UV LED charge control at 255 nm

Size: px
Start display at page:

Download "UV LED charge control at 255 nm"

Transcription

1 UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University

2 Drag free concept and applications Cancel deviation from geodetic orbit Geodesy Aeronomy Autonomous orbit determination Fundamental Physics From presentation by Andreas Zoellner at the Spring 2012 CubeSat Developer's Workshop - Cal Poly

3 Drag-free history TRIAD I (1972) GRACE (2002)* Gravity Probe B (2004) GOCE (2009) Planned: LISA Pathfinder LISA * Accelerometer only From presentation by Andreas Zoellner at the Spring 2012 CubeSat Developer's Workshop - Cal Poly

4 Drag Free Control and MGRS MGRS: Modular Gravitational Reference Sensor: DOSS: Differential optical shadow sensor Nanometer level displacement sensitivity Grating angular sensor Nanoradian level angular sensitivity Grating displacement sensor Picometer level displacement sensitivity Launch lock mechanism UV-LED charge management

5 MGRS System Overview Differential Optical Shadow Sensor Grating Angular Sensor Grating Displacement Sensor Nanometer sensing for drag free signal Lower resolution, high dynamic range Andreas Zoellner Nanoradian level angular sensing Muflih Alrufaydah, Patrick Lu (alum) Picometer sensing for science signal High sensitivity, low dynamic range Graham Allen (alum) Proof Mass Caging UV LED Charge Management Full System 700 g clamping of proof mass during launch Minimal residual velocity on release No damage to proof mass surface Eric Hultgren, Chin-Yang Lui Solid state 255nm light source Charge control of proof mass and housing potential Karthik Balakrishnan 2.9 kg 70mm dia Au-Pt sphere Carbide coated sphere

6 Charging sources and effects Many disturbance forces: Solar, atmospheric, micrometeoroids Charging Charging mechanisms: Direct: charged particles accumulate on either proof mass or housing Secondary: charged particles interact with spacecraft, knocking off electrons which then accumulate on the proof mass or housing Potential imbalance leads to an electrostatic force

7 LED Current (ma) LED Optical Power (W) UV LED Properties PD Response Current (ma) Intensity (normalized) UV LEDs are: Now commercially available, space qualification w/ Stanford AlGaN based wide-bandgap (4.86eV) device with 255 nm line (12 nm FWHM) >10 uw output power possible High dynamic range (> 1 khz modulation is possible) Operate CM outside the science band 10 Voltage-Current Voltage-Power Current (L)-Current(P) Spectrum TFW1 - V-I during functional testing TFW1 - V-P during functional testing x TFW1 - LED Response I-I x TFW1 - Post Fact Spectra 8 6 Pre Test Post Thermal Post Shake Pre Test Post Thermal Post Shake Pre Test Post Thermal Post Shake Voltage (V) Voltage (V) LED Drive Current (ma) Wavelength (nm)

8 AC Charge Management Overview Positive Charge Transfer Negative Charge Transfer

9 Charge management experimental setup

10 Charge management results System capacitance to ground is 17 pf 10 W incident UV power (255 nm), modulated at 100hz, 50% duty cycle, 3.0 V pp bias Sphere potential was measured using floating probe relative to surrounding housing

11 Proof mass coatings Gold is soft and prone to sticking and scratching Alternatives: carbide coatings Very tough, wide bandgap (close to AlGaN) Test: carbide pellets coated on to Aluminum substrates via e- beam deposition Measured: reflectivity, quantum efficiency, surface resistivity Top row (from left): Au, Nb, Ir, SiC Bottom row (from left): TiC, Mo2C, ZrC, TaC

12 Proof mass coatings measurement Quantum efficiency (QE): Ratio between number of emitted electrons & Number of incident photons QE measurement setup nm UV light incident on a coated sample 2. Sample biased to -5V, sphere biased to +5V 3. Current required to hold sample at constant potential measured

13 Proof mass coatings - results Material QE R (255 nm) φ (ev)* Au 3.40E Nb 5.64E SiC 4.34E TiC 4.48E ZrC 3.85E MoC 6.82E TaC 6.35E Ir

14 Small satellite demonstration 16 total LEDs Four bias plates Gold coated sphere (e-beam dep n) Contact probe Gold coated Ultem tubes - shielding Lab model shown

15 References Balakrishnan, Karthik et. al., UV LED charge control of an electrically isolated proof mass in a Gravitational Reference Sensor configuration at 255 nm, submitted to Classical and Quantum Gravity (2012), preprint: Sun, Ke-Xun et. al., UV LED operation lifetime and radiation hardness qualification for space flights, Journal of Physics: Conference Series, Volume 154, Issue 1, pp (2009). Sun, Ke-Xun, et. al., LED deep UV source for charge management of gravitational reference sensors, Classical and Quantum Gravity, Volume 23, Issue 8, pp. S141-S150 (2006). Sun, Ke-Xun et. al., Spectral and Power Stability Tests of Deep UV LEDs for AC Charge Management, LASER INTERFEROMETER SPACE ANTENNA: 6th International LISA Symposium. AIP Conference Proceedings, Volume 873, pp (2006). Pollack, S. E. et. al., Charge management for gravitational-wave observatories using UV LEDs, Physical Review D, vol. 81, Issue 2, id (2010). Sumner, Tim et al., Description of charging/discharging processes of the LISA sensors, Classical and Quantum Gravity, Volume 21, Issue 5, pp. S597-S602 (2004). F. Antonucci et al., The interaction between stray electrostatic fields and a charged freefalling test mass, submitted to Physical Review Letters (2012), preprint:

16 Questions? arxiv: v1 Work was funded by grants from KACST and NASA Ames Research Center Karthik Balakrishnan is funded by the DoD Sponsored NDSEG (National Defense Science and Engineering Graduate) Fellowship

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu MGRS System Overview Differential

More information

UV LED charge control of an electrically isolated proof mass at 255 nm

UV LED charge control of an electrically isolated proof mass at 255 nm UV LED charge control of an electrically isolated proof mass at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu

More information

Gravitational Reference Technologies for Precision Navigation and Control in Space

Gravitational Reference Technologies for Precision Navigation and Control in Space Gravitational Reference Technologies for Precision Navigation and Control in Space Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu

More information

Gravitational & Planetary Research Program

Gravitational & Planetary Research Program 2012 Gravitational & Planetary Research Program Goals Why? Relativity, Gravitational Waves, Geodesy, Aeronomy Space Technology Education and Training: STEM Team Who? NASA Universities Industry Foreign

More information

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS)

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS) Microgravity White Paper Decadal Survey on Biological and Physical Sciences in Space Fundamental Physics Sciences (FPS) Applied Physical Sciences (APS) Nanosat Science Instruments for Modular Gravitational

More information

Stanford, Space Gravity Research Group

Stanford, Space Gravity Research Group Stanford, Space Gravity Research Group John W. Conklin, Sasha Buchman, and Robert Byer Gravitational science Earth observation: Geodesy, aeronomy Gravity-waves 1 Space Gravity Technology Development Drag-free

More information

The Stanford Gravitational Reference Sensor

The Stanford Gravitational Reference Sensor The Stanford Gravitational Reference Sensor S. Buchman, B. Allard, G. Allen, R. Byer, W. Davis, D. DeBra, D. Gill, J. Hanson, G.M. Keiser, D. Lauben, I. Mukhar, N. A. Robertson, B. Shelef, K. Sun, S. Williams

More information

arxiv: v1 [physics.ins-det] 13 Jul 2016

arxiv: v1 [physics.ins-det] 13 Jul 2016 arxiv:1607.03564v1 [physics.ins-det] 13 Jul 2016 Ground Testing and Flight Demonstration of Charge Management of Insulated Test Masses Using UV-LED Electron Photoemission Shailendhar Saraf 1,4, Sasha Buchman

More information

Technology Readiness Level:

Technology Readiness Level: Technology Readiness Level: We plan to raise the TRL of the model with an acceleration noise performance requirement of < 10-12 m sec -2 Hz -1/2 at frequencies between 1 mhz and 1 Hz, from TRL 3 to TRL

More information

RADIATION HARD UV LED S

RADIATION HARD UV LED S RADIATION HARD UV LED S LIGO Livingston Sasha Buchman Ke-Xun Sun Stanford University LIGO Hanford 11th ICATPP Conference Villa Olmo, 5-9 October, 2009 GP-B, Relativity Mission, Gravity Probe B Page LISA,

More information

Modular Gravitational Reference Sensor (MGRS) A core fiduciary instrument for space Development Program at Stanford

Modular Gravitational Reference Sensor (MGRS) A core fiduciary instrument for space Development Program at Stanford Modular Gravitational Reference Sensor (MGRS) A core fiduciary instrument for space Development Program at Stanford Ke-Xun Sun, Saps Buchman, Robert L. Byer, Dan DeBra, Graham Allen, John Conklin, Domenico

More information

Observing the gravitational universe from space

Observing the gravitational universe from space Observing the gravitational universe from space Peter Wass Tim Sumner, Daniel Hollington, Jonathon Baird High Energy Physics Group Imperial Space Lab 29 September 2015 Gravitational Waves Gravitational

More information

2 Each satellite will have two test masses, each being the end mirror for an interferometer.

2 Each satellite will have two test masses, each being the end mirror for an interferometer. Ground Testing for LISA Test Masses with a Torsion Pendulum Matthew Schmidt Valdosta State University International REU: University of Trento, Italy Advisor: Dr. Bill Weber Abstract: One of the most important

More information

Shally Saraf, Stanford University

Shally Saraf, Stanford University LAser GRavitational-wave ANtenna in GEocentric Orbit Shally Saraf, Stanford University for the LAGRANGE team Background LAser GRavitational-wave ANtenna in GEocentric Orbit was proposed originally as a

More information

LISA: Drag-free Formation Flying at 5 million kilometers

LISA: Drag-free Formation Flying at 5 million kilometers LISA: Drag-free Formation Flying at 5 million kilometers Robert L. Byer Department of Applied Physics Hansen Experimental Physics Laboratory (HEPL) Stanford University rlbyer@stanford.edu Abstract The

More information

Drag-free Control and Drag Force Recovery of Small Satellites

Drag-free Control and Drag Force Recovery of Small Satellites Drag-free Control and Drag Force Recovery of Small Satellites Anh N. Nguyen NASA Ames Research Center NASA Ames Research Center, M/S 202-3, Bldg N202, Moffett Field, CA 93035 anh.n.nguyen@nasa.gov John

More information

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System B. Christophe (ONERA, Châtillon, France) on behalf of the GAP Instrument

More information

Measurement of Angular Stray DC Potentials for. Test Masses in LISA Pathfinder

Measurement of Angular Stray DC Potentials for. Test Masses in LISA Pathfinder Measurement of Angular Stray DC Potentials for Test Masses in LISA Pathfinder Michael Aitken Università degli Studi di Trento European Space Agency University of Florida August 9, 2016 Abstract Launched

More information

1

1 Daniel.Schuetze@aei.mpg.de 1 Satellite gravimetry Mapping the global gravity field Static and dynamic components Many applications in geosciences Techniques Orbit determination and tracking Satellite-to-satellite

More information

LISA Pathfinder measuring pico-meters and femto-newtons in space

LISA Pathfinder measuring pico-meters and femto-newtons in space LISA Pathfinder measuring pico-meters and femto-newtons in space M Hewitson for the LPF team Barcelona, February 15th 2012 Observing from Space 2 Observing from Space 2 Observing from Space Push down to

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

Control of the Laser Interferometer Space Antenna

Control of the Laser Interferometer Space Antenna Control of the Laser Interferometer Space Antenna P. G. Maghami, T. T. Hyde NASA Goddard Space Flight Center Guidance, Navigation and Control Division Greenbelt, MD 20771 J. Kim Swales Aerospace, Inc.

More information

Pioneer anomaly: Implications for LISA?

Pioneer anomaly: Implications for LISA? Pioneer anomaly: Implications for LISA? Denis Defrère Astrophysics and Geophysics Institute of Liege (Belgium) Andreas Rathke EADS Astrium GmbH Friedrichshafen (Germany) ISSI Meeting - Bern November 10th

More information

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1 Fundamental Physics in Space S. Vitale, University of Trento Vitale@science.unitn.it ESO-Garching-15-09-03 S. Vitale 1 Using Space to Investigate Fundamental Laws of Physics: Quantum measurements, entanglement,

More information

YOUR NAME Sample Final Physics 1404 (Dr. Huang)), Correct answers are underlined.

YOUR NAME Sample Final Physics 1404 (Dr. Huang)), Correct answers are underlined. YOUR NAME Sample Final Physics 1404 (Dr. Huang)), Correct answers are underlined. Useful constants: e=1.6 10-19 C, m e =9.1 10-31 kg, m p =1.67 10-27 kg, ε 0 =8.85 10-12 C 2 /N m 2, c=3 10 8 m/s k e =8.99

More information

Astrophysics & Gravitational Physics with the LISA Mission

Astrophysics & Gravitational Physics with the LISA Mission Astrophysics & Gravitational Physics with the LISA Mission Peter L. Bender JILA, University of Colorado, and NIST Workshop on Robotic Science from the Moon Boulder, CO 5-6 October, 2010 LISA Overview The

More information

B. Loomis, D. Wiese, R. S. Nerem (1) P. L. Bender (2) P. N. A. M. Visser (3)

B. Loomis, D. Wiese, R. S. Nerem (1) P. L. Bender (2) P. N. A. M. Visser (3) Possible mission architectures for a GRACE follow-on mission including a study on upgraded instrumentation suites, and multiple satellite pairs in moderately-inclined orbits B. Loomis, D. Wiese, R. S.

More information

Space plasmas measurement techniques Milan Maksimovic CNRS & LESIA, Paris Observatory, France

Space plasmas measurement techniques Milan Maksimovic CNRS & LESIA, Paris Observatory, France Space plasmas measurement techniques Milan Maksimovic CNRS & LESIA, Paris Observatory, France Maksimovic : Space plasmas measurement techniques 1 ESA mission with NASA participation (launcher + two instruments)

More information

arxiv:gr-qc/ v2 16 Feb 2006

arxiv:gr-qc/ v2 16 Feb 2006 Acceleration disturbances due to local gravity gradients in ASTROD I arxiv:gr-qc/0510045v2 16 Feb 2006 Sachie Shiomi Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30013 R.O.C. E-mail:

More information

Effects of Ultraviolet Irradiation on LIGO Mirror Coating

Effects of Ultraviolet Irradiation on LIGO Mirror Coating Effects of Ultraviolet Irradiation on LIGO Mirror Coating Ke-Xun Sun, Nick Leindecker, Ashot Markosyan, Sasha Buchman, Roger Route, Marty Fejer, Robert Byer, Helena Armandula, Dennis Ugolini, Gregg Harry

More information

Exploring the Gravitational Wave Universe Challenges for a LISA Successor

Exploring the Gravitational Wave Universe Challenges for a LISA Successor Exploring the Gravitational Wave Universe Challenges for a LISA Successor H Ward University of Glasgow Cosmic Vision 2015 2025 Paris 15 th September 2004 With contributions from : P Bender, K Danzmann,

More information

Remote Sensing. RAHS C Division Invitational

Remote Sensing. RAHS C Division Invitational Remote Sensing RAHS C Division Invitational 2017-18 Instructions: Answer all questions on this answer sheet. Sheets may be double sided, check both sides! If you separate the sheets of the test be sure

More information

mstar: Space-Time Asymmetry Research

mstar: Space-Time Asymmetry Research mstar: Space-Time Asymmetry Research Testing Lorentz Invariance in Low-Earth Orbit Abdulaziz Alhussien for the mstar team November 15 th, 2013 1 Kinematic Approach to LIV Is the CMB a preferred frame?

More information

From an experimental idea to a satellite

From an experimental idea to a satellite From an experimental idea to a satellite Hansjörg Dittus Institute of Space Systems, Bremen German Aerospace Center Looking back in History Yukawa potential Gravity at large scales Weak gravity Nordtvedt

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

ST-7 gravitational reference sensor: analysis of magnetic noise sources

ST-7 gravitational reference sensor: analysis of magnetic noise sources INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 20 (2003) S109 S116 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(03)55737-9 ST-7 gravitational reference sensor: analysis of magnetic noise sources John

More information

LISA-2020 an Intermediate-Scale Space Gravitational Wave Observatory for This Decade

LISA-2020 an Intermediate-Scale Space Gravitational Wave Observatory for This Decade Information contained herein is not subject to Export Control or ITAR Gravitational Wave Astrophysics The Next Frontier in Understanding the Universe An Experimentalist's View LISA-2020 an Intermediate-Scale

More information

Spectroscopy for planetary upper atmospheres きょくたん

Spectroscopy for planetary upper atmospheres きょくたん Spectroscopy for planetary upper atmospheres きょくたん Spectrum of Venus atmosphere Spectrum of Jupiter and Io Figure 1. An EUV spectrum measured by Hisaki spacecraft. The spectrograph mixes spatial and spectral

More information

LISA Technology: A Status Report

LISA Technology: A Status Report LISA Technology: A Status Report Guido Mueller University of Florida Minnesota 2010 1 Content LISA Concept Gravitational Reference Sensor Interferometry Measurement System Status/Outlook 2 LISA Concept

More information

Astro 2010 White Paper. Technology Development for Modular Gravitational Reference Sensor (MGRS)

Astro 2010 White Paper. Technology Development for Modular Gravitational Reference Sensor (MGRS) Astro 2010 White Paper Technology Development for Modular Gravitational Reference Sensor (MGRS) Ke-Xun Sun, Saps Buchman, Robert Byer, Dan DeBra, John Goebel*, Graham Allen, John Conklin, Domenico Geradi**,

More information

Graz in Space Graz SLR System. Daniel Kucharski. IWF / SatGeo

Graz in Space Graz SLR System. Daniel Kucharski. IWF / SatGeo Graz in Space 2008 Graz SLR System Daniel Kucharski IWF / SatGeo Satellite Laser Ranging Range measurements to the satellites - time of flight of the ultrashort laser pulses - mm precision station-satellite

More information

GG studies at TAS-I: state of the art

GG studies at TAS-I: state of the art GG studies at TAS-I: state of the art A. Anselmi INRIM, 24-10-2014 83230350-DOC-TAS-EN-002 GG@ThalesAleniaSpace! 1996 Early experiment concept presented to ESA HQ! Industrial support on satellite & drag-free

More information

Precision Attitude and Translation Control Design and Optimization

Precision Attitude and Translation Control Design and Optimization Precision Attitude and Translation Control Design and Optimization John Mester and Saps Buchman Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. Abstract Future

More information

LISA Pathfinder Coldgas Thrusters

LISA Pathfinder Coldgas Thrusters LISA Pathfinder Coldgas Thrusters Joseph Martino/Eric Plagnol - LPF collaboration Lisa Symposium September 2016 Zurich Outline System Description External Disturbances and thruster noise In Flight dedicated

More information

Advances in Geosciences

Advances in Geosciences Advances in Geosciences (2003) 1: 57 63 c European Geosciences Union 2003 Advances in Geosciences Integrated sensor analysis for GRACE development and validation B. Frommknecht 1, H. Oberndorfer 1, F.

More information

Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics

Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics Template reference : 100181670S-EN Stefano Cesare, Thales Alenia Space Italia, Torino Workshop GG/GGG: state of the

More information

Simulation of Radiation Monitors for Future Space Missions

Simulation of Radiation Monitors for Future Space Missions 1 Simulation of Radiation Monitors for Future Space Missions P.Gonçalves, M. Pimenta, B. Tomé LIP - Laboratório de Instrumentação e Física Experimental de Partículas Lisboa, Portugal Space radiation environment

More information

Catapult tests for microgravity characterization of the MICROSCOPE accelerometers. Manuel Rodrigues On behalf ONERA & ZARM team

Catapult tests for microgravity characterization of the MICROSCOPE accelerometers. Manuel Rodrigues On behalf ONERA & ZARM team Catapult tests for microgravity characterization of the MICROSCOPE accelerometers Manuel Rodrigues mrodrig@onera.fr On behalf ONERA & ZARM team 1 Instrument Description SU sqm Sensor Unit (SU) = differential

More information

Copyright 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS)

Copyright 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) Application of satellite laser ranging techniques for space situational awareness efforts M. Shappirio, NASA Goddard Space Flight Center J.F. McGarry, NASA Goddard Space Flight Center J. Bufton, Global

More information

Orbiting L 2 Observation Point in Space. Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009

Orbiting L 2 Observation Point in Space. Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009 Orbiting L 2 Observation Point in Space Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009 LIBRATION (LANGRANGE) POINTS IN THE SUN-EARTH SYSTEM Libration Points: 5 Lagrange Points L 1 and

More information

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna Presentation by Indian Delegation to 49 th STSC UNCOPUOS February 2012 Vienna ASTROSAT Astrosat is India s first dedicated multiwavelength astronomy satellite with a capability to observe target sources

More information

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information

More information

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key 1. Which of these Electromagnetic radiation bands has the longest wavelength (λ)? [Section 12.1] a. X-Ray b. Visible Light c. Infrared d. Radio 2. How is energy in Electromagnetic (EM) radiation related

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

The structure of spacetime. Eli Hawkins Walter D. van Suijlekom

The structure of spacetime. Eli Hawkins Walter D. van Suijlekom The structure of spacetime Eli Hawkins Walter D. van Suijlekom Einstein's happiest thought After Einstein formulated Special Relativity, there were two problems: Relativity of accelerated motion The monstrous

More information

5th Annual CubeSat Developers' Workshop April 2008 Cal Poly San Luis Obispo, California

5th Annual CubeSat Developers' Workshop April 2008 Cal Poly San Luis Obispo, California 5th Annual CubeSat Developers' Workshop 9-11 April 2008 Cal Poly San Luis Obispo, California From UNISAT to ubesatsat UNICube Chantal CAPPELLETTI, Fabrizio PAOLILLO, Francesco GUARDUCCI, Luigi RIDOLFI

More information

LISA Pathfinder: experiment details and results

LISA Pathfinder: experiment details and results LISA Pathfinder: experiment details and results Martin Hewitson on behalf of the LPF Collaboration On December 3rd 2015 at 04:04 UTC, the European Space Agency launched the LISA Pathfinder satellite on

More information

Questions from April 2003 Physics Final Exam

Questions from April 2003 Physics Final Exam Questions from April 003 Physics 111.6 Final Exam A1. Which one of the following statements concerning scalars and vectors is FALSE? (A) A vector quantity deals with magnitude and direction. (B) The direction

More information

Thermal deformation of 3U CubeSat in low Earth orbit

Thermal deformation of 3U CubeSat in low Earth orbit Thermal deformation of 3U CubeSat in low Earth orbit Vasily Gorev 1,, Anatoly Pelemeshko 1, Alexander Zadorozhny 1, and Aleksey Sidorchuk 1,2 1 Novosibirsk State University, 630090, Pirogova str., 2, Novosibirsk,

More information

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 Diffraction Gratings, Atomic Spectra Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 1 Increase number of slits: 2 Visual Comparisons 3 4 8 2 Diffraction Grating Note: despite the name, this

More information

Educational Product Teachers Grades K-12 EG MSFC

Educational Product Teachers Grades K-12 EG MSFC Educational Product Teachers Grades K-12 NASA Spacelink Optics: An Educators Guide With Activities In Science and Mathematics is available in electronic format through NASA Spacelink one of the Agency

More information

Observation of Atomic Spectra

Observation of Atomic Spectra Observation of Atomic Spectra Introduction In this experiment you will observe and measure the wavelengths of different colors of light emitted by atoms. You will first observe light emitted from excited

More information

Chapter 7. Solar Cell

Chapter 7. Solar Cell Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly

More information

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1. Introduction Types of electron emission, Dunnington s method, different types of spectra, Fraunhoffer

More information

EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR

EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR Keith G. Balmain University of Toronto Department of Electrical and Computer Engineering 10 King s College Rd Toronto, Ontario M5S 3G4, Canada

More information

Calibration of Ocean Colour Sensors

Calibration of Ocean Colour Sensors Dr. A. Neumann German Aerospace Centre DLR Remote Sensing Technology Institute Marine Remote Sensing What is Calibration, why do we need it? Sensor Components Definition of Terms Calibration Standards

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

X- & γ-ray Instrumentation

X- & γ-ray Instrumentation X- & γ-ray Instrumentation Used nuclear physics detectors Proportional Counters Scintillators The Dark Ages Simple collimators HEAO A1 & A2: 2 x 8 degree field of view Confusion limit is about 200 sources

More information

The preliminary analysis of Tianqin mission and developments of key technologies

The preliminary analysis of Tianqin mission and developments of key technologies The3 rd KAGRA International Workshop The preliminary analysis of Tianqin mission and developments of key technologies Hsien-Chi Yeh Tianqin Research Center for Gravitational Physics Sun Yat-sen University

More information

I can describe vector and scalar quantities, and identify them.

I can describe vector and scalar quantities, and identify them. Done in class Revised Assessed National 5 Physics Dynamics and Space Pupil notes I can describe vector and scalar quantities, and identify them. A scalar quantity has magnitude only A vector quantity has

More information

Space Flight Considerations for Precision Optical Instruments

Space Flight Considerations for Precision Optical Instruments Space Flight Considerations for Precision Optical Instruments M. Shao KISS workshop on Optical Freq Combs in Space Nov 2, 2015 2015 California Institute of Technology. Government sponsorship acknowledged

More information

Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate

Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate TANG Enling ( ) 1, ZHANG Lijiao ( ) 1, ZHANG Qingming ( ) 2, SHI Xiaohan ( ) 1, WANG Meng ( ) 1, WANG Di

More information

UVTOP265-HL-TO39. Description. Maximum Rating (T CASE = 25 C) Electro-Optical Characteristics (T CASE = 25 C, I F = 20 ma)

UVTOP265-HL-TO39. Description. Maximum Rating (T CASE = 25 C) Electro-Optical Characteristics (T CASE = 25 C, I F = 20 ma) v3.0 05/17 UVTOP265-HL-TO39 Deep Ultraviolet Light Emission Source 270 nm, 0.6 mw TO39 Package Hemispherical Sapphire Lens Forensic Analysis, Disinfection Description UVTOP265-HL-TO39 is a deep ultraviolet

More information

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova Exam 4 P202 Spring 2004 Instructor: Prof. Sinova Name: Date: 4/22/04 Section: All work must be shown to get credit for the answer marked. You must show or state your reasoning. If the answer marked does

More information

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I 1 Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I - Vibration-Reduction Method and Measurement - T. Tomaru A, T. Suzuki A, T. Haruyama A, T. Shintomi A, N. Sato A, A. Yamamoto

More information

Lab Characterization of the LISA Pathfinder Optical Metrology System

Lab Characterization of the LISA Pathfinder Optical Metrology System Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute) Lab Characterization of the LISA Pathfinder Optical Metrology System Keeley Criswell Adviser: Martin Hewitson 8/11/2014 LISA Pathfinder

More information

Performance of the MCP-PMT for the Belle II TOP counter

Performance of the MCP-PMT for the Belle II TOP counter Performance of the MCP-PMT for the Belle II TOP counter a, S. Hirose b, T. Iijima ab, K. Inami b, Y. Kato a, Y. Maeda a, R. Mizuno b, Y. Sato a and K. Suzuki b a Kobayashi-Maskawa Institute, Nagoya University

More information

1 st results of the MICROSCOPE test of the equivalence principle in space. Manuel RODRIGUES

1 st results of the MICROSCOPE test of the equivalence principle in space. Manuel RODRIGUES 1 st results of the MICROSCOPE test of the equivalence principle in space. Manuel RODRIGUES On behalf of the MICROSCOPE team STEP : THE MICROSCOPE ORIGINS Pr. Francis Everitt : PI of GPB & STEP had been

More information

Chapter 5. Electrons in Atoms

Chapter 5. Electrons in Atoms Chapter 5 Electrons in Atoms Warm - Up What kind of light causes you to sunburn? Is that the only light that the sun emits? What does sunscreen do on a chemical level? Today s Agenda Question of the day:

More information

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves. Gravitational Wave Astronomy With LISA Rajesh Kumble Nayak, IISER-Kolkata Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

More information

DECIGO and DECIGO Pathfinder

DECIGO and DECIGO Pathfinder DECIGO and DECIGO Pathfinder Tomotada Akutsu National Astronomical Observatory of Japan on behalf of DECIGO working group Contents 1. DECIGO - Overview - Roadmap - Current status 2. DECIGO Pathfinder (DPF)

More information

T10 [186 marks] y 2. w 2

T10 [186 marks] y 2. w 2 T10 [186 marks] 1. A particle of charge q is at point S in a uniform electric field of strength E. The particle moves a distance w parallel to the field lines and then a distance y perpendicular to the

More information

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Jeff Livas for the US LISA Telescope Team NASA Goddard Space Flight Center Greenbelt, MD 20771 Nov 2017 Telescope Team GSFC

More information

New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility

New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility IEPC-2015-b/IEPC-388 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th

More information

Preparation of the data analysis of the gravitational wave space antenna.

Preparation of the data analysis of the gravitational wave space antenna. Preparation of the data analysis of the gravitational wave space antenna. 1) LISA (Laser Interferometer Space Antenna) Why? 2)How? 1 Frequency Limitation Seismic noise cannot be cancelled at low-frequency

More information

Progress on the Design of the Magnetic Field Measurement System for elisa

Progress on the Design of the Magnetic Field Measurement System for elisa Progress on the Design of the Magnetic Field Measurement System for elisa Ignacio Mateos Instituto de Ciencias del Espacio (CSIC-IEEC) Barcelona 10 th International LISA Symposium University of Florida,

More information

Supplementary Figure 3. Transmission spectrum of Glass/ITO substrate.

Supplementary Figure 3. Transmission spectrum of Glass/ITO substrate. Supplementary Figure 1. The AFM height and SKPM images of PET/Ag-mesh/PH1000 and PET/Ag-mesh/PH1000/PEDOT:PSS substrates. (a, e) AFM height images on the flat PET area. (c, g) AFM height images on Ag-mesh

More information

Laser de-spin maneuver for an active debris removal mission - a realistic scenario for Envisat

Laser de-spin maneuver for an active debris removal mission - a realistic scenario for Envisat Laser de-spin maneuver for an active debris removal mission - a realistic scenario for Envisat Daniel Kucharski Space Environment Research Centre, Mt Stromlo Observatory, Weston Creek ACT, 2611, AUSTRALIA

More information

Higher Physics. Particles and Waves

Higher Physics. Particles and Waves Perth Academy Physics Department Higher Physics Particles and Waves Particles and Waves Homework Standard Model 1 Electric Fields and Potential Difference 2 Radioactivity 3 Fusion & Fission 4 The Photoelectric

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

arxiv: v1 [physics.ins-det] 12 Jul 2017

arxiv: v1 [physics.ins-det] 12 Jul 2017 Tracking capacitance of liquid crystal devices to improve polarization rotation accuracy RAKHITHA CHANDRASEKARA, 1,* KADIR DURAK, 1 AND ALEXANDER LING 1,2 arxiv:1707.04325v1 [physics.ins-det] 12 Jul 2017

More information

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Index 1. Introduction 2. Some plasma sources 3. Related issues 4. Summary -2 Why is

More information

Radiation Environments, Effects and Needs for ESA Missions

Radiation Environments, Effects and Needs for ESA Missions Radiation Environments, Effects and Needs for ESA Missions Eamonn Daly European Space Agency ESTEC, Noordwijk, The Netherlands Space Environment Engineering and Science Applications Workshop 5 September

More information

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy:

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy: Space weather Introduction to lectures by Dr John S. Reid Image courtesy: http://www.astro-photography.com/ss9393.htm Sunspot 9393 First pass from late March to early April, 2001 See: Storms from the Sun

More information

PETER: a double torsion pendulum to test quasi Free Fall on two Degrees of Freedom

PETER: a double torsion pendulum to test quasi Free Fall on two Degrees of Freedom PETER: a double torsion pendulum to test quasi Free Fall on two Degrees of Freedom Luciano Di Fiore Lorenzo Marconi, Ruggero Stanga, Noemi Finetti, INFN and Università di Firenze Massimo Bassan, Fabrizio

More information

IMESA-R Integrated Miniaturized Electrostatic Analyzer Reflight

IMESA-R Integrated Miniaturized Electrostatic Analyzer Reflight IMESA-R IMESA-R Integrated Miniaturized Electrostatic Analyzer Reflight Dr. Parris Neal Cadet First Class Alex Strom Cadet First Class Nikolas Taormina USAF Academy Principal Investigator: Geoff McHarg

More information

Optical absorption measurements in sapphire

Optical absorption measurements in sapphire Optical absorption measurements in sapphire Alexei Alexandrovski Martin Fejer Eric Gustafson Roger Route Ginzton Laboratory, Stanford University Optical absorption measurements in sapphire OUTLINE ¾Background

More information

The Performance of the EUV Spectroscope (EXCEED) Onboard the SPRINT-A Mission

The Performance of the EUV Spectroscope (EXCEED) Onboard the SPRINT-A Mission The Performance of the EUV Spectroscope (EXCEED) Onboard the SPRINT-A Mission K. Yoshioka, G. Murakami, A. Yamazaki, K. Uemizu, T. Kimura (ISAS/JAXA), I. Yoshikawa, K. Uji (Univ. Tokyo) F. Tsuchiya, and

More information

Physics Higher level Paper 1

Physics Higher level Paper 1 Physics Higher level Paper 1 Tuesday 31 October 17 (afternoon) 1 hour Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions. For each question,

More information

Antimatter Driven Sail for Deep Space Exploration

Antimatter Driven Sail for Deep Space Exploration Antimatter Driven Sail for Deep Space Exploration Dr. Steven D. Howe Dr. Gerald P. Jackson Hbar Technologies, LLC Any technology being presented to you at this workshop will need at least one miracle in

More information