Aperiodic tilings and substitutions

Size: px
Start display at page:

Download "Aperiodic tilings and substitutions"

Transcription

1 Aperioi tilings n sustitutions Niols Ollinger LIFO, Université Orléns Journées SDA2, Amiens June 12th, 2013

2 The Domino Prolem (DP) Assume we re given finite set of squre pltes of the sme size with eges olore, eh in ifferent mnner. Suppose further there re infinitely mny opies of eh plte (plte type). We re not permitte to rotte or reflet plte. The question is to fin n effetive proeure y whih we n eie, for eh given finite set of pltes, whether we n over up the whole plne (or, equivlently, n infinite qurnt thereof) with opies of the pltes sujet to the restrition tht joining eges must hve the sme olor. (Wng, 1961) 1/35

3 Wng tiles A tile set τ Σ 4 is tile set with olore eges. The set of τ-tilings X τ τ Z2 is the set of olorings of Z 2 y τ where olors mth long eges. 2/35

4 Perioi Tilings Definition A tiling is perioi with perio p if it is invrint y trnsltion of vetor p. Lemm If tile set mits perioi tiling then it mits iperioi tiling. Lemm Tile sets tiling the plne iperioilly re re (reursively enumerle). 3/35

5 o-tiling Lemm Tile sets tiling the plne re o-re. Sketh of the proof Consier tilings of lrger n lrger squre regions. If the set oes not tile the plne, y ompity, there exists size of squre it nnot over with tiles. 4/35

6 Aperioiity Definition A tiling is perioi if it mits no non-trivil perio. Definition A tile set is perioi if it mits tiling n ll its tilings re perioi. Remrk If there were no perioi tile set, the Domino Prolem woul e eile. 5/35

7 Uneiility of DP Theorem[Berger 1964] DP is uneile. Remrk To prove it one nees perioi tile sets. Seminl self-similrity se proofs (reution from HP): Berger, 1964 (20426 tiles, full PhD thesis) Roinson, 1971 (56 tiles, 17 pges, long se nlysis) Durn et l, 2007 (Kleene s fixpoint existene rgument) Tiling rows seen s trnsuer tre se proof: Kri, 2007 (ffine mps, reution from IP) An others! Mozes, 1990 (non-eterministi sustitutions) Aner n Lewis, 1980 (1-systems n 2-systems) 6/35

8 In this tlk A simple originl onstrution of n perioi tile set se on two-y-two sustitution systems n its pplition to n ol historil onstrution. This work omines tools n ies from: [Berger 64] The Uneiility of the Domino Prolem [Roinson 71] Uneiility n nonperioiity for tilings of the plne [Grünum Shephr 89] Tilings n Ptterns, n introution [Durn Levin Shen 05] Lol rules n glol orer, or perioi tilings 7/35

9 Tiling with fixe tile q q q q q q B q 0 B B No hlting tile. 8/35

10 Finite Tiling q f q q q q q q B q 0 B B 9/35

11 1. Two-y-two Sustitution Systems 2. An Aperioi Tile Set 3. Conlusion

12 Sustitutions Σ = {,,, } s :,,,. 1. Two-y-two Sustitution Systems 10/35

13 Two-y-two sustitutions s : A 2x2 sustitution s : Σ Σ mps letters to squres of letters on the sme finite lphet. S : The sustitution is extene s glol mp S : Σ Z2 Σ Z2 on olorings of the plne: z Z 2, k, S()(2z + k) = s((z))(k) 1. Two-y-two Sustitution Systems 11/35

14 Limit set n history Λ s = y x x,y Z 2 The limit set Λ s Σ Z2 is the mximl ttrtor of S: Λ s = ( S t Σ Z2) σ t N The limit set is the set of olorings mitting n history ( i ) i N where i = σ ui (S( i+1 )). 1. Two-y-two Sustitution Systems 12/35

15 Unmiguous sustitutions A sustitution is perioi if its limit set Λ s is perioi. A sustitution is unmiguous if, for every oloring from its limit set Λ s, there exists unique oloring n unique trnsltion u stisfying = σ u (S( )). Proposition Unmiguity implies perioiity. Sketh of the proof. Consier perioi oloring with miniml perio p, its preimge hs perio p/2. Ie. Construt tile set whose tilings re in the limit set of n unmiguous sustitution system. 1. Two-y-two Sustitution Systems 13/35

16 Coing tile sets into tile sets Definition A tile set τ oes tile set τ, oring to oing rule t : τ τ if t is injetive n X τ = {σ u (t()) X τ, u } : {,,, } 1. Two-y-two Sustitution Systems 14/35

17 Unmiguous self-oing Definition A tile set τ oes sustitution s : τ τ if it oes itself oring to the oing rule s. Proposition A tile set oth mitting tiling n oing n unmiguous sustitution is perioi. Sketh of the proof. X τ Λ s n X τ. Ie. Construt tile set whose tilings re in the limit set of lolly hekle unmiguous sustitution emeing whole history. 1. Two-y-two Sustitution Systems 15/35

18

19

20

21

22

23

24

25

26

27

28 Is this self-enoing? Iterting the oing rule one otins 56 tiles. oing rule Unfortuntely, this tile set is not self-oing. Ie A synhronizing sustitution s thir lyer. 1. Two-y-two Sustitution Systems 17/35

29 à l Roinson Proposition The ssoite tile set of 104 tiles mits tiling n oes n unmiguous sustitution. 1. Two-y-two Sustitution Systems 18/35

30 à l Roinson Proposition The ssoite tile set of 104 tiles mits tiling n oes n unmiguous sustitution. 1. Two-y-two Sustitution Systems 18/35

31

32 Aperioiity: sketh of the proof 1. The tile set mits tiling: Generte vli tiling y iterting the sustitution rule: X τ Λ s. 2. The sustitution is unmiguous: It is injetive n the projetors hve isjoine imges. 3. The tile set oes the sustitution: () eh tiling is n imge of the nonil sustitution Consier ny tiling, level y level, short se nlysis. () the preimge of tiling is tiling Strightforwr y onstrution (preimge remove onstrints). 1. Two-y-two Sustitution Systems 20/35

33 1. Two-y-two Sustitution Systems 2. An Aperioi Tile Set 3. Conlusion

34 Roert Berger (orn 1938) is known for inventing the first perioi tiling using set of 20,426 istint tile shpes. [Roert Berger Wikipei entry]

35 (... ) In 1966 R. Berger isovere the first perioi tile set. It ontins 20,426 Wng tiles, (... ) Berger himself mnge to reue the numer of tiles to 104 n he esrie these in his thesis, though they were omitte from the pulishe version (Berger [1966]). (... ) [GrSh, p.584]

36

37

38

39

40

41 Berger s skeleton sustitution 2. An Aperioi Tile Set 27/35

42

43 Berger s forgotten perioi tile set Proposition The ssoite tile set of 103 tiles mits tiling n oes n unmiguous sustitution. Remrk The numer of tiles oes not grow monotonilly in the numer of letters of the synhronizing lyer. 5 letters 104 tiles 11 letters 103 tiles 2. An Aperioi Tile Set 29/35

44 1. Two-y-two Sustitution Systems 2. An Aperioi Tile Set 3. Conlusion

45 To ontinue... Theorem The limit set of 2x2 sustitution is sofi. Ie To enoe Λ s vi lol mthing rules, eorte s into lolly hekle s emeing whole history. Corollry[Berger 1964] DP is uneile. Ie Construt 2x2 sustitution whose limit set ontins everywhere squres of lrger n lrger size, insert Turing omputtion insie those squres. 3. Conlusion 30/35

46 Enforing sustitutions vi tilings Let π mp every tile of τ(s ) to s ()(u) where n u re the letter n the vlue of on lyer 1. Proposition. Let s e ny sustitution system. The tile set τ(s ) enfores s : π ( X τ(s )) = Λs. Ie. Every tiling of τ(s ) oes n history of s n every history of s n e enoe into tiling of τ(s ). = s() = s() ( 1 1 ) ( 0 0 ) 3. Conlusion 31/35

47 Squres everywhere t t h h v v t t h h v v t t t t t t v v t t v v t t v v t t v v h h t t h h t t h h t t h h t t t t v v t t v v t t v v t t v v h h t t h h t t h h t t h h t t t h v 3. Conlusion 32/35

48 x3,1 R5,1 (3, 1) x2,1 R5,1 (2, 1) x1,1 R5,1 (1, 1) q3,1 R4,1 (3, 1) q2,1 R4,1 (2, 1) q1,1 R4,1 (1, 1) j2,1 R3,1 (2, 1) j1,1 R3,1 (1, 1) 3,1 R2,1 (3, 1) 2,1 R2,1 (2, 1) 1,1 R2,1 (1, 1) v2,1 R1,1 (2, 1) v1,1 R1,1 (1, 1) 2,1 S2,1 1,1 S2,1 3,1 S1,1 2,1 S1,1 1,1 S1,1 x3,2 R5,1 (3, 2) x2,2 R5,1 (2, 2) x1,2 R5,1 (1, 2) q3,2 R4,1 (3, 2) q2,2 R4,1 (2, 2) q1,2 R4,1 (1, 2) j2,2 R3,1 (2, 2) j1,2 R3,1 (1, 2) 3,2 R2,1 (3, 2) 2,2 R2,1 (2, 2) 1,2 R2,1 (1, 2) v2,2 R1,1 (2, 2) v1,2 R1,1 (1, 2) x3,3 R5,1 (3, 3) x2,3 R5,1 (2, 3) x1,3 R5,1 (1, 3) q3,3 R4,1 (3, 3) q2,3 R4,1 (2, 3) q1,3 R4,1 (1, 3) j2,3 R3,1 (2, 3) j1,3 R3,1 (1, 3) 3,3 R2,1 (3, 3) 2,3 R2,1 (2, 3) 1,3 R2,1 (1, 3) v2,3 R1,1 (2, 3) v1,3 R1,1 (1, 3) 2,1 1,1 g3,1 R5,2 (3, 1) g2,1 R5,2 (2, 1) g1,1 R5,2 (1, 1) z3,1 R4,2 (3, 1) z2,1 R4,2 (2, 1) z1,1 R4,2 (1, 1) s2,1 R3,2 (2, 1) s1,1 R3,2 (1, 1) l3,1 R2,2 (3, 1) l2,1 R2,2 (2, 1) l1,1 R2,2 (1, 1) e2,1 R1,2 (2, 1) e1,1 R1,2 (1, 1) 2,2 S2,1 1,2 S2,1 3,2 S1,1 2,2 S1,1 1,2 S1,1 g3,2 R5,2 (3, 2) g2,2 R5,2 (2, 2) g1,2 R5,2 (1, 2) z3,2 R4,2 (3, 2) z2,2 R4,2 (2, 2) z1,2 R4,2 (1, 2) s2,2 R3,2 (2, 2) s1,2 R3,2 (1, 2) l3,2 R2,2 (3, 2) l2,2 R2,2 (2, 2) l1,2 R2,2 (1, 2) e2,2 R1,2 (2, 2) e1,2 R1,2 (1, 2) p3,1 R5,3 (3, 1) p2,1 R5,3 (2, 1) p1,1 R5,3 (1, 1) i3,1 R4,3 (3, 1) i2,1 R4,3 (2, 1) i1,1 R4,3 (1, 1) 2,1 R3,3 (2, 1) 1,1 R3,3 (1, 1) u3,1 R2,3 (3, 1) u2,1 R2,3 (2, 1) u1,1 R2,3 (1, 1) n2,1 R1,3 (2, 1) n1,1 R1,3 (1, 1) 2,1 S2,2 1,1 S2,2 3,1 S1,2 2,1 S1,2 1,1 S1,2 p3,2 R5,3 (3, 2) p2,2 R5,3 (2, 2) p1,2 R5,3 (1, 2) i3,2 R4,3 (3, 2) i2,2 R4,3 (2, 2) i1,2 R4,3 (1, 2) 2,2 R3,3 (2, 2) 1,2 R3,3 (1, 2) u3,2 R2,3 (3, 2) u2,2 R2,3 (2, 2) u1,2 R2,3 (1, 2) n2,2 R1,3 (2, 2) n1,2 R1,3 (1, 2) 2,2 1,2 y3,1 R5,4 (3, 1) y2,1 R5,4 (2, 1) y1,1 R5,4 (1, 1) r3,1 R4,4 (3, 1) r2,1 R4,4 (2, 1) r1,1 R4,4 (1, 1) k2,1 R3,4 (2, 1) k1,1 R3,4 (1, 1) 3,1 R2,4 (3, 1) 2,1 R2,4 (2, 1) 1,1 R2,4 (1, 1) w2,1 R1,4 (2, 1) w1,1 R1,4 (1, 1) 2,2 S2,2 1,2 S2,2 3,2 S1,2 2,2 S1,2 1,2 S1,2 y3,2 R5,4 (3, 2) y2,2 R5,4 (2, 2) y1,2 R5,4 (1, 2) r3,2 R4,4 (3, 2) r2,2 R4,4 (2, 2) r1,2 R4,4 (1, 2) k2,2 R3,4 (2, 2) k1,2 R3,4 (1, 2) 3,2 R2,4 (3, 2) 2,2 R2,4 (2, 2) 1,2 R2,4 (1, 2) w2,2 R1,4 (2, 2) w1,2 R1,4 (1, 2) y3,3 R5,4 (3, 3) y2,3 R5,4 (2, 3) y1,3 R5,4 (1, 3) r3,3 R4,4 (3, 3) r2,3 R4,4 (2, 3) r1,3 R4,4 (1, 3) k2,3 R3,4 (2, 3) k1,3 R3,4 (1, 3) 3,3 R2,4 (3, 3) 2,3 R2,4 (2, 3) 1,3 R2,4 (1, 3) w2,3 R1,4 (2, 3) w1,3 R1,4 (1, 3) Mozes 1990 or (2, 1) T (2, 1) (2, 2) (2, 1) T (2, 2) (2, 2) or (1, 1) (1, 2) (1, 1) U (2, 6) (1, 2) (3, 1) (3, 2) (3, 1) (3, 2) (2, 1) (2, 2) (2, 1) (2, 2) T (1, 1) T (1, 2) (1, 1) (1, 2) (1, 1) (1, 2) Theorem[Mozes 1990] The limit set of non-eterministi retngulr sustitution (+ some hypothesis) is sofi. 3. Conlusion 33/35

49 Goomn-Struss 1998 Theorem[Goomn-Struss 1998] The limit set of homotheti sustitution (+ some hypothesis) is sofi. 3. Conlusion 34/35

50 Fernique-O 2010 Theorem[Fernique-O 2010] The limit set of omintoril sustitution (+ some hypothesis) is sofi. 3. Conlusion 35/35

51

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

Logic, Set Theory and Computability [M. Coppenbarger]

Logic, Set Theory and Computability [M. Coppenbarger] 14 Orer (Hnout) Definition 7-11: A reltion is qusi-orering (or preorer) if it is reflexive n trnsitive. A quisi-orering tht is symmetri is n equivlene reltion. A qusi-orering tht is nti-symmetri is n orer

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS The University of ottinghm SCHOOL OF COMPUTR SCIC A LVL 2 MODUL, SPRIG SMSTR 2015 2016 MACHIS AD THIR LAGUAGS ASWRS Time llowed TWO hours Cndidtes my omplete the front over of their nswer ook nd sign their

More information

Algebra 2 Semester 1 Practice Final

Algebra 2 Semester 1 Practice Final Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

Undecidability for arbitrary public announcement logic

Undecidability for arbitrary public announcement logic Uneiility for ritrry puli nnounement logi Tim Frenh n Hns vn Ditmrsh strt. Aritrry puli nnounement logi (AP AL) is n extension of multi-gent epistemi logi tht llows gents knowlege sttes to e upte y the

More information

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 S 224 DIGITAL LOGI & STATE MAHINE DESIGN SPRING 214 DUE : Mrh 27, 214 HOMEWORK III READ : Relte portions of hpters VII n VIII ASSIGNMENT : There re three questions. Solve ll homework n exm prolems s shown

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Automata and Regular Languages

Automata and Regular Languages Chpter 9 Automt n Regulr Lnguges 9. Introution This hpter looks t mthemtil moels of omputtion n lnguges tht esrie them. The moel-lnguge reltionship hs multiple levels. We shll explore the simplest level,

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Lesson 2.1 Inductive Reasoning

Lesson 2.1 Inductive Reasoning Lesson 2.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 12, 16,, 2. 400, 200, 100, 50, 25,, 3. 1 8, 2 7, 1 2, 4, 5, 4. 5, 3, 2,

More information

50 AMC Lectures Problem Book 2 (36) Substitution Method

50 AMC Lectures Problem Book 2 (36) Substitution Method 0 AMC Letures Prolem Book Sustitution Metho PROBLEMS Prolem : Solve for rel : 9 + 99 + 9 = Prolem : Solve for rel : 0 9 8 8 Prolem : Show tht if 8 Prolem : Show tht + + if rel numers,, n stisf + + = Prolem

More information

A Disambiguation Algorithm for Finite Automata and Functional Transducers

A Disambiguation Algorithm for Finite Automata and Functional Transducers A Dismigution Algorithm for Finite Automt n Funtionl Trnsuers Mehryr Mohri Cournt Institute of Mthemtil Sienes n Google Reserh 51 Merer Street, New York, NY 1001, USA Astrt. We present new ismigution lgorithm

More information

Comparing the Pre-image and Image of a Dilation

Comparing the Pre-image and Image of a Dilation hpter Summry Key Terms Postultes nd Theorems similr tringles (.1) inluded ngle (.2) inluded side (.2) geometri men (.) indiret mesurement (.6) ngle-ngle Similrity Theorem (.2) Side-Side-Side Similrity

More information

Lesson 2.1 Inductive Reasoning

Lesson 2.1 Inductive Reasoning Lesson 2.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 12, 16,, 2. 400, 200, 100, 50, 25,, 3. 1 8, 2 7, 1 2, 4, 5, 4. 5, 3, 2,

More information

arxiv: v1 [math.gr] 11 Jan 2019

arxiv: v1 [math.gr] 11 Jan 2019 The Generlized Dehn Property does not imply liner isoperimetri inequlity Owen Bker nd Timothy Riley rxiv:1901.03767v1 [mth.gr] 11 Jn 2019 Jnury 15, 2019 Astrt The Dehn property for omplex is tht every

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

The DOACROSS statement

The DOACROSS statement The DOACROSS sttement Is prllel loop similr to DOALL, ut it llows prouer-onsumer type of synhroniztion. Synhroniztion is llowe from lower to higher itertions sine it is ssume tht lower itertions re selete

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area Journl of Grph Algorithms n Applitions http://jg.info/ vol. 13, no. 2, pp. 153 177 (2009) On Clss of Plnr Grphs with Stright-Line Gri Drwings on Liner Are M. Rezul Krim 1,2 M. Siur Rhmn 1 1 Deprtment of

More information

Geodesics on Regular Polyhedra with Endpoints at the Vertices

Geodesics on Regular Polyhedra with Endpoints at the Vertices Arnol Mth J (2016) 2:201 211 DOI 101007/s40598-016-0040-z RESEARCH CONTRIBUTION Geoesis on Regulr Polyher with Enpoints t the Verties Dmitry Fuhs 1 To Sergei Thnikov on the osion of his 60th irthy Reeive:

More information

XML and Databases. Exam Preperation Discuss Answers to last year s exam. Sebastian Maneth NICTA and UNSW

XML and Databases. Exam Preperation Discuss Answers to last year s exam. Sebastian Maneth NICTA and UNSW XML n Dtses Exm Prepertion Disuss Answers to lst yer s exm Sestin Mneth NICTA n UNSW CSE@UNSW -- Semester 1, 2008 (1) For eh of the following, explin why it is not well-forme XML (is WFC or the XML grmmr

More information

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA Common intervls of genomes Mthieu Rffinot CNRS LIF Context: omprtive genomis. set of genomes prtilly/totlly nnotte Informtive group of genes or omins? Ex: COG tse Mny iffiulties! iology Wht re two similr

More information

Equivalent fractions have the same value but they have different denominators. This means they have been divided into a different number of parts.

Equivalent fractions have the same value but they have different denominators. This means they have been divided into a different number of parts. Frtions equivlent frtions Equivlent frtions hve the sme vlue ut they hve ifferent enomintors. This mens they hve een ivie into ifferent numer of prts. Use the wll to fin the equivlent frtions: Wht frtions

More information

GM1 Consolidation Worksheet

GM1 Consolidation Worksheet Cmridge Essentils Mthemtis Core 8 GM1 Consolidtion Worksheet GM1 Consolidtion Worksheet 1 Clulte the size of eh ngle mrked y letter. Give resons for your nswers. or exmple, ngles on stright line dd up

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

I 3 2 = I I 4 = 2A

I 3 2 = I I 4 = 2A ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents

More information

Implication Graphs and Logic Testing

Implication Graphs and Logic Testing Implition Grphs n Logi Testing Vishwni D. Agrwl Jmes J. Dnher Professor Dept. of ECE, Auurn University Auurn, AL 36849 vgrwl@eng.uurn.eu www.eng.uurn.eu/~vgrwl Joint reserh with: K. K. Dve, ATI Reserh,

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

A Primer on Continuous-time Economic Dynamics

A Primer on Continuous-time Economic Dynamics Eonomis 205A Fll 2008 K Kletzer A Primer on Continuous-time Eonomi Dnmis A Liner Differentil Eqution Sstems (i) Simplest se We egin with the simple liner first-orer ifferentil eqution The generl solution

More information

3 Angle Geometry. 3.1 Measuring Angles. 1. Using a protractor, measure the marked angles.

3 Angle Geometry. 3.1 Measuring Angles. 1. Using a protractor, measure the marked angles. 3 ngle Geometry MEP Prtie ook S3 3.1 Mesuring ngles 1. Using protrtor, mesure the mrked ngles. () () (d) (e) (f) 2. Drw ngles with the following sizes. () 22 () 75 120 (d) 90 (e) 153 (f) 45 (g) 180 (h)

More information

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors

More information

MCH T 111 Handout Triangle Review Page 1 of 3

MCH T 111 Handout Triangle Review Page 1 of 3 Hnout Tringle Review Pge of 3 In the stuy of sttis, it is importnt tht you e le to solve lgeri equtions n tringle prolems using trigonometry. The following is review of trigonometry sis. Right Tringle:

More information

Lecture 2: Cayley Graphs

Lecture 2: Cayley Graphs Mth 137B Professor: Pri Brtlett Leture 2: Cyley Grphs Week 3 UCSB 2014 (Relevnt soure mteril: Setion VIII.1 of Bollos s Moern Grph Theory; 3.7 of Gosil n Royle s Algeri Grph Theory; vrious ppers I ve re

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

Welcome. Balanced search trees. Balanced Search Trees. Inge Li Gørtz

Welcome. Balanced search trees. Balanced Search Trees. Inge Li Gørtz Welome nge Li Gørt. everse tehing n isussion of exerises: 02110 nge Li Gørt 3 tehing ssistnts 8.00-9.15 Group work 9.15-9.45 isussions of your solutions in lss 10.00-11.15 Leture 11.15-11.45 Work on exerises

More information

Linear choosability of graphs

Linear choosability of graphs Liner hoosility of grphs Louis Esperet, Mikel Montssier, André Rspud To ite this version: Louis Esperet, Mikel Montssier, André Rspud. Liner hoosility of grphs. Stefn Felsner. 2005 Europen Conferene on

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

arxiv: v1 [cs.cg] 28 Apr 2009

arxiv: v1 [cs.cg] 28 Apr 2009 Orienttion-Constrine Retngulr Lyouts Dvi Eppstein 1 n Elen Mumfor 2 1 Deprtment of Computer Siene, University of Cliforni, Irvine, USA 2 Deprtment of Mthemtis n Computer Siene, TU Einhoven, The Netherlns

More information

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations. Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Math 211A Homework. Edward Burkard. = tan (2x + z)

Math 211A Homework. Edward Burkard. = tan (2x + z) Mth A Homework Ewr Burkr Eercises 5-C Eercise 8 Show tht the utonomous system: 5 Plne Autonomous Systems = e sin 3y + sin cos + e z, y = sin ( + 3y, z = tn ( + z hs n unstble criticl point t = y = z =

More information

Area and Perimeter. Area and Perimeter. Solutions. Curriculum Ready.

Area and Perimeter. Area and Perimeter. Solutions. Curriculum Ready. Are n Perimeter Are n Perimeter Solutions Curriulum Rey www.mthletis.om How oes it work? Solutions Are n Perimeter Pge questions Are using unit squres Are = whole squres Are = 6 whole squres = units =

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS Bull. Koren Mth. So. 35 (998), No., pp. 53 6 POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS YOUNG BAE JUN*, YANG XU AND KEYUN QIN ABSTRACT. We introue the onepts of positive

More information

Subsequence Automata with Default Transitions

Subsequence Automata with Default Transitions Susequene Automt with Defult Trnsitions Philip Bille, Inge Li Gørtz, n Freerik Rye Skjoljensen Tehnil University of Denmrk {phi,inge,fskj}@tu.k Astrt. Let S e string of length n with hrters from n lphet

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

Position Analysis: Review (Chapter 2) Objective: Given the geometry of a mechanism and the input motion, find the output motion

Position Analysis: Review (Chapter 2) Objective: Given the geometry of a mechanism and the input motion, find the output motion Position Anlysis: Review (Chpter Ojetive: Given the geometry of mehnism n the input motion, fin the output motion Grphil pproh Algeri position nlysis Exmple of grphil nlysis of linges, four r linge. Given

More information

CS261: A Second Course in Algorithms Lecture #5: Minimum-Cost Bipartite Matching

CS261: A Second Course in Algorithms Lecture #5: Minimum-Cost Bipartite Matching CS261: A Seon Course in Algorithms Leture #5: Minimum-Cost Biprtite Mthing Tim Roughgren Jnury 19, 2016 1 Preliminries Figure 1: Exmple of iprtite grph. The eges {, } n {, } onstitute mthing. Lst leture

More information

Figure 1. The left-handed and right-handed trefoils

Figure 1. The left-handed and right-handed trefoils The Knot Group A knot is n emedding of the irle into R 3 (or S 3 ), k : S 1 R 3. We shll ssume our knots re tme, mening the emedding n e extended to solid torus, K : S 1 D 2 R 3. The imge is lled tuulr

More information

Extension of the Villarceau-Section to Surfaces of Revolution with a Generating Conic

Extension of the Villarceau-Section to Surfaces of Revolution with a Generating Conic Journl for Geometry n Grphics Volume 6 (2002), No. 2, 121 132. Extension of the Villrceu-Section to Surfces of Revolution with Generting Conic Anton Hirsch Fchereich uingenieurwesen, FG Sthlu, Drstellungstechnik

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

The numbers inside a matrix are called the elements or entries of the matrix.

The numbers inside a matrix are called the elements or entries of the matrix. Chapter Review of Matries. Definitions A matrix is a retangular array of numers of the form a a a 3 a n a a a 3 a n a 3 a 3 a 33 a 3n..... a m a m a m3 a mn We usually use apital letters (for example,

More information

Sections 5.3: Antiderivatives and the Fundamental Theorem of Calculus Theory:

Sections 5.3: Antiderivatives and the Fundamental Theorem of Calculus Theory: Setions 5.3: Antierivtives n the Funmentl Theorem of Clulus Theory: Definition. Assume tht y = f(x) is ontinuous funtion on n intervl I. We ll funtion F (x), x I, to be n ntierivtive of f(x) if F (x) =

More information

SEMI-EXCIRCLE OF QUADRILATERAL

SEMI-EXCIRCLE OF QUADRILATERAL JP Journl of Mthemtil Sienes Volume 5, Issue &, 05, Pges - 05 Ishn Pulishing House This pper is ville online t http://wwwiphsiom SEMI-EXCIRCLE OF QUADRILATERAL MASHADI, SRI GEMAWATI, HASRIATI AND HESY

More information

Unfoldings of Networks of Timed Automata

Unfoldings of Networks of Timed Automata Unfolings of Networks of Time Automt Frnk Cssez Thoms Chtin Clue Jr Ptrii Bouyer Serge H Pierre-Alin Reynier Rennes, Deemer 3, 2008 Unfolings [MMilln 93] First efine for Petri nets Then extene to other

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Prefix-Free Regular-Expression Matching

Prefix-Free Regular-Expression Matching Prefix-Free Regulr-Expression Mthing Yo-Su Hn, Yjun Wng nd Derik Wood Deprtment of Computer Siene HKUST Prefix-Free Regulr-Expression Mthing p.1/15 Pttern Mthing Given pttern P nd text T, find ll sustrings

More information

Grade 6. Mathematics. Student Booklet SPRING 2008 RELEASED ASSESSMENT QUESTIONS. Assessment of Reading,Writing and Mathematics, Junior Division

Grade 6. Mathematics. Student Booklet SPRING 2008 RELEASED ASSESSMENT QUESTIONS. Assessment of Reading,Writing and Mathematics, Junior Division Gre 6 Assessment of Reing,Writing n Mthemtis, Junior Division Stuent Booklet Mthemtis SPRING 2008 RELEASED ASSESSMENT QUESTIONS Plese note: The formt of these ooklets is slightly ifferent from tht use

More information

Can one hear the shape of a drum?

Can one hear the shape of a drum? Cn one her the shpe of drum? After M. K, C. Gordon, D. We, nd S. Wolpert Corentin Lén Università Degli Studi di Torino Diprtimento di Mtemti Giuseppe Peno UNITO Mthemtis Ph.D Seminrs Mondy 23 My 2016 Motivtion:

More information

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France) Grph Sttes EPIT 2005 Mehdi Mhll (Clgry, Cnd) Simon Perdrix (Grenole, Frne) simon.perdrix@img.fr Grph Stte: Introdution A grph-sed representtion of the entnglement of some (lrge) quntum stte. Verties: quits

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

CS241 Week 6 Tutorial Solutions

CS241 Week 6 Tutorial Solutions 241 Week 6 Tutoril olutions Lnguges: nning & ontext-free Grmmrs Winter 2018 1 nning Exerises 1. 0x0x0xd HEXINT 0x0 I x0xd 2. 0xend--- HEXINT 0xe I nd ER -- MINU - 3. 1234-120x INT 1234 INT -120 I x 4.

More information

Solutions to Problem Set #1

Solutions to Problem Set #1 CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors

More information

Génération aléatoire uniforme pour les réseaux d automates

Génération aléatoire uniforme pour les réseaux d automates Génértion létoire uniforme pour les réseux d utomtes Niols Bsset (Trvil ommun ve Mihèle Sori et Jen Miresse) Université lire de Bruxelles Journées Alé 2017 1/25 Motivtions (1/2) p q Automt re omni-present

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt

More information

Introduction to Graphical Models

Introduction to Graphical Models Introution to Grhil Moels Kenji Fukumizu The Institute of Sttistil Mthemtis Comuttionl Methoology in Sttistil Inferene II Introution n Review 2 Grhil Moels Rough Sketh Grhil moels Grh: G V E V: the set

More information

Hybrid Systems Modeling, Analysis and Control

Hybrid Systems Modeling, Analysis and Control Hyrid Systems Modeling, Anlysis nd Control Rdu Grosu Vienn University of Tehnology Leture 5 Finite Automt s Liner Systems Oservility, Rehility nd More Miniml DFA re Not Miniml NFA (Arnold, Diky nd Nivt

More information

Mathematical Proofs Table of Contents

Mathematical Proofs Table of Contents Mthemtil Proofs Tle of Contents Proof Stnr Pge(s) Are of Trpezoi 7MG. Geometry 8.0 Are of Cirle 6MG., 9 6MG. 7MG. Geometry 8.0 Volume of Right Cirulr Cyliner 6MG. 4 7MG. Geometry 8.0 Volume of Sphere Geometry

More information

MATH 573 FINAL EXAM. May 30, 2007

MATH 573 FINAL EXAM. May 30, 2007 MATH 573 FINAL EXAM My 30, 007 NAME: Solutions 1. This exm is due Wednesdy, June 6 efore the 1:30 pm. After 1:30 pm I will NOT ccept the exm.. This exm hs 1 pges including this cover. There re 10 prolems.

More information

The Word Problem in Quandles

The Word Problem in Quandles The Word Prolem in Qundles Benjmin Fish Advisor: Ren Levitt April 5, 2013 1 1 Introdution A word over n lger A is finite sequene of elements of A, prentheses, nd opertions of A defined reursively: Given

More information

SOME COPLANAR POINTS IN TETRAHEDRON

SOME COPLANAR POINTS IN TETRAHEDRON Journl of Pure n Applie Mthemtis: Avnes n Applitions Volume 16, Numer 2, 2016, Pges 109-114 Aville t http://sientifivnes.o.in DOI: http://x.oi.org/10.18642/jpm_7100121752 SOME COPLANAR POINTS IN TETRAHEDRON

More information

Differential Geometry: Conformal Maps

Differential Geometry: Conformal Maps Differentil Geometry: Conforml Mps Liner Trnsformtions Definition: We sy tht liner trnsformtion M:R n R n preserves ngles if M(v) 0 for ll v 0 nd: Mv, Mw v, w Mv Mw v w for ll v nd w in R n. Liner Trnsformtions

More information

LECTURE 2: ARTIN SYMBOL, ARTIN MAP, ARTIN RECIPROCITY LAW AND FINITENESS OF GENERALIZED IDEAL CLASS GROUP

LECTURE 2: ARTIN SYMBOL, ARTIN MAP, ARTIN RECIPROCITY LAW AND FINITENESS OF GENERALIZED IDEAL CLASS GROUP Clss Field Theory Study Seminr Jnury 25 2017 LECTURE 2: ARTIN SYMBOL, ARTIN MAP, ARTIN RECIPROCITY LAW AND FINITENESS OF GENERALIZED IDEAL CLASS GROUP YIFAN WU Plese send typos nd comments to wuyifn@umich.edu

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

F / x everywhere in some domain containing R. Then, + ). (10.4.1) 0.4 Green's theorem in the plne Double integrls over plne region my be trnsforme into line integrls over the bounry of the region n onversely. This is of prtil interest beuse it my simplify the evlution

More information

Bravais lattices and crystal systems

Bravais lattices and crystal systems 3 Brvis ltties nd rystl systems 3. Introdution The definitions of the motif, the repeting unit of pttern, nd the lttie, n rry of points in spe in whih eh point hs n identil environment, hold in three dimensions

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4 Am Blnk Leture 13 Winter 2016 CSE 332 CSE 332: Dt Astrtions Sorting Dt Astrtions QuikSort Cutoff 1 Where We Are 2 For smll n, the reursion is wste. The onstnts on quik/merge sort re higher thn the ones

More information

Math Lesson 4-5 The Law of Cosines

Math Lesson 4-5 The Law of Cosines Mth-1060 Lesson 4-5 The Lw of osines Solve using Lw of Sines. 1 17 11 5 15 13 SS SSS Every pir of loops will hve unknowns. Every pir of loops will hve unknowns. We need nother eqution. h Drop nd ltitude

More information

CIRCULAR COLOURING THE PLANE

CIRCULAR COLOURING THE PLANE CIRCULAR COLOURING THE PLANE MATT DEVOS, JAVAD EBRAHIMI, MOHAMMAD GHEBLEH, LUIS GODDYN, BOJAN MOHAR, AND REZA NASERASR Astrct. The unit distnce grph R is the grph with vertex set R 2 in which two vertices

More information

Harvard University Computer Science 121 Midterm October 23, 2012

Harvard University Computer Science 121 Midterm October 23, 2012 Hrvrd University Computer Science 121 Midterm Octoer 23, 2012 This is closed-ook exmintion. You my use ny result from lecture, Sipser, prolem sets, or section, s long s you quote it clerly. The lphet is

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

Compression of Palindromes and Regularity.

Compression of Palindromes and Regularity. Compression of Plinromes n Regulrity. Kyoko Shikishim-Tsuji Center for Lierl Arts Eution n Reserh Tenri University 1 Introution In [1], property of likstrem t t view of tse is isusse n it is shown tht

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Outline Data Structures and Algorithms. Data compression. Data compression. Lossy vs. Lossless. Data Compression

Outline Data Structures and Algorithms. Data compression. Data compression. Lossy vs. Lossless. Data Compression 5-2 Dt Strutures n Algorithms Dt Compression n Huffmn s Algorithm th Fe 2003 Rjshekr Rey Outline Dt ompression Lossy n lossless Exmples Forml view Coes Definition Fixe length vs. vrile length Huffmn s

More information

INTRODUCTION TO AUTOMATA THEORY

INTRODUCTION TO AUTOMATA THEORY Chpter 3 INTRODUCTION TO AUTOMATA THEORY In this hpter we stuy the most si strt moel of omputtion. This moel els with mhines tht hve finite memory pity. Setion 3. els with mhines tht operte eterministilly

More information

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as Y. D. Chong (26) MH28: Complex Methos for the Sciences 2. Integrls If we hve function f(x) which is well-efine for some x, its integrl over those two vlues is efine s N ( ) f(x) = lim x f(x n ) where x

More information