trees to show tht grph is PCG. However, it hs een proven tht there re some PCGs for whih it is not possile to fin terpillr s witness tree [4]. Due to the flexiility ffore in the onstrution of instnes (i.e. hoie of tree topology n vlues for min n mx ), when PCGs were introue, it ws lso onjeture tht ll grphs re PCGs[3]. This onjeture hs een onfute y proving the existene of some grphs not elonging to PCG. Nmely, Ynhon et l. [5] showe not PCG iprtite grph with 15 noes (Figure 2.). Susequently, Mehnz n Rhmn [6] generlize the use tehnique to provie lss of iprtite grphs tht re not PCGs. More reently, Durohet et l. [7] prove tht there exists not iprtite grph with 8 noes tht is not PCG (Figure 2.); this is the smllest grph tht is not PCG, sine ll grphs with t most 7 noes re PCGs [4]. The uthors of [7] provie lso n exmple of plnr grph with 20 noes tht is not PCG (Figure 2.). Finlly, it hols tht, if grph H is not PCG, every grph mitting H s inue sugrph is not PCG, too [8]. On the other sie, mny grph lsses hve een prove to e in PCG, suh s liques n trees, yles, single hor yles, ti, tree power grphs [9, 5], intervl grphs [10] Dilworth 2 n ilworth k grphs [11, 12]. However, espite these results, it remins unler whih is the ounry of the PCG lss. In this pper, we move step in the iretion of serhing new grph lsses tht re not PCGs. Inee, in Setion 2 we introue new generl proof tehnique tht llows us to show tht grph is not PCG. We exploit it on two interesting lsses of grphs: wheels, for whih it ws left s n open prolem to unerstn whether they were PCGs or not [13]; grphs otine s strong prout etween yle n P 2, tht re generliztion of the smllest known not PCG [7]. 3

4 After some preliminries (Setion 3), the results eling with these lsses re presente in Setions 4 n 5, respetively. Finlly, in Setion 6, for ny grph G in eh one of the two lsses, we show tht y eleting ny noe from G we get PCG, so proving tht it oes not ontin ny inue sugrph tht is not PCG. We onlue the pper with Setion 7, where we ress some open prolems. 2 Proof Tehnique In this setion, fter introuing some efinitions, we esrie our proof tehnique, useful to prove tht some lsses of grphs hve empty intersetion with the lss of PCGs, formlly efine s follows. Definition 1. [3] A grph G = (V,E) is pirwise omptiility grph (PCG) if there exist tree T, weight funtion ssigning positive rel vlue to eh ege of G, n two non-negtive rel numers min n mx, min mx, suh tht eh noe u V is uniquely ssoite to lef of T n there is n ege (u,v) E if n only if min T (u,v) mx, where T (u,v) is the sum of the weights of the eges on the unique pth P T (u,v) from u to v in T. In suh se, we sy tht G is PCG of T for min n mx ; in symols, G = PCG(T, min, mx ). In orer not to overuren the exposition, in the following, when we spek out tree, we impliitly men tht it is ege-weighte. Given grph G = (V,E), we ll non-eges of G the eges tht o not elong to the grph. A tri-oloring of G is n ege leling of the omplete grph K V with lels from set { lk, re, lue } suh tht ll eges of K V tht re in G re lele lk, while the other eges of K V (i.e. the non-eges of G) re lele either re or lue. A tri-oloring is lle prtil tri-oloring if not ll the non-eges of G re lele. Notie tht, ifg=pcg(t, min, mx ), someofits non-egesonotelong to G euse the weights of the orresponing pths on T re stritly lrger thn mx, while some other eges re not in G euse the weights of the orresponing pths on T re stritly smller thn min. This motivtes the following efinition. Definition 2. Given grph G = PCG(T, min, mx ), we ll its PCGoloring the tri-oloring C of G suh tht: - (u,v) is re in C if T (u,v) < min, - (u,v) is lk in C if min T (u,v) mx, - (u,v) is lue in C if T (u,v) > mx. In suh se, we sy tht triple (T, min, mx ) inues PCG-oloring C. In orer to re the figures even in gry sle, we rw re eges s re n otte n lue eges s lue n she in ll the figures. 4

5 In Figure 1. we highlight the PCG-oloringinue y triple (T,4,5) where T is the tree in Figure 1.. The following efinition formlizes tht not ll tri-olorings re PCG-olorings. Definition 3. A tri-oloring C (either prtil or not) of grph G is lle forien PCG-oloring if no triple (T, min, mx ) inuing C exists. Oserve tht grph is PCG if n only if there exists tri-oloring C tht is PCG-oloring for G. Besies, ny inue sugrphh of given G = PCG(T, min, mx ) is lso PCG, inee H = PCG(T, min, mx ), where T is the sutree inue y the leves orresponing to the noes of H. Moreover, H inherits the PCG-oloring inue y triple (T, min, mx ) from G. Thus, if we were le to prove tht H inherits forien PCG-oloring from tri-oloring C of G, then we woul show tht C nnot e PCG-oloring for G in ny wy. This is the ore of our proof tehnique. Tenique: Given grph G tht we wnt to prove not to e PCG: 1. list some forien PCG-olorings of prtiulr grphs tht re inue pirwise omptiility sugrphs of G; 2. show tht eh tri-oloring of G inues forien PCG-oloring in t lest n inue sugrph; 3. onlue tht G is not PCG, sine ll its tri-olorings re prove to e forien. 3 Forien Tri-Colorings We now highlight some forien prtil tri-olorings. In greement with the proof tehnique esrie in the previous setion, longl the pper, we will use them to show tht the three onsiere lsses hve empty intersetion with PCG. Given grph G = (V,E) n suset S V, we enote y G[S] the sugrph of G inue y noes in S. A sutree inue y set of leves of T is the miniml sutree of T whih ontins those leves. In prtiulr, we enote y T uvw the sutree of tree inue y three leves u,v n w. The following lemm from [5] will e lrgely use: Lemm 1. Let T e tree, n u,v n w e three leves of T suh tht P T (u,v) is the lrgest pth in T uvw. Let x e lef of T other thn u,v,w. Then, T (w,x) mx{ T (u,x), T (v,x)}. It is immeite to see tht the m noe pth, P m, is PCG; the following lemm gives some onstrints to the ssoite PCG-oloring. 5

6 Lemm 2. Let P m, m 4, e pth n let C e one of its PCG-olorings. If ll non-eges (v 1,v i ), 3 i m 1, n (v 2,v m ) re olore with lue in C, then lso non-ege (v 1,v m ) is olore with lue in C. Proof. Let C e the PCG-oloring of P m inue y triple (T, min, mx ). We pply Lemm 1 itertively. First onsier noes v 1, v 2, v 3 n v 4 s u, w, v n x: P T (v 1,v 3 ) is esily the lrgest pth in T v1v 3v 2 ; then T (v 2,v 4 ) mx{ T (v 1,v 4 ), T (v 3,v 4 )} = T (v 1,v 4 ) euse (v 1,v 4 ) is lue non-ege y hypothesis while (v 3,v 4 ) is n ege. Now repet the resoning with noes v 1, v 2, v i n v i+1, 4 i < m, s u, w, v n x, exploiting tht t the previous step we hve otine tht T (v 2,v i ) T (v 1,v i ): in T v1v iv 2, P T (v 1,v i ) is the lrgest pth n so T (v 2,v i+1 ) mx{ T (v 1,v i+1 ), T (v i,v i+1 )} = T (v 1,v i+1 ) sine (v 1,v i+1 ) is lue nonege while (v i,v i+1 ) is n ege. Posing i = m 1, we get tht T (v 2,v m ) T (v 1,v m ); sine non-ege (v 2,v m ) is lue y hypothesis, (v 1,v m ) is lue, too. Given grph, in orer to ese the exposition, we ll 2-non-ege non-ege etween noes tht re t istne 2 in the grph. Lemm 3. Let P n, n 3, e pth. Any PCG-oloring of P n tht hs t lest one re non-ege ut no re 2-non-eges is forien. Proof. If n = 3, there is unique non-ege n it is 2-non-ege; so, the lim trivilly follows. If n 4, onsier triple (T, min, mx ) inuing PCG-oloring with t lest re non-ege. Among ll re non-eges, let (v i,v j ) e the one suh tht j iis minimum. Assume y ontrition, j i > 2. Consiernowthe supth P inue y v i,...,v j. P hs t lest 4 noes n inherits the PCG-oloring from P n ; in it, there is only re non-ege (i.e. the non-ege onneting v i n v j ). P stisfies the hypothesis of Lemm 2, hene (v i,v j ) must e lue, ginst the hypothesis tht it is re. The following lemm is prove in [9] n here trnslte in our setting: Lemm 4. In every PCG-oloring of the n noe yle C n, n 4, there exist t lest one re n one lue non-eges. Theorem 1. Let C n, n 4, e yle. Then ny PCG-oloring of C n tht hs no re 2-non-eges is forien. Proof. Let C n = PCG(T, min, mx ), n 4; from Lemm 4, there exists t lest re non-ege. W.l.o.g. ssume tht this non-ege is (v 1,v i ), with 4 i < n 1. We pply Lemm 3 on the inue P i n the thesis follows y ontrition. Theorem 2. The tri-olorings in Figure 3 re forien PCG-olorings. 6

7 . f-(2k 2 ). f-(2k 2 ). f-(p 4 ). f-(k 1,3 ) e. f-(k 3 K 1 ) Figure 3: Some forien tri-olorings of smll grphs. Aronym f- stns for forien oloring. Proof. We prove seprtely tht the tri-olorings in figure re forien for PCGs 2K 2, P 4, K 1,3 n K 3 K 1. Forien tri-oloring f-(2k 2 ): We otin tht the tri-oloring in Figure 3. is forien y rephrsing Lemm 6 of [7] with our nomenlture. The other proofs re ll y ontrition n proee s follows: for eh tri-oloring in Figure 3, we ssume tht it is fesile PCG-oloring inue y triple (T, min, mx ) n show tht this ssumption ontrits Lemm 1. Forien tri-oloring f-(2k 2 ): From the tri-oloring in Figure 3. we hve tht T (,) < min T (,) mx < T (,). Thus P T (,) is the lrgest pth in T,,. By Lemm 1, for lef it must e: T (,) mx{ T (,), T (,)} = T (,) while from the tri-oloring it hols tht T (,) mx < T (,), ontrition. Forien tri-oloring f-(p 4 ): From the tri-oloring in Figure 3. we hve tht T (,), T (,) mx < T (,). Thus P T (,) is the lrgest pth in T,,. By Lemm 1, for lef we hve: T (,) mx{ T (,), T (,)} = T (,) while fromthetri-oloringithols tht T (,) mx < T (,), ontrition. Forien tri-oloring f-(k 1,3 ): From the tri-oloring in Figure 3. we hve tht T (,), T (,) mx < T (,). 7

8 e f e e f. f-(a). f-(b). f-(c) Figure 4: Some forien prtil tri-olorings of smll grphs. Aronym f- stns for forien oloring. Thus P T (,) is the lrgest pth in T,,. By Lemm 1, for lef we hve: T (,) mx{ T (,), T (,)} while from the tri-oloring it hols tht T (,), T (,) < min T (,). Forien tri-oloring f-(k 3 K 1 ): From the tri-oloring in Figure 3.e we hve tht T (,), T (,) < min T (,). Thus P T (,) is the lrgest pth in T,,. By Lemm 1, for lef it must e: T (,) mx{ T (,), T (,)} while from the tri-oloring it hols tht T (,), T (,) mx < T (,), ontrition. Theorem 3. The prtil tri-olorings in Figure 4 re forien PCG-olorings. Proof. Using the results of Theorem 2, we gin prove seprtely tht eh tri-oloring is forien y ontrition. Forien tri-oloring f-(a): Let us ssume tht the prtil tri-oloring in figure 4. is PCG-oloring. Consier the PCG-oloring inherite y pth G[,,,e]. To voi f (P 4 ), non-ege (e, ) must e lue. Now onsier the PCG-oloring inherite y yle G[,,,,e]. From Lemm 4, every PCG-oloring of C n, n 4, hs t lest re non-ege. Thus t lest one of the non-eges etween (,) n (,) is re n w.l.o.g. let ssume it is (,). To voi f (P 4 ) for pth G[,,e,], nonege (,) is re, too. Now, onsier the PCG-oloring inherite y the yle G[,,,e,f]; with similr resoning, we get tht the two non-eges (f,) n (f,) re oth re. Thus we hve four re non-eges, nmely (,), (,), (f,) n (f,). This implies f (2K 2 ) for G[,,,f], ontrition. Forien tri-oloring f-(b): From the tri-oloring in Figure 4. we hve tht T (,) < min T (,e), T (e,). 8

9 Without loss of generlity, let ssume T (,e) T (e,). Thus P T (e,) is the lrgestpthint,,e. ByLemm1,forlefwehve: T (,) mx{ T (,e), T (,)} while from the tri-oloring it hols tht T (,e), T (,) mx < T (,), ontrition. Forien tri-oloring f-(c): From the the tri-oloring in Figure 4., extrt the inherite P CG-olorings for the two sugrphs G[,,,e] n G[,,,f]. To voi f-(k 3 K 1 ), the non-eges (,e) n (,f) re oth lue. Now we istinguish the two possile ses for the olor of non-ege (,f): (,f) is re: onsier the PCG-oloring for sugrph G[,,e,f]. To voi f-(2k 2 ), non-ege (,e) hs to e lue. This implies tht the PCGoloring for pth G[,,, e, f] hs ll the 2-non-eges with olor lue while the non-ege (,f) is re. This is in ontrition with Lemm 3. (,f) is lue: in this se onsier Lemm 1 pplie to tree T,,f. We istinguish the three ses for the lrgest pth mong P T (,), P T (,f) n P T (,f): P T (,) : for lef it must e: T (f,) mx{ T (,), T (,)} while from the tri-oloring T (,), T (,) mx < T (f,). P T (,f) : for lef it must e: T (,) mx{ T (,), T (f,)} while from the tri-oloring T (,), T (f,) < min T (,). P T (,f) : for lef e it must e: T (,e) mx{ T (,e), T (f,e)} while from the tri-oloring T (,e), T (f,e) mx < T (,e). In ll the three ses, ontrition rises. 4 Wheels Wheels W n+1 re n length yles C n whose noes re ll onnete with universl noe. They hve lrey een stuie from the pirwise omptiility point of view. Inee, wheel W 6+1 is PCG n it is the only grph with 7 noes whose witness tree is not terpillr [4] (see Figure 5.). Moreover, it hs een proven in [13] tht lso the lrger wheels up to W 10+1 o not hve terpillr s witness tree ut, up to now, no other witness trees re known for these grphs n, in generl, it hs een left s n open prolem whether wheels with t lest 8 noes re PCGs or not. In this setion we ompletely solve this prolem. First we prove tht W 7+1 is PCG. Theorem 4. Wheel W 7+1 is PCG. Proof. In orer to prove the sttement, it is enough to show triple (T, min, mx ) witnessing tht W 7+1 is PCG. Tree T is shown in Figure 5., n the vlues of min n mx re 9 n 13, respetively. 9

10 v 2 v 5 v 6 v v 7 v 6 v v v v 1 1 v 5.. v 3 v 1 Figure 5:. Tree T suh tht W 6+1 = PCG(T,5,7);. Tree T suh tht W 7+1 = PCG(T,9,13). Then, exploiting the proof tehnique just esrie, we prove tht every lrger wheel W n+1,n 8, is not PCG. Theorem 5. Let n 8. The grph W n+1 is not PCG. Proof. Step 1 of the proof tehnique, requiring list of useful forien PCGolorings, hs een omplete in Setion 3: nmely, we will use f-(2k 2 ), f-(p 4 ), f-(k 1,3 ), f-(b) n the forien tri-oloring in Theorem 1. Step2oftheprooftehniquerequirestoprovethteverytri-oloringofW n+1 inues forien PCG-oloring for ertin inue pirwise omptiility sugrph. v 7... v 1 v 7... v 1 v 7... v 1 v 7... v 1 v 6 v 5 v 3 v 2 v 6 v 5 v 3 v 2 v 6 v 5 v 3 v 2 v 6 v 5 v 3 v 2 v 4 v 4 v 4 v Figure 6: The four ses in the proof of Theorem 5. Let e given ny tri-oloring of W n+1 ; in view of Theorem 1, there exists re 2-non-ege, w.l.o.g. let it e (v 1,v 3 ). Let us now onsier the three noneges (v 7,v 1 ), (v 1,v 3 ), (v 3,v 5 ). There re only 4 possiilities for the olors of these non-eges n we will stuy them one y one (see Figure 6). Cse in Figure 6.: 10

11 Assume first tht (v 4,v 7 ) is lue; then non-ege (v 3,v 7 ) is neessrily re in orer to voi f-(k 1,3 ) on the grph inue y noes, v 1, v 3 n v 7. In the following we summrize this sentene s: (v 3,v 7 ) re f-(k 1,3 ) on G[,v 1,v 3,v 7 ]. n hin of olige olore non-eges follows, nmely: (v 3,v 6 ) re f-(b) on G[,v 3,v 4,v 6,v 7 ] (inee, (v 3,v 7 ) is re n (v 4,v 7 ) is lue, so (v 3,v 6 ) nnot e lue) (v 1,v 4 ) lue f-(k 1,3 ) on G[,v 1,v 4,v 7 ] (v 1,v 6 ) re f-(k 1,3 ) on G[,v 1,v 3,v 6 ] (v 4,v 6 ) lue f-(k 1,3 ) on G[,v 1,v 4,v 6 ] We got pth inue y noes v 3, v 4, v 5 n v 6 with forien oloring f-(p 4 ), ontrition, mening tht (v 4,v 7 ) nnot e lue. So, (v 4,v 7 ) is re, n we hve the following hin of olige olore noneges: (v 1,v 5 ) lue f-(k 1,3 ) on G[,v 1,v 3,v 5 ] (v 1,v 4 ) re f-(k 1,3 ) on G[,v 1,v 4,v 7 ] (v 2,v 4 ) re f-(b) on G[,v 1,v 2,v 4,v 5 ] (v 2,v 7 ) re f-(k 1,3 ) on G[,v 2,v 4,v 7 ] (v 5,v 7 ) lue f-(k 1,3 ) on G[,v 1,v 5,v 7 ] (v 4,v 6 ) re f-(p 4 ) on G[v 4,v 5,v 6,v 7 ] (v 2,v 6 ) re f-(k 1,3 ) on G[,v 2,v 4,v 6 ] (v 1,v 6 ) re f-(k 1,3 ) on G[,v 1,v 4,v 6 ] Grph G[v 1,v 2,v 6,v 7 ] hs forien oloring f-(2k 2 ), n this is ontrition, mening tht (v 4,v 7 ) nnot e re. Cse in Figure 6.: Notie tht: (v 3,v 7 ) re f-(k 1,3 ) on G[,v 1,v 3,v 7 ] (v 5,v 7 ) re f-(k 1,3 ) on G[,v 3,v 5,v 7 ] (v 1,v 5 ) re f-(k 1,3 ) on G[,v 1,v 3,v 5 ] Assume now tht (v 4,v 7 ) is lue; then we hve the following hin of olie olore non-eges: (v 5,v 8 ) re f-(b) on G[,v 4,v 5,v 7,v 8 ] (v 3,v 8 ) re f-(k 1,3 ) on G[,v 3,v 5,v 8 ] (v 1,v 4 ) lue f-(k 1,3 ) on G[,v 1,v 4,v 7 ] (v 2,v 5 ) re f-(b) on G[,v 1,v 2,v 4,v 5 ] (v 2,v 8 ) re f-(k 1,3 ) on G[,v 2,v 5,v 8 ] (v 2,v 7 ) re f-(k 1,3 ) on G[,v 2,v 5,v 7 ] so G[v 2,v 3,v 7,v 8 ] hs forien oloring f-(2k 2 ), ontrition. So, (v 4,v 7 ) must e re, n (v 1,v 4 ) re f-(k 1,3 ) on G[,v 1,v 4,v 7 ]. Now, we onsier the non-ege (v 1,v 6 ). If (v 1,v 6 ) is re: (v 4,v 6 ) re f-(k 1,3 ) on G[,v 1,v 4,v 6 ] (v 3,v 6 ) re f-(k 1,3 ) on G[,v 1,v 3,v 6 ] n wehveontritionrisenfromhvingf-(2k 2 ) ong[v 3,v 4,v 6,v 7 ]. If, on the ontrry, (v 1,v 6 ) is lue, then: 11

12 (v 2,v 7 ) re f-(b) on G[,v 1,v 2,v 6,v 7 ] (v 2,v 4 ) re f-(k 1,3 ) on G[,v 2,v 4,v 7 ] (v 2,v 5 ) re f-(k 1,3 ) on G[,v 2,v 5,v 7 ] euing ontrition on G[v 1,v 2,v 4,v 5 ] with forien oloring f-(2k 2 ). Cse in Figure 6.: (v 3,v 7 ) lue f-(k 1,3 ) on G[,v 1,v 3,v 7 ] (v 5,v 7 ) lue f-(k 1,3 ) on G[,v 3,v 5,v 7 ] Letusnowonsierinthisorerthenon-eges(v 5,v n ), (v 5,v n 1 ),...nlet (v 5,v i ) e the first enountere lue non-ege, surely existing euse (v 5,v 7 ) is lue. We istinguish two suses: either i = n or i < n. If i = n: (v 3,v n ) lue f-(k 1,3 ) on G[,v 3,v 5,v n ] (v 1,v 5 ) re f-(k 1,3 ) on G[,v 1,v 3,v 5 ] (v 1,v 6 ) re f-(b) on G[,v n,v 1,v 5,v 6 ] (v 3,v 6 ) re f-(k 1,3 ) on G[,v 1,v 3,v 6 ] (v 6,v n ) lue f-(k 1,3 ) on G[,v 3,v 6,v n ] Now, If n = 8, then v 7 n v n re jent n G[v 6,v 7,v n,v 1 ] hs forien tri-oloring f-(p 4 ). If, on the ontrry, n > 8, then we hve the forien tri-oloring f-(b) on G[,v n,v 1,v 6,v 7 ]. If i < n, we know tht (v 5,v i+1 ) is re; moreover: (v 3,v i+1 ) re f-(k 1,3 ) on G[,v 3,v 5,v i+1 ] (v 3,v i ) lue f-(k 1,3 ) on G[,v 3,v 5,v i ] (v 2,v i+1 ) re f-(b) on G[,v 2,v 3,v i,v i+1 ] (v 2,v 5 ) re f-(k 1,3 ) on G[,v 2,v 5,v i+1 ] (v 6,v i+1 ) re f-(b) on G[,v 5,v 6,v i,v i+1 ] (v 2,v 6 ) re f-(k 1,3 ) on G[,v 2,v 6,v i+1 ] (v 3,v 6 ) re f-(k 1,3 ) on G[,v 3,v 6,v i+1 ] We get sugrph G[v 2,v 3,v 5,v 6 ] olore with f-(2k 2 ). Cse in Figure 6.: We istinguish two suses, oring to the olor of non-ege (v 1,v 4 ). If (v 1,v 4 ) is lue: (v 3,v n ) re f-(b) on G[,v n,v 1,v 3,v 4 ] (v 5,v n ) lue f-(k 1,3 ) on G[,v 3,v 5,v n ] (v 4,v n ) lue f-(b) on G[,v n,v 1,v 4,v 5 ] (v 3,v 7 ) lue f-(k 1,3 ) on G[,v 1,v 3,v 7 ] Now we show tht (v 3,v n ) re n (v 4,v n ) lue imply (v 3,v 8 ) re n (v 4,v 8 ) lue, so otining G[,v 3,v 4,v 7,v 8 ] with forien oloring f-(b), ontrition. To show the ssert it is suffiient to prove tht if (v 3,v i ) is re n (v 4,v i ) is lue n i > 8, then (v 3,v i 1 ) is re n (v 4,v i 1 ) is lue. (v 3,v i 1 ) re f-(b) on G[,v 3,v 4,v i 1,v i ] (v 1,v i 1 ) re f-(k 1,3 ) on G[,v 1,v 3,v i 1 ] (v 4,v i 1 ) lue f-(k 1,3 ) on G[,v 1,v 4,v i 1 ] 12

13 ... u n u 1 u 2... v n v 1 v 2 v 3 u 3 v 4 u Figure 7: Grph C n P 2. n this prt of the proof is onlue. If, inste, (v 1,v 4 ) is re: (v 4,v 7 ) lue f-(k 1,3 ) on G[,v 1,v 4,v 7 ] (v 1,v 5 ) lue f-(k 1,3 ) on G[,v 1,v 3,v 5 ] (v 4,v n ) re f-(b) on G[,v n,v 1,v 4,v 5 ] (v 3,v n ) lue f-(2k 2 ) on G[v 1,v n,v 3,v 4 ] Now, if n = 8 then the noes v 7 n v 8 re jent n G[v 3,v 4,v 7,v n ] hs forien tri-oloring f-(b). Thus, let us ssume n > 8. (v 4,v n 1 ) re f-(b) on G[,v 3,v 4,v n 1,v n ] (v 1,v n 1 ) re f-(k 1,3 ) on G[,v 1,v 4,v n 1 ] (v 3,v n 1 ) re f-(k 1,3 ) on G[,v 1,v 3,v n 1 ] (v 5,v n 1 ) lue f-(k 1,3 ) on G[,v 3,v 5,v n 1 ] Similrly to wht we i efore, now we show tht (v 4,v n 1 ) re n (v 5,v n 1 ) lue imply (v 4,v 8 ) re n (v 5,v 8 ) lue, so otining G[,v 4,v 5,v 7,v 8 ] with forien oloring f-(b), ontrition. To show the ssert it is suffiient to prove tht if (v 4,v i ) is re n (v 5,v i ) is lue n i > 8, then (v 4,v i 1 ) is re n (v 5,v i 1 ) is lue. (v 4,v i 1 ) re f-(b) on G[,v 4,v 5,v i 1,v i ] (v 1,v i 1 ) re f-(k 1,3 ) on G[,v 1,v 4,v i 1 ] (v 5,v i 1 ) lue f-(k 1,3 ) on G[,v 1,v 5,v i 1 ] Step 3 of the proof tehnique: we eue tht G is not PCG sine ll the prtil olorings shown in Figure 6 re not fesile. 5 The strong prout of yle n P 2 Given two grphs G n H, their strong prout G H is grph whose noe set is the rtesin prout of the noe sets of the two grphs, n there is n 13

14 ege etween noes (u,v) n (u,v ) if n only if either u = u n (v,v ) is n ege of H or v = v n (u,u ) is n ege of G. Inthe following,westuygrphc n P 2, 2nnoegrphin whihtwoyles renturllyhighlighte; wellv 1,...,v n nu 1,u 2,...,u n, respetively,their noes s shown in Figure 7. We rell tht C 4 P 2, i.e. the grph epite in Figure 2., hs lrey een prove not to e PCG [7]. We pply our tehnique to C n P 2, y showing tht every tri-oloring les to forien tri-oloring f-(c). Sine this tri-oloring ppers only when n 6, we nee to hnle the se C 5 P 2 seprtely. Theorem 6. Grph C 5 P 2 is not PCG. Proof. Aoring to the seon step of the proof tehnique, we fous on ny tri-oloring of C 5 P 2 n prove tht it is forien. Consier yle G[v 1,v 2,v 3,v 4,v 5 ] = PCG(T, min, mx ); from Lemm 4, there exists t lest lue non-ege. Thus, w.l.o.g. ssume tht non-ege (v 2,v 5 ) is lue. In orer to voi forien oloring f (A) on the inue sugrph G[v 1,v 2,v 3,u 4,v 4,v 5 ], nonege (v 1,v 4 ) must e re. The sme resoning n e use for the following three inue sugrphs: G[u 1,v 2,v 3,u 3,u 4,v 5 ], G[u 1,v 2,v 3,v 4,u 4,v 5 ] n G[u 1,v 2,v 3,v 4,u 4,v 5 ] to provetht non-eges(u 1,v 4 ), (v 1,v 3 ) n (u 1,v 3 ) must e re, too. We get f (2K 2 ) on the inue sugrph G[u 1,v 1,v 3,v 4 ], ontrition. In view of the lst step of the proof tehnique, C 5 P 2 is not PCG, so onluing the proof. Theorem 7. Grph C n P 2, n 6, is not PCG. Proof. We exploit gin the tehnique esrie in Setion 2. For Step 1, we will use f-(2k 2 ), f-(k 3 K 1 ), f-(b), f-(c) n the forien tri-oloring in Theorem 1. Aoring to Step 2, we prove tht for eh tri-oloring of C n P 2, with n 6, there exists n inue sugrph of C n P 2 tht inherits forien PCG-oloring. Let fix ny tri-oloring of C n P 2. Consier the yle G[v 1,v 2,...,v n ]; in view of Theorem 1, there exists re 2-non-ege in the yle, w.l.o.g. let it e (v 2,v 4 ). Consier now the inue sugrph G[v 2,u 2,v 3,v 4,u 4 ]. In orer to voi f-(b), t lest one etween the non-eges (u 2,v 4 ) n (v 2,u 4 ) must e re. Thus, either(v 2,v 4 ) n(u 2,v 4 )rereor(v 2,v 4 )n(v 2,u 4 )rere. Due to the symmetry ofc n P 2, it is not restritiveto ssumetht non-eges(v 2,v 4 ) n (v 2,u 4 ) re re. From this, we n prove tht ll the non-eges inient on v 2 re re. To o tht, it is suffiient to show tht if non-eges (v 2,v i ) n (v 2,u i ), 4 i < n, re re, then non-eges (v 2,v i+1 ) n (v 2,u i+1 ) re re, too. To this im onsier the inue sugrph G[v 2,v i,u i,v i+1 ]; in orer to voi f-(k 3 K 1 ), on the three non-eges (v 2,v i ), (v 2,u i ) n (v 2,v i+1 ) the re olor n not pper extly twie. Sine (v 2,v i ) n (v 2,u i ) re oth re, 14

15 it follows tht (v 2,v i+1 ) must lso e re. Anlogously, onsiering the inue sugrph G[v 2,v i,u i,u i+1 ], to voi f-(k 3 K 1 ) we get tht (v 2,u i+1 ) is re. In prtiulr, when i = n 1, we hve tht (v 2,v n ) n (v 2,u n ) re oth re. ConsiernowtheinuesugrphG[v 2,u 2,v n,u n ]; tovoif-(2k 2 ),we hve tht (u 2,x), with x {u n,v n }, must e lue non-ege. Anlogously, to voi f-(2k 2 ) on the inue grph G[v 2,u 2,v 4,u 4 ], (u 2,y), with y {u 4,v 4 } must e lue non ege. Finlly, we get the f-(c) on the inue grph G[x,v 1,v 2,u 2,v 3,y], ontrition. Step 3 of the proof tehnique onlues the proof. 6 Minimlity If grph ontins s inue sugrph not PCG, then it is not PCG, too. We ll miniml non PCG grph tht is not PCG n it oes not ontin ny proper inue sugrph tht is not PCG. In this setion we prove tht ll grphs insie eh one of the two onsiere lsses we hve just prove not to e PCGs re miniml not PCGs. More in etil, we prove tht y eleting ny noe from the onsiere grph, we get PCG. The following theorem sttes tht wheels re miniml not PCGs. Theorem 8. Let n 8. The grph otine y removing ny noe from W n+1 is PCG. In other wors, W n+1 is miniml not PCG. Proof. Notie tht, if we remove from W n+1 the entrl noe, the resulting grph is yle; if we remove ny other noe, the resulting grph is n intervl grph. In oth ses, we get PCG [9, 14]. Now we prove tht C n P 2 is miniml not PCG. The proof is onstrutive n it provies n ege-weighte tree T n two vlues min n mx suh tht PCG(T, min, mx ) = C n P 2 \{x} for ny noe x of C n P 2. Theorem 9. The grph otine y removing ny noe from C n P 2, n 4, is PCG. In other wors, C n P 2 is miniml not PCG. Proof. To prove the sttement, we remove from the grph noe x n prove tht the new grph G is PCG. In view of the symmetry of the grph, it is not restritive to ssume tht x = u n. We onstrut tree T suh tht G = PCG(T, 2n 2, 2n+2). We istinguish the following two ses epening on whether n is n even or n o numer: n is n even numer: (refer to Figure 8.) tree T is terpillr with n 1 internl noes tht we enote s x 1,x 2,...,x n 1. The internl noes inue pth from x 1 to x n 1 n eges on this pth (x i,x i+1 ), 1 i < n 1, hve ll weight 2. Leves v i n u i, 1 i < n, re onnete to x i with eges of weight n. Finlly lef v n is onnete to the noe xn with 2 n ege of weight 1. 15

16 v n v n x 1 2 x 2 xn 2 1 x n 1 x 1 2 x x n 2 y x n 2 x n 1 n n n n n n n n n n n n n n n n n n u 1 v 1 u 2 v 2 u n v n 2 2 u n 1 v n 1 u 1 v 1 u 2 v 2 u n 2 v n 2 u n 2 v n 2 u n 1 v n 1.. Figure 8: Cterpillrs for the proof of Theorem 9. n is n o numer: (refer to Figure 8.) tree T is terpillr with n internl noes tht we enote s x 1,x 2,...,x n 1 n y. The internl noes x 1,...,x n 2 inue pth from x 1 to x n 2 n eges (x i,x i+1 ), 1 i < n 2, hve weight 2. The internl noes x n 2,...,x n 1 inue pth from x n 2, to x n 1 n eges (x i,x i+1 ), n 2 i < n 1, hve weight 2. Leves v i n u i, 1 i < n, re onnete to x i with eges of weight n. Finlly the internl noe y is onnete to x n 2, x n 2 n v n with eges of weight 1. In oth ses, G = PCG(T,2n 2,2n+2). 7 Conlusions In this pper we propose new proof tehnique to show tht grphs re not PCGs. As n exmple, we pplie it to wheels n to C n P 2. Note tht oth these two lsses re otine y operting on yles n reently we hve use the sme pproh to prove tht lso the squre of n n noe yle, n 8, is not PCG. Nevertheless, we think tht this tehnique n e potentilly use to ollote outsie PCG mny other grph lsses no relte to yles. This represents n importnt step towr the solution of the very generl open prolem onsisting in emrting the ounry of the PCG lss. Referenes [1] K. Omln, The ssumptions n hllenges of nestrl stte reonstrutions, Systemti Biology 48(3) (1999) [2] J. Felsenstein, Cses in whih prsimony or omptiility methos will e positively misleing, Systemti Zoology 27 (1978)

17 [3] D. P. P.E. Kerney, J. I. Munro, Effiient genertion of uniform smples from phylogeneti trees, Pro. Algorithms in Bioinformtis, Leture Notes in Computer Siene 2812 (2003) [4] B. S. T. Clmoneri, D. Frsri, All grphs with t most seven verties re pirwise omptiility grphs, The Computer Journl 56(7)(2013) [5] M. S. R. M.N. Ynhon, M.S. Byzi, Disovering pirwise omptiility grphs, Disrete Mthemtis, Algorithms n Applitions 2(4) (2010) [6] S. Mehnz, M. Rhmn, Pirwise omptiility grphs revisite, Pro. Interntionl Conferene on Informtis, Eletronis Vision (ICIEV). [7] M. S. R. S. Duroher, D. Monl, On grphs tht re not pgs, Theoretil Computer Siene 571 (2015) [8] B. S. T. Clmoneri, On pirwise omptiility grphs: survey, SIAM Review 58(3) (2016) [9] M. S. R. M.N. Ynhon, K.S.M. Tozmmel Hossin, Pirwise omptiility grphs, Journl of Applie Mthemtis n Computing 30 (2009) [10] C. H. A. Brnstät, Ptolemi grphs n intervl grphs re lef powers, Pro. Theoretil Informtis(LATIN), Leture Notes in Computer Siene 4957 (2008) [11] R. P. T. Clmoneri, On pirwise omptiility grphs hving ilworth numer two, Theoretil Computer Siene 524 (2014) [12] R. P. T. Clmoneri, On pirwise omptiility grphs hving ilworth numer k, Theoretil Computer Siene 547 (2014) [13] B. S. T. Clmoneri, A. Frngioni, Pirwise omptiility grphs of terpillrs, The Computer Journl 57(11) (2014) [14] A. Brnstät, On lef powers, Tehnil report, University of Rostok. 17

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area Journl of Grph Algorithms n Applitions http://jg.info/ vol. 13, no. 2, pp. 153 177 (2009) On Clss of Plnr Grphs with Stright-Line Gri Drwings on Liner Are M. Rezul Krim 1,2 M. Siur Rhmn 1 1 Deprtment of

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Obstructions to chordal circular-arc graphs of small independence number

Obstructions to chordal circular-arc graphs of small independence number Ostrutions to horl irulr-r grphs of smll inepenene numer Mthew Frnis,1 Pvol Hell,2 Jurj Stho,3 Institute of Mth. Sienes, IV Cross Ro, Trmni, Chenni 600 113, Ini Shool of Comp. Siene, Simon Frser University,

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Monochromatic Plane Matchings in Bicolored Point Set

Monochromatic Plane Matchings in Bicolored Point Set CCCG 2017, Ottw, Ontrio, July 26 28, 2017 Monohromti Plne Mthings in Biolore Point Set A. Krim Au-Affsh Sujoy Bhore Pz Crmi Astrt Motivte y networks interply, we stuy the prolem of omputing monohromti

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

Lecture 4: Graph Theory and the Four-Color Theorem

Lecture 4: Graph Theory and the Four-Color Theorem CCS Disrete II Professor: Pri Brtlett Leture 4: Grph Theory n the Four-Color Theorem Week 4 UCSB 2015 Through the rest of this lss, we re going to refer frequently to things lle grphs! If you hen t seen

More information

Separable discrete functions: recognition and sufficient conditions

Separable discrete functions: recognition and sufficient conditions Seprle isrete funtions: reognition n suffiient onitions Enre Boros Onřej Čepek Vlimir Gurvih Novemer 21, 217 rxiv:1711.6772v1 [mth.co] 17 Nov 217 Astrt A isrete funtion of n vriles is mpping g : X 1...

More information

On the Spectra of Bipartite Directed Subgraphs of K 4

On the Spectra of Bipartite Directed Subgraphs of K 4 On the Spetr of Biprtite Direte Sugrphs of K 4 R. C. Bunge, 1 S. I. El-Znti, 1, H. J. Fry, 1 K. S. Kruss, 2 D. P. Roerts, 3 C. A. Sullivn, 4 A. A. Unsiker, 5 N. E. Witt 6 1 Illinois Stte University, Norml,

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

arxiv: v2 [math.co] 31 Oct 2016

arxiv: v2 [math.co] 31 Oct 2016 On exlue minors of onnetivity 2 for the lss of frme mtrois rxiv:1502.06896v2 [mth.co] 31 Ot 2016 Mtt DeVos Dryl Funk Irene Pivotto Astrt We investigte the set of exlue minors of onnetivity 2 for the lss

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

Connectivity in Graphs. CS311H: Discrete Mathematics. Graph Theory II. Example. Paths. Connectedness. Example

Connectivity in Graphs. CS311H: Discrete Mathematics. Graph Theory II. Example. Paths. Connectedness. Example Connetiit in Grphs CSH: Disrete Mthemtis Grph Theor II Instrtor: Işıl Dillig Tpil qestion: Is it possile to get from some noe to nother noe? Emple: Trin netork if there is pth from to, possile to tke trin

More information

Maximum size of a minimum watching system and the graphs achieving the bound

Maximum size of a minimum watching system and the graphs achieving the bound Mximum size of minimum wthing system n the grphs hieving the oun Tille mximum un système e ontrôle minimum et les grphes tteignnt l orne Dvi Auger Irène Chron Olivier Hury Antoine Lostein 00D0 Mrs 00 Déprtement

More information

Lecture 8: Abstract Algebra

Lecture 8: Abstract Algebra Mth 94 Professor: Pri Brtlett Leture 8: Astrt Alger Week 8 UCSB 2015 This is the eighth week of the Mthemtis Sujet Test GRE prep ourse; here, we run very rough-n-tumle review of strt lger! As lwys, this

More information

CS261: A Second Course in Algorithms Lecture #5: Minimum-Cost Bipartite Matching

CS261: A Second Course in Algorithms Lecture #5: Minimum-Cost Bipartite Matching CS261: A Seon Course in Algorithms Leture #5: Minimum-Cost Biprtite Mthing Tim Roughgren Jnury 19, 2016 1 Preliminries Figure 1: Exmple of iprtite grph. The eges {, } n {, } onstitute mthing. Lst leture

More information

Solutions to Problem Set #1

Solutions to Problem Set #1 CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

Compression of Palindromes and Regularity.

Compression of Palindromes and Regularity. Compression of Plinromes n Regulrity. Kyoko Shikishim-Tsuji Center for Lierl Arts Eution n Reserh Tenri University 1 Introution In [1], property of likstrem t t view of tse is isusse n it is shown tht

More information

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt

More information

The vertex leafage of chordal graphs

The vertex leafage of chordal graphs The vertex lefge of horl grphs Steven Chplik, Jurj Stho b Deprtment of Physis n Computer Siene, Wilfri Lurier University, 75 University Ave. West, Wterloo, Ontrio N2L 3C5, Cn b DIMAP n Mthemtis Institute,

More information

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233, Surs n Inies Surs n Inies Curriulum Rey ACMNA:, 6 www.mthletis.om Surs SURDS & & Inies INDICES Inies n surs re very losely relte. A numer uner (squre root sign) is lle sur if the squre root n t e simplifie.

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information

COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE

COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE M. STISSING, C. N. S. PEDERSEN, T. MAILUND AND G. S. BRODAL Bioinformtis Reserh Center, n Dept. of Computer Siene, University

More information

September 30, :24 WSPC/Guidelines Y4Spanner

September 30, :24 WSPC/Guidelines Y4Spanner Septemer 30, 2011 12:24 WSPC/Guielines Y4Spnner Interntionl Journl of Computtionl Geometry & Applitions Worl Sientifi Pulishing Compny π/2-angle YAO GAPHS AE SPANNES POSENJIT BOSE Shool of Computer Siene,

More information

Proportions: A ratio is the quotient of two numbers. For example, 2 3

Proportions: A ratio is the quotient of two numbers. For example, 2 3 Proportions: rtio is the quotient of two numers. For exmple, 2 3 is rtio of 2 n 3. n equlity of two rtios is proportion. For exmple, 3 7 = 15 is proportion. 45 If two sets of numers (none of whih is 0)

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

Exercise sheet 6: Solutions

Exercise sheet 6: Solutions Eerise sheet 6: Solutions Cvet emptor: These re merel etended hints, rther thn omplete solutions. 1. If grph G hs hromti numer k > 1, prove tht its verte set n e prtitioned into two nonempt sets V 1 nd

More information

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4 Am Blnk Leture 13 Winter 2016 CSE 332 CSE 332: Dt Astrtions Sorting Dt Astrtions QuikSort Cutoff 1 Where We Are 2 For smll n, the reursion is wste. The onstnts on quik/merge sort re higher thn the ones

More information

Logic, Set Theory and Computability [M. Coppenbarger]

Logic, Set Theory and Computability [M. Coppenbarger] 14 Orer (Hnout) Definition 7-11: A reltion is qusi-orering (or preorer) if it is reflexive n trnsitive. A quisi-orering tht is symmetri is n equivlene reltion. A qusi-orering tht is nti-symmetri is n orer

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

2.4 Theoretical Foundations

2.4 Theoretical Foundations 2 Progrmming Lnguge Syntx 2.4 Theoretil Fountions As note in the min text, snners n prsers re se on the finite utomt n pushown utomt tht form the ottom two levels of the Chomsky lnguge hierrhy. At eh level

More information

Analysis of Temporal Interactions with Link Streams and Stream Graphs

Analysis of Temporal Interactions with Link Streams and Stream Graphs Anlysis of Temporl Intertions with n Strem Grphs, Tiphine Vir, Clémene Mgnien http:// ltpy@ LIP6 CNRS n Soronne Université Pris, Frne 1/23 intertions over time 0 2 4 6 8,,, n for 10 time units time 2/23

More information

On the existence of a cherry-picking sequence

On the existence of a cherry-picking sequence On the existene of herry-piking sequene Jnosh Döker, Simone Linz Deprtment of Computer Siene, University of Tüingen, Germny Deprtment of Computer Siene, University of Aukln, New Zeln Astrt Reently, the

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE

COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE M. STISSING, C. N. S. PEDERSEN, T. MAILUND AND G. S. BRODAL Bioinformtis Reserh Center, n Dept. of Computer Siene, University

More information

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

Linear choosability of graphs

Linear choosability of graphs Liner hoosility of grphs Louis Esperet, Mikel Montssier, André Rspud To ite this version: Louis Esperet, Mikel Montssier, André Rspud. Liner hoosility of grphs. Stefn Felsner. 2005 Europen Conferene on

More information

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

F / x everywhere in some domain containing R. Then, + ). (10.4.1) 0.4 Green's theorem in the plne Double integrls over plne region my be trnsforme into line integrls over the bounry of the region n onversely. This is of prtil interest beuse it my simplify the evlution

More information

Lecture 2: Cayley Graphs

Lecture 2: Cayley Graphs Mth 137B Professor: Pri Brtlett Leture 2: Cyley Grphs Week 3 UCSB 2014 (Relevnt soure mteril: Setion VIII.1 of Bollos s Moern Grph Theory; 3.7 of Gosil n Royle s Algeri Grph Theory; vrious ppers I ve re

More information

The DOACROSS statement

The DOACROSS statement The DOACROSS sttement Is prllel loop similr to DOALL, ut it llows prouer-onsumer type of synhroniztion. Synhroniztion is llowe from lower to higher itertions sine it is ssume tht lower itertions re selete

More information

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS Bull. Koren Mth. So. 35 (998), No., pp. 53 6 POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS YOUNG BAE JUN*, YANG XU AND KEYUN QIN ABSTRACT. We introue the onepts of positive

More information

arxiv: v1 [cs.cg] 28 Apr 2009

arxiv: v1 [cs.cg] 28 Apr 2009 Orienttion-Constrine Retngulr Lyouts Dvi Eppstein 1 n Elen Mumfor 2 1 Deprtment of Computer Siene, University of Cliforni, Irvine, USA 2 Deprtment of Mthemtis n Computer Siene, TU Einhoven, The Netherlns

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

Computing the Quartet Distance between Evolutionary Trees in Time O(n log n)

Computing the Quartet Distance between Evolutionary Trees in Time O(n log n) Computing the Qurtet Distne etween Evolutionry Trees in Time O(n log n) Gerth Stølting Brol, Rolf Fgererg Christin N. S. Peersen Mrh 3, 2003 Astrt Evolutionry trees esriing the reltionship for set of speies

More information

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA Common intervls of genomes Mthieu Rffinot CNRS LIF Context: omprtive genomis. set of genomes prtilly/totlly nnotte Informtive group of genes or omins? Ex: COG tse Mny iffiulties! iology Wht re two similr

More information

EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED

EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED Astrt. The GCD Str of Dvi Theorem n the numerous ppers relte to it hve lrgel een evote to shoing the equlit

More information

SOME COPLANAR POINTS IN TETRAHEDRON

SOME COPLANAR POINTS IN TETRAHEDRON Journl of Pure n Applie Mthemtis: Avnes n Applitions Volume 16, Numer 2, 2016, Pges 109-114 Aville t http://sientifivnes.o.in DOI: http://x.oi.org/10.18642/jpm_7100121752 SOME COPLANAR POINTS IN TETRAHEDRON

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Computing on rings by oblivious robots: a unified approach for different tasks

Computing on rings by oblivious robots: a unified approach for different tasks Computing on rings y olivious roots: unifie pproh for ifferent tsks Ginlorenzo D Angelo, Griele Di Stefno, Alfreo Nvrr, Niols Nisse, Krol Suhn To ite this version: Ginlorenzo D Angelo, Griele Di Stefno,

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Fun Gme Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Fun Gme Properties Arrow s Theorem Leture Overview 1 Rep 2 Fun Gme 3 Properties

More information

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005 RLETON UNIVERSIT eprtment of Eletronis ELE 2607 Swithing iruits erury 28, 05; 0 pm.0 Prolems n Most Solutions, Set, 2005 Jn. 2, #8 n #0; Simplify, Prove Prolem. #8 Simplify + + + Reue to four letters (literls).

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Directed acyclic graphs with the unique dipath property

Directed acyclic graphs with the unique dipath property Direte yli grphs with the unique ipth property Jen-Clue Bermon, Mihel Cosnr, Stéphne érennes To ite this version: Jen-Clue Bermon, Mihel Cosnr, Stéphne érennes. Direte yli grphs with the unique ipth property.

More information

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 S 224 DIGITAL LOGI & STATE MAHINE DESIGN SPRING 214 DUE : Mrh 27, 214 HOMEWORK III READ : Relte portions of hpters VII n VIII ASSIGNMENT : There re three questions. Solve ll homework n exm prolems s shown

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES Avne Mth Moels & Applitions Vol3 No 8 pp63-75 SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVE STOCHASTIC PROCESSES ON THE CO-ORDINATES Nurgül Okur * Imt Işn Yusuf Ust 3 3 Giresun University Deprtment

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

Subsequence Automata with Default Transitions

Subsequence Automata with Default Transitions Susequene Automt with Defult Trnsitions Philip Bille, Inge Li Gørtz, n Freerik Rye Skjoljensen Tehnil University of Denmrk {phi,inge,fskj}@tu.k Astrt. Let S e string of length n with hrters from n lphet

More information

Probability. b a b. a b 32.

Probability. b a b. a b 32. Proility If n event n hppen in '' wys nd fil in '' wys, nd eh of these wys is eqully likely, then proility or the hne, or its hppening is, nd tht of its filing is eg, If in lottery there re prizes nd lnks,

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

Maximizing Maximal Angles for Plane Straight-Line Graphs

Maximizing Maximal Angles for Plane Straight-Line Graphs Mximizing Mximl Angles for Plne Stright-Line Grphs Oswin Aihholzer 1, Thoms Hkl 1, Mihel Hoffmnn 2, Clemens Huemer 3, Attil Pór 4, Frniso Sntos 5, Bettin Spekmnn 6, n Birgit Vogtenhuer 1 1 Institute for

More information

Technology Mapping Method for Low Power Consumption and High Performance in General-Synchronous Framework

Technology Mapping Method for Low Power Consumption and High Performance in General-Synchronous Framework R-17 SASIMI 015 Proeeings Tehnology Mpping Metho for Low Power Consumption n High Performne in Generl-Synhronous Frmework Junki Kwguhi Yukihie Kohir Shool of Computer Siene, the University of Aizu Aizu-Wkmtsu

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

Section 2.1 Special Right Triangles

Section 2.1 Special Right Triangles Se..1 Speil Rigt Tringles 49 Te --90 Tringle Setion.1 Speil Rigt Tringles Te --90 tringle (or just 0-60-90) is so nme euse of its ngle mesures. Te lengts of te sies, toug, ve very speifi pttern to tem

More information

A Primer on Continuous-time Economic Dynamics

A Primer on Continuous-time Economic Dynamics Eonomis 205A Fll 2008 K Kletzer A Primer on Continuous-time Eonomi Dnmis A Liner Differentil Eqution Sstems (i) Simplest se We egin with the simple liner first-orer ifferentil eqution The generl solution

More information

I 3 2 = I I 4 = 2A

I 3 2 = I I 4 = 2A ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents

More information

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS Krgujev Journl of Mthemtis Volume 38() (204), Pges 35 49. DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS MOHAMMAD W. ALOMARI Abstrt. In this pper, severl bouns for the ifferene between two Riemn-

More information

New and Improved Spanning Ratios for Yao Graphs

New and Improved Spanning Ratios for Yao Graphs New n Improve Spnning Rtios for Yo Grphs Luis Br Déprtement Informtique Université Lire e Bruxelles lrfl@ul..e Rolf Fgererg Deprtment of Computer Siene University of Southern Denmrk rolf@im.su.k Anré vn

More information

Nondeterministic Automata vs Deterministic Automata

Nondeterministic Automata vs Deterministic Automata Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n

More information

Sections 5.3: Antiderivatives and the Fundamental Theorem of Calculus Theory:

Sections 5.3: Antiderivatives and the Fundamental Theorem of Calculus Theory: Setions 5.3: Antierivtives n the Funmentl Theorem of Clulus Theory: Definition. Assume tht y = f(x) is ontinuous funtion on n intervl I. We ll funtion F (x), x I, to be n ntierivtive of f(x) if F (x) =

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA

A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA PHILIP DANIEL AND CHARLES SEMPLE Astrt. Amlgmting smller evolutionry trees into single prent tree is n importnt tsk in evolutionry iology. Trditionlly,

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

Metaheuristics for the Asymmetric Hamiltonian Path Problem

Metaheuristics for the Asymmetric Hamiltonian Path Problem Metheuristis for the Asymmetri Hmiltonin Pth Prolem João Pero PEDROSO INESC - Porto n DCC - Fule e Ciênis, Universie o Porto, Portugl jpp@f.up.pt Astrt. One of the most importnt pplitions of the Asymmetri

More information

A Disambiguation Algorithm for Finite Automata and Functional Transducers

A Disambiguation Algorithm for Finite Automata and Functional Transducers A Dismigution Algorithm for Finite Automt n Funtionl Trnsuers Mehryr Mohri Cournt Institute of Mthemtil Sienes n Google Reserh 51 Merer Street, New York, NY 1001, USA Astrt. We present new ismigution lgorithm

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Geodesics on Regular Polyhedra with Endpoints at the Vertices

Geodesics on Regular Polyhedra with Endpoints at the Vertices Arnol Mth J (2016) 2:201 211 DOI 101007/s40598-016-0040-z RESEARCH CONTRIBUTION Geoesis on Regulr Polyher with Enpoints t the Verties Dmitry Fuhs 1 To Sergei Thnikov on the osion of his 60th irthy Reeive:

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Algebra 2 Semester 1 Practice Final

Algebra 2 Semester 1 Practice Final Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers

More information

CHENG Chun Chor Litwin The Hong Kong Institute of Education

CHENG Chun Chor Litwin The Hong Kong Institute of Education PE-hing Mi terntionl onferene IV: novtion of Mthemtis Tehing nd Lerning through Lesson Study- onnetion etween ssessment nd Sujet Mtter HENG hun hor Litwin The Hong Kong stitute of Edution Report on using

More information

Graph Algorithms. Vertex set = { a,b,c,d } Edge set = { {a,c}, {b,c}, {c,d}, {b,d}} Figure 1: An example for a simple graph

Graph Algorithms. Vertex set = { a,b,c,d } Edge set = { {a,c}, {b,c}, {c,d}, {b,d}} Figure 1: An example for a simple graph Inin Institute of Informtion Tehnology Design n Mnufturing, Knheepurm, Chenni 00, Ini An Autonomous Institute uner MHRD, Govt of Ini http://www.iiitm..in COM 0T Design n Anlysis of Algorithms -Leture Notes

More information

Solids of Revolution

Solids of Revolution Solis of Revolution Solis of revolution re rete tking n re n revolving it roun n is of rottion. There re two methos to etermine the volume of the soli of revolution: the isk metho n the shell metho. Disk

More information

Introduction to Graphical Models

Introduction to Graphical Models Introution to Grhil Moels Kenji Fukumizu The Institute of Sttistil Mthemtis Comuttionl Methoology in Sttistil Inferene II Introution n Review 2 Grhil Moels Rough Sketh Grhil moels Grh: G V E V: the set

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

Mathematical Proofs Table of Contents

Mathematical Proofs Table of Contents Mthemtil Proofs Tle of Contents Proof Stnr Pge(s) Are of Trpezoi 7MG. Geometry 8.0 Are of Cirle 6MG., 9 6MG. 7MG. Geometry 8.0 Volume of Right Cirulr Cyliner 6MG. 4 7MG. Geometry 8.0 Volume of Sphere Geometry

More information