Space plasmas measurement techniques Milan Maksimovic CNRS & LESIA, Paris Observatory, France

Size: px
Start display at page:

Download "Space plasmas measurement techniques Milan Maksimovic CNRS & LESIA, Paris Observatory, France"

Transcription

1 Space plasmas measurement techniques Milan Maksimovic CNRS & LESIA, Paris Observatory, France Maksimovic : Space plasmas measurement techniques 1

2 ESA mission with NASA participation (launcher + two instruments) Up to 0.28 AU with dedicated in situ & remote sensing instrumentation closest approach possible) Out of ecliptic observations 1st M class ESA Cosmic Vision (Launch ~Feb. 2019) Maksimovic : Space plasmas measurement techniques 2

3 Interplanetary high energy electron & Solar Radio Bursts Electrostatic Langmuir waves radio emission F N p e (khz) 1 R 2 N (au) e (cm -3 ) F p 1 R

4 All necessary measurements will be available on Solar Orbiter WIND 3DP Tens of sec Lin et al., plasmas measurements Np, Tp, Vp (16Hz) High cadence Ne Bx, By, Bz DC & AC (up to the plasma frequency) Adapted from [Ergun et al., 1998]

5 Particles measurements Electrons Ions & composition Energetic particles Waves measurements Outline Magnetic DC & AC sensors Measuring DC LF electric fields Measuring AC Electric Field: The Thermal Noise as an example Surprises, tricky data corrections and future challenges Maksimovic : Space plasmas measurement techniques 5

6 Astrophysical Plasmas accessibe to in situ measurements M-Sheath Aurora Lobes Maksimovic : Space plasmas measurement techniques 6

7 /. Lobes M-Sheath Aurora ~ Maksimovic : Space plasmas measurement techniques 7

8 A plasma particle is defined by a mass an electric charge a speed or kinetic energy Particle Energy Distributions Detector Maksimovic : Space plasmas measurement techniques 8

9 A plasma particle is defined by a mass an electric charge a speed or kinetic energy Particle Energy Distributions Detector The broad range of energies and fluxes require different instruments Faraday cup principle Maksimovic : Space plasmas measurement techniques 9

10 Electric charging in space : an example in the Solar Wind electrons For a plasma in quasi equilibrium with ~ protons In the Solar Wind ~ ~ ~ / ~ / Maksimovic : Space plasmas measurement techniques 10

11 Electric charging in space : an example in the Solar Wind electrons For a plasma in quasi equilibrium with ~ UV photons In the Solar Wind ~ ~ ~ / ~ / What are the average electron velocity and density at the surface of the Sphere? an be obtained applying Louville Theorem / ~ / And the photoelectron current? / Depends on the photo electric properties of the material ~ ~ / Finally the potential is obtained by assuming To be fully exhaustive one shall include the secondary electrons currents (important closer to the Sun) Maksimovic : Space plasmas measurement techniques 11

12 Cluster data Salem et al., 2001 Pedersen et al., 2008 Maksimovic : Space plasmas measurement techniques 12

13 Electron diagnostic in cold plasmas The Langmuir Probe Sweeping V and measuring I For a plasma in quasi equilibrium with ~ / In the saturation region / Segmented langmuir probe in order to measure the ion bulk speed Maksimovic : Space plasmas measurement techniques 13

14 Measuring the full 3D VDF Top Hat detectors Principles of Operation < 0 Incoming Electron Secondary Electrons Glass Channel Wall Electroding HV Semiconducting Layer Output Cascade Electrons A full 3D Velocity Distribution function is obtained by Scaning the energy ( ) Using the Top hat axis of symmetry and the spacecraft spin Hollow cylinders Maksimovic : Space plasmas measurement techniques 14

15 The Solar Orbiter EAS instrument Christopher «Chris» Owen, Mullard Space Sciences Lab., UK Maksimovic : Space plasmas measurement techniques 15

16 Particle Composition : Add a time of flight detector beneath the top hat analyser: Post- Acceleration Ion Aperture Stop Start U acc Electrostatic Analyser Τ V E/M (E/Q)* = (E/Q + U acc ) M/Q Time of Flight E/q Top hat section makes E/q selection as before : / Ions are then accelerated by an electric field into a thin carbon foil On passing through the foil the ion knocks out an electron The difference in travel time to the detector between the ion and electron can be used to determine the ions velocity, and hence E/M for the ion; Combining the two measurements gives M/Q Maksimovic : Space plasmas measurement techniques 16

17 Particle Composition : Add a time of flight detector beneath the top hat analyser: Composition Plot colours represent relative abundance of ions Top hat section makes E/q selection as before : / Ions are then accelerated by an electric field into a thin carbon foil On passing through the foil the ion knocks out an electron The difference in travel time to the detector between the ion and electron can be used to determine the ions velocity, and hence E/M for the ion; Combining the two measurements gives M/Q Maksimovic : Space plasmas measurement techniques 17

18 High Energy Particle Telescopes Robert "Bob" Wimmer Schweingruber University of Kiel, Germany Energy loss Bethe Block equation Javier Rodríguez Pacheco University of Alcala, Spain is the «first energy ionization» of the target Maksimovic : Space plasmas measurement techniques 18

19 Particles measurements Electrons Ions & composition Energetic particles Waves measurements Outline Magnetic DC & AC sensors Measuring DC LF electric fields Measuring AC Electric Field: The Thermal Noise as an example Surprises, tricky data corrections and future challenges Maksimovic : Space plasmas measurement techniques 19

20 Measuring DC/LF Magnetic Fields in space Flux Gate Magnetometer Nobody knows... best theory is that it is little pixies inside the cores. Vdrive Timothy "Tim" Horbury Imperial College, UK time Vsense ring cores of a highly magnetically permeable alloy around which are wrapped two coil windings B No external field : time time Maksimovic : Space plasmas measurement techniques 20

21 Measuring DC/LF Electric Field in space Flux Gate Magnetometer Nobody knows... best theory is that it is little pixies inside the cores. Vdrive Timothy "Tim" Horbury Imperial College, UK time Vsense B External field : ring cores of a highly magnetically permeable alloy around which are wrapped two coil windings time time Maksimovic : Space plasmas measurement techniques 21

22 Measuring AC Magnetic Fields in space The Search Coil Magnetometer (SCM) is an inductive sensor is based on Faraday's law of induction. Vladimir Volodya" Krasnoselskikh LPC2E Orléans, France SCMs On Solar Orbiter and Solar Probe Plus Coil Ferromagnetic Core Maksimovic : Space plasmas measurement techniques 22

23 Maksimovic : Space plasmas measurement techniques 23

24 Maksimovic : Space plasmas measurement techniques 24

25 Measuring DC/LF Electric Field in space Maksimovic : Space plasmas measurement techniques 25

26 1 / 2 If the two probes are equally illuminated then and not necessarily equal to / Actually we do not measure and but rather / and / where we use the S/C as the potential ground If the ground is the same for the two probes then If an external is applied then Actually So if the experimental setup is appropriate then :! But life is not so simple because typical electric fields are tiny (a few mv/m)! Maksimovic : Space plasmas measurement techniques 26

27 10 ev, 100 cm -3 1 ev, 10 cm -3 Adding a Biasing current on the probe will solve the problem of the density fluctuations in the medium So if the experimental setup is appropriate and if one injects a BIAS current in the probes then! / Maksimovic : Space plasmas measurement techniques 27 ~ /

28 Measuring AC Electric Field: The Thermal Noise as an example In drifting plasma, spectral density at the antenna ports: V 2 2 (2 ) 3 d 3 k k.j k antenna 2 E 2 (k, k.v) plasma / Electrons passing within Electrons generating Langmuir waves Resistive / / Le Chat et al., AIP, 2009 Maksimovic : Space plasmas measurement techniques 28

29 Particles measurements Electrons Ions & composition Energetic particles Waves measurements Outline Magnetic DC & AC sensors Measuring DC LF electric fields Measuring AC Electric Field: The Thermal Noise as an example Surprises, tricky data corrections and future challenges Maksimovic : Space plasmas measurement techniques 29

30 Surprises : when an instrument allow unexpected observations Nanodusts with STEREO Spectral domain Picked up by the VXB field Temporal domain 30

31 Tricky data corrections techniques Maksimovic : Space plasmas measurement techniques 31

32 Maksimovic : Space plasmas measurement techniques 32

33 Maksimovic : Space plasmas measurement techniques 33

34 Dipolar S/C potential correction Maksimovic : Space plasmas measurement techniques 34

35 Maksimovic : Space plasmas measurement techniques 35

36 Some Challenges with Solar Orbiter Integrating all 10 instruments on the S/C platform is a real chalenge! Maksimovic : Space plasmas measurement techniques 36

37 Undertanding the electrostaic environment will be a challenge Maksimovic : Space plasmas measurement techniques 37

38 The Radio & Plasmas Waves instrument

39 39

40 Maksimovic : Space plasmas measurement techniques 40

Solar Orbiter. T.Appourchaux, L.Gizon and the SO / PHI team derived from M.Velli's and P.Kletzkine's presentations

Solar Orbiter. T.Appourchaux, L.Gizon and the SO / PHI team derived from M.Velli's and P.Kletzkine's presentations Solar Orbiter T.Appourchaux, L.Gizon and the SO / PHI team derived from M.Velli's and P.Kletzkine's presentations 2 nd Solar-C definition meeting, Tokyo, Japan Content Science Objectives of Solar Orbiter

More information

In-Situ vs. Remote Sensing

In-Situ vs. Remote Sensing In-Situ vs. Remote Sensing J. L. Burch Southwest Research Institute San Antonio, TX USA Forum on the Future of Magnetospheric Research International Space Science Institute Bern, Switzerland March 24-25,

More information

Space Instrumentation

Space Instrumentation Space Instrumentation Instruments Examples of remote measurements Challenges for in situ measurements Examples of in situ measurements Future missions Obtaining physical results from measurements Data

More information

Remote Imaging of Electron Acceleration at the Sun with a Lunar Radio Array

Remote Imaging of Electron Acceleration at the Sun with a Lunar Radio Array Remote Imaging of Electron Acceleration at the Sun with a Lunar Radio Array J. Kasper Harvard-Smithsonian Center for Astrophysics 6 October 2010 Robotic Science From the Moon: Gravitational Physics, Heliophysics

More information

Solar System Exploration in Germany

Solar System Exploration in Germany Solar System Exploration in Germany German Space Program (Key points) Formation and development of the Solar System Formation of stars and planets Comparison of terrestrial planets with Earth The Sun and

More information

Small scale solar wind turbulence: Recent observations and theoretical modeling

Small scale solar wind turbulence: Recent observations and theoretical modeling Small scale solar wind turbulence: Recent observations and theoretical modeling F. Sahraoui 1,2 & M. Goldstein 1 1 NASA/GSFC, Greenbelt, USA 2 LPP, CNRS-Ecole Polytechnique, Vélizy, France Outline Motivations

More information

A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO

A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO Phillip C. Anderson Space Science Applications Laboratory The Aerospace Corporation PO Box 92957 M2/260 Los Angeles, CA 90009-2957 ph:

More information

X-ray imaging of the magnetosphere

X-ray imaging of the magnetosphere X-ray imaging of the magnetosphere T. R. Sun 1, C. Wang 1, F. Wei 1, S. F. Sembay 2, J. A. Carter 2, S. Milan 2, A. M. Read 2, G. Branduardi-Raymont 3, J. Rae 3, H. Hietala 4, J. Eastwood 4, W. Yuan 5,

More information

Solar Wind Ion Composition Measurements: Direct Measurements of Properties of the Corona

Solar Wind Ion Composition Measurements: Direct Measurements of Properties of the Corona Solar Wind Ion Composition Measurements: Direct Measurements of Properties of the Corona White Paper Submitted to the Decadal Survey Panel on Solar and Heliospheric Physics November 12, 2010 Stefano A.

More information

Magnetospheric Electric Fields at Mercury

Magnetospheric Electric Fields at Mercury Magnetospheric Electric Fields at Mercury Lars G. Blomberg Space and Plasma Physics School of Electrical Engineering Royal Institute of Technology (KTH) Stockholm MESSENGER BepiColombo Workshop, Boulder,

More information

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller SOLAR ORBITER Linking the Sun and Inner Heliosphere Outline Science goals of Solar Orbiter Focus of HELEX joint mission Mission requirements Science payload Status update Top level scientific goals of

More information

STEREO Beacon. O. C. St. Cyr. The Catholic University of America NASA-Goddard Space Flight Center (301)

STEREO Beacon. O. C. St. Cyr. The Catholic University of America NASA-Goddard Space Flight Center (301) STEREO Beacon O. C. St. Cyr The Catholic University of America NASA-Goddard Space Flight Center (301) 286-2575 cstcyr@grace.nascom.nasa.gov J. M. Davila NASA-Goddard Space Flight Center (301) 286-8366

More information

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy:

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy: Space weather Introduction to lectures by Dr John S. Reid Image courtesy: http://www.astro-photography.com/ss9393.htm Sunspot 9393 First pass from late March to early April, 2001 See: Storms from the Sun

More information

ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008

ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008 ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008 ILWS, DLR, Dr. Frings Overview Update is based on previous ILWS Presentations Focus on recent developments and achievements SOL-ACES

More information

Calibration of Particle Instruments in Space Physics

Calibration of Particle Instruments in Space Physics SR-007 September 2007 Calibration of Particle Instruments in Space Physics Editors Martin Wüest INFICON Ltd, Balzers, Principality of Liechtenstein David S. Evans Space Environment Center, NOAA, Boulder

More information

SMILE Solar wind Magnetosphere Ionosphere Link Explorer Novel and global X-ray imaging of the Sun Earth connection

SMILE Solar wind Magnetosphere Ionosphere Link Explorer Novel and global X-ray imaging of the Sun Earth connection SMILE Solar wind Magnetosphere Ionosphere Link Explorer Novel and global X-ray imaging of the Sun Earth connection Graziella Branduardi-Raymont Chi Wang UCL MSSL CAS NSSC and the SMILE collaboration (ESA,

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

Towards jointly-determined magnetospheric periods

Towards jointly-determined magnetospheric periods Towards jointly-determined magnetospheric periods Dave Andrews ISSI, October 2015 david.andrews@irfu.se Outline Lots of independent work done on determining rotation periods of various magnetospheric phenomena

More information

ILWS Italian SpaceAgency (ASI) Contribution

ILWS Italian SpaceAgency (ASI) Contribution ILWS Italian SpaceAgency (ASI) Contribution Ester Antonucci Nice April 14-15 2003 ILWS Italian SpaceAgency (ASI) Contribution LWS NASA ESA SPECTRE SolarDynamicsObservatory HERSCHEL Solar Orbiter Bepi Colombo

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

V. Krupař 1,2,3, O. Santolík 2,3, B. Cecconi 1, and M. Maksimović 1. Introduction

V. Krupař 1,2,3, O. Santolík 2,3, B. Cecconi 1, and M. Maksimović 1. Introduction WDS'10 Proceedings of Contributed Papers, Part II, 11 17, 010. ISBN 978-80-7378-140-8 MATFYZPRESS Estimation of the Apparent Source Size of Solar Radio Emissions Using SVD: An Application to Type III Radio

More information

Solar Energetic Emission and Particles Explorer (SEEPE)

Solar Energetic Emission and Particles Explorer (SEEPE) Solar Energetic Emission and Particles Explorer (SEEPE) Siming Liu Purple Mountain Observatory Paolo Soffitta, IAPS/INAF Ronaldo Bellazzini, INFN-Pisa Robert Wimmer-Schweingruber, CAU Kiel Scientific Motivation

More information

A Concept for Real-Time Solar Wind Monitor at Multiple Locations

A Concept for Real-Time Solar Wind Monitor at Multiple Locations A Concept for Real-Time Solar Wind Monitor at Multiple Locations L5 in Tandem with L1: Future Space-Weather Missions Workshop March 8 th, 2017 George C. Ho Sector Science and Space Instrumentation Branch

More information

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR JUSTIN C. KASPER HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS GYPW01, Isaac Newton Institute, July 2010

More information

METIS- ESA Solar Orbiter Mission: internal straylight analysis

METIS- ESA Solar Orbiter Mission: internal straylight analysis METIS- ESA Solar Orbiter Mission: internal straylight analysis E. Verroi, V. Da Deppo, G. Naletto, S. Fineschi, E. Antonucci University of Padova (Italy) CNR-Institute for Photonics and Nanotechnologies

More information

Plasma interaction at Io and Europa

Plasma interaction at Io and Europa Plasma interaction at Io and Europa Camilla D. K. Harris Tidal Heating: Lessons from Io and the Jovian System Thursday, Oct 18 2018 1. Jupiter s Magnetosphere 2. Moon-Magnetosphere Plasma Interaction 3.

More information

Study of Wave-Particle Interaction Using Wind/ACE Data

Study of Wave-Particle Interaction Using Wind/ACE Data Study of Wave-Particle Interaction Using Wind/ACE Data Lan Jian (lan.jian@nasa.gov) 1. 2. University of Maryland, College Park NASA Goddard Space Flight Center Collaborators: M. Stevens, S. P. Gary, A.

More information

The importance of solar wind magnetic. the upcoming Sunjammer solar sail. field observations & mission

The importance of solar wind magnetic. the upcoming Sunjammer solar sail. field observations & mission The importance of solar wind magnetic field observations & the upcoming Sunjammer solar sail mission J. P. Eastwood The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK 13 November 2013

More information

An L5 Mission Concept for Compelling New Space Weather Science

An L5 Mission Concept for Compelling New Space Weather Science An L5 Mission Concept for Compelling New Space Weather Science RESCO (China) REal-time Sun-earth Connections Observatory INSTANT (Europe) INvestigation of Solar-Terrestrial Associated Natural Threats Ying

More information

NASA Future Magnetospheric Missions. J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC

NASA Future Magnetospheric Missions. J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC NASA Future Magnetospheric Missions J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC Future Magnetospheric Missions Strategic Missions Radiation Belt Storm Probes (LWS/2011) Magnetospheric

More information

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu Drag free concept and applications

More information

ICPMS Doherty Lecture 1

ICPMS Doherty Lecture 1 ICPMS Doherty Lecture 1 Mass Spectrometry This material provides some background on how to measure isotope abundances by means of mass spectrometry. Mass spectrometers create and separate ionized atoms

More information

Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments

Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments IEC:! IEC at UIUC modified into a space thruster.! IEC has

More information

Space Environments and Effects Section. Pioneer. Voyager. New Horizons. D.J. Rodgers ESA-ESTEC, The Netherlands

Space Environments and Effects Section. Pioneer. Voyager. New Horizons. D.J. Rodgers ESA-ESTEC, The Netherlands Pioneer Voyager New Horizons D.J. Rodgers ESA-ESTEC, The Netherlands 20 January EJSM/Laplace instruments workshop 1 Possible launch 2020 Spacecraft Jupiter Europa Orbiter Jupiter Ganymede Orbiter Ganymede

More information

arxiv: v1 [astro-ph.ep] 9 Apr 2014

arxiv: v1 [astro-ph.ep] 9 Apr 2014 GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1029/, The importance of monopole antennas for dust observations: why Wind/WAVES does not detect nanodust N. Meyer-Vernet 1, M. Moncuquet 1, K. Issautier

More information

Atomic and Nuclear Physics Review (& other related physics questions)

Atomic and Nuclear Physics Review (& other related physics questions) Atomic and Nuclear Physics Review (& other related physics questions) 1. The minimum electron speed necessary to ionize xenon atoms is A. 2.66 10 31 m/s B. 5.15 10 15 m/s C. 4.25 10 12 m/s D. 2.06 10 6

More information

COMPARISON OF THERMAL PLASMA OBSERVATIONS ON SCATHA AND GEOS

COMPARISON OF THERMAL PLASMA OBSERVATIONS ON SCATHA AND GEOS 57 COMPARISON OF THERMAL PLASMA OBSERVATIONS ON SCATHA AND GEOS R. C. Olsen The University of Alabama,Huntsville, AL., USA P. M. E. Decreau LPCE, Orleans, France J. F. E. Johnson Department of Physics,

More information

NASA s STEREO Mission

NASA s STEREO Mission NASA s STEREO Mission J.B. Gurman STEREO Project Scientist W.T. Thompson STEREO Chief Observer Solar Physics Laboratory, Helophysics Division NASA Goddard Space Flight Center 1 The STEREO Mission Science

More information

REFERENCE: The Blue Planet An Introduction to Earth System Science. Brian J. Skinner and Barbara W. Murck (2011) Third Edition. John Wiley and Sons

REFERENCE: The Blue Planet An Introduction to Earth System Science. Brian J. Skinner and Barbara W. Murck (2011) Third Edition. John Wiley and Sons REFERENCE: The Blue Planet An Introduction to Earth System Science. Brian J. Skinner and Barbara W. Murck (2011) Third Edition. John Wiley and Sons Inc. Energy is the capacity to do work, to move matter,

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 1 11 Jun 07 UA/NSO Summer School 1 If the sun didn't have a magnetic field, then it would be as boring a star as most astronomers think it is. -- Robert Leighton 11 Jun 07 UA/NSO

More information

Electrostatic Dust Transport On Airless Planetary Bodies

Electrostatic Dust Transport On Airless Planetary Bodies Electrostatic Dust Transport On Airless Planetary Bodies Joseph Schwan Xu Wang, Hsiang-Wen Hsu, Eberhard Grün, Mihály Horányi Laboratory for Atmospheric and Space Physics (LASP), NASA/SSERVI s Institute

More information

Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation

Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation Kent Lee, Dean Henze, Patrick Smith, and Janet Chao University of San Diego (Dated: May 1, 2013)

More information

Solar Energetic Particle Events within the STEREO era:

Solar Energetic Particle Events within the STEREO era: Solar Energetic Particle Events within the STEREO era: 2007-2012 A. Papaioannou 1,*, O.E. Malandraki 1, B.Heber 2, N. Dresing 2, K.-L. Klein 3, R. Vainio 4, R. Rodriguez-Gasen 3, A. Klassen 2, A. Nindos

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

Metallic magnetic calorimeters. Andreas Fleischmann Heidelberg University

Metallic magnetic calorimeters. Andreas Fleischmann Heidelberg University Metallic magnetic calorimeters Andreas Fleischmann Heidelberg University metallic magnetic calorimeters paramagnetic sensor: Au:Er 300ppm, Ag:Er 300ppm M detector signal: T main differences to calorimeters

More information

Simulation of the charging process of the LISA test masses due to solar particles.

Simulation of the charging process of the LISA test masses due to solar particles. Simulation of the charging process of the LISA test masses due to solar particles. 5 th International Lisa Symposium 14 July 2004 Helios Vocca INFN Pg Solar Energetic Particles (SEPs( SEPs) SEPs are particles

More information

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars centre for fusion, space and astrophysics Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars Presented by: On behalf of: Jennifer Harris Claire Foullon, E. Verwichte, V. Nakariakov

More information

Cluster and DEMETER Satellite Data. Fabien Darrouzet (Belgian Institute for Space Aeronomy (IASB-BIRA))

Cluster and DEMETER Satellite Data. Fabien Darrouzet (Belgian Institute for Space Aeronomy (IASB-BIRA)) Cluster and DEMETER Satellite Data Fabien Darrouzet (Belgian Institute for Space Aeronomy (IASB-BIRA)) 1 Outline Magnetosphere Plasmasphere Cluster Mission WHISPER Instrument and Data DEMETER Mission ISL

More information

HELCATS WP7 Update - overview. Mario Bisi on behalf of Jonathan Eastwood HELCATS month 12 meeting, May 2015, Göttingen, Germany

HELCATS WP7 Update - overview. Mario Bisi on behalf of Jonathan Eastwood HELCATS month 12 meeting, May 2015, Göttingen, Germany HELCATS WP7 Update - overview Mario Bisi on behalf of Jonathan Eastwood HELCATS month 12 meeting, 18-22 May 2015, Göttingen, Germany Work Package 7 (reminder) Assessing the complementary nature of radio

More information

Solar energetic electrons related to the 28 October 2003 flare

Solar energetic electrons related to the 28 October 2003 flare JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010910, 2005 Solar energetic electrons related to the 28 October 2003 flare A. Klassen, 1 S. Krucker, 2 H. Kunow, 1 R. Müller-Mellin, 1 R.

More information

Flare-related radio emission: a kinetic point of view

Flare-related radio emission: a kinetic point of view Flare-related radio emission: a kinetic point of view Carine Briand Paris Observatory, LESIA & Co-workers Pierre HENRI, LPC2E, France Francesco Califano, Pisa Univ., Italy IAU GA Hawaii - Division E session

More information

Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson

Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson Tentamen för Rymdfysik I 2006-08-15 Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson Please write your name on all papers, and on the first page your address, e-mail and phone

More information

An Algorithm For Type III Solar Radio Bursts Recognition

An Algorithm For Type III Solar Radio Bursts Recognition An Algorithm For Type III Solar Radio Bursts Recognition S. Vidojević 1, M. Dražić 2, M. Maksimovic 3 and Meil Abada-Simon 3 1 State University of Novi Pazar, V. Karadzica bb, 363 Novi Pazar, Serbia 2Faculty

More information

Challenges to. Future Outer Heliosphere. and Interstellar Probes. Science. Mission. Technology,

Challenges to. Future Outer Heliosphere. and Interstellar Probes. Science. Mission. Technology, Science Challenges to Mission Future Outer Heliosphere Technology, and Interstellar Probes TRL Robert F. Wimmer-Schweingruber wimmer@physik.uni-kiel.de Univ. Kiel, Germany on behalf of the IP Team http://www.ieap.uni-kiel.de/et/people/wimmer/ip

More information

MAGNETIC DIPOLE INFLATION WITH CASCADED ARC AND APPLICATIONS TO MINI-MAGNETOSPHERIC PLASMA PROPULSION

MAGNETIC DIPOLE INFLATION WITH CASCADED ARC AND APPLICATIONS TO MINI-MAGNETOSPHERIC PLASMA PROPULSION MAGNETIC DIPOLE INFLATION WITH CASCADED ARC AND APPLICATIONS TO MINI-MAGNETOSPHERIC PLASMA PROPULSION L. Giersch *, R. Winglee, J. Slough, T. Ziemba, P. Euripides, University of Washington, Seattle, WA,

More information

11 SEPTEMBER This document consists of printed pages.

11 SEPTEMBER This document consists of printed pages. S 11 SEPTEMBER 2017 6 Write your name, centre number, index number and class in the spaces at the top of this page and on all work you hand in. Write in dark blue or black pen on both sides of the paper.

More information

Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster. Observations

Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster. Observations 1 2 Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster Observations 3 4 5 S. Y. Huang 1, F. Sahraoui 2, X. H. Deng 1,3, J. S. He 4, Z. G. Yuan 1, M. Zhou 3, Y. Pang 3, H. S. Fu 5 6 1 School of

More information

SIMULATIONS OF THE ROSETTA SPACECRAFT INTERACTION WITH COMET PLASMA

SIMULATIONS OF THE ROSETTA SPACECRAFT INTERACTION WITH COMET PLASMA SIMULATIONS OF THE ROSETTA SPACECRAFT INTERACTION WITH COMET PLASMA F. L. Johansson 1,2,4, P. Henri 1, A. Eriksson 2, X. Vallières 1, J-P Lebreton 1, C. Béghin 1, G. Wattieaux 3, and E. Odelstad 2,4 1

More information

Accelerated Taylor State Plumes in SSX

Accelerated Taylor State Plumes in SSX Accelerated Taylor State Plumes in SSX Manjit Kaur Swarthmore College, Swarthmore, PA 19081 J. E. Shrock 18, J. Han 17, D. A. Schaffner & M. R. Brown Research supported by DOE OFES & ARPA-e ALPHA 24 August

More information

Marchionni Massimo. United Kingdom. Airbus Defence and Space Ltd ID : Title : Solar Orbiter Purge System: Modelling with Ecosim.

Marchionni Massimo. United Kingdom. Airbus Defence and Space Ltd ID : Title : Solar Orbiter Purge System: Modelling with Ecosim. Powered by TCPDF (www.tcpdf.org) Marchionni Massimo United Kingdom Airbus Defence and Space Ltd ID : 3125379 Title : Solar Orbiter Purge System: Modelling with Ecosim Theme : Resume : To answer the second

More information

Operational Aspects of Space Weather-Related Missions

Operational Aspects of Space Weather-Related Missions Operational Aspects of Space Weather-Related Missions Richard G. Marsden, ESA/SCI-SH Outline SOHO: Example of Near-Earth Observatory-class Mission Ulysses: Example of Deep Space Monitor-class Mission Solar

More information

Juno Status and Earth Flyby Plans. C. J. Hansen

Juno Status and Earth Flyby Plans. C. J. Hansen Juno Status and Earth Flyby Plans C. J. Hansen July 2013 Juno will improve our understanding of the history of the solar system by investigating the origin and evolution of Jupiter. To accomplish this

More information

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII COSMIC RAYS DAY WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII INTRODUCTION TO COSMIC RAYS MAJOR QUESTIONS: Are there forms of matter in the Universe that do not

More information

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT Romanian Reports in Phisics, Vol. 56, No., P. 71-76, 004 CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT A. R. PETRE 1, M. BÃZÃVAN 1, V. COVLEA 1, V.V. COVLEA 1, ISABELLA IOANA OPREA, H. ANDREI

More information

EFW DATA IN THE CLUSTER ACTIVE ARCHIVE

EFW DATA IN THE CLUSTER ACTIVE ARCHIVE EFW DATA IN THE CLUSTER ACTIVE ARCHIVE 1 P.-A. Lindqvist (1), Y. Khotyaintsev (2), M. André (2), and A. I. Eriksson (2) (1) Alfvén Laboratory, Royal Institute of Technology, SE-10044 Stockholm, Sweden,

More information

pre Proposal in response to the 2010 call for a medium-size mission opportunity in ESA s science programme for a launch in 2022.

pre Proposal in response to the 2010 call for a medium-size mission opportunity in ESA s science programme for a launch in 2022. Solar magnetism explorer (SolmeX) Exploring the magnetic field in the upper atmosphere of our closest star preprint at arxiv 1108.5304 (Exp.Astron.) or search for solmex in ADS Hardi Peter & SolmeX team

More information

Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments

Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments Tomasz Mrozek 1,2 1 Space Research Centre, Polish Academy of Sciences, Solar Physics Division 2 Astronomical Institute, University

More information

ZOOMING IN ON THE CORONAL POLES WITH SOLAR ORBITER

ZOOMING IN ON THE CORONAL POLES WITH SOLAR ORBITER ZOOMING IN ON THE CORONAL POLES WITH SOLAR ORBITER DAVID BERGHMANS 1, DAN SEATON 2,3, MATTHEW WEST 1 ON BEHALF OF THE EUI TEAM POLAR PERSPECTIVES MEETING, HAO, BOULDER, COLORADO SEPTEMBER 2018 1ROYAL OBSERVATORY

More information

2-3 Solar Wind Plasma Instrument for the L5 mission

2-3 Solar Wind Plasma Instrument for the L5 mission 2-3 Solar Wind Plasma Instrument for the L5 mission The objectives of the solar wind plasma instrument for the L5 mission are to forecast the geomagnetic storms by means of the measurement of solar wind

More information

HELIOS 1 & 2 IN-SITU DATA ARCHIVE Project Action Item List

HELIOS 1 & 2 IN-SITU DATA ARCHIVE Project Action Item List September 11, 2017 HELIOS 1 & 2 IN-SITU DATA ARCHIVE Project Action Item List Helios 1 & 2 rank amoung the most important missions in Heliophysics, and the more-than 11 years of data returned by its spacecraft

More information

ICMs and the IPM: Birds of a Feather?

ICMs and the IPM: Birds of a Feather? ICMs and the IPM: Birds of a Feather? Tom Jones University of Minnesota 11 November, 2014 KAW8: Astrophysics of High-Beta Plasma in the Universe 1 Outline: ICM plasma is the dominant baryon component in

More information

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun. Arto Sandroos Sun-Earth connections High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

More information

Inferred Ionic Charge States for Solar Energetic Particle Events from with ACE and STEREO

Inferred Ionic Charge States for Solar Energetic Particle Events from with ACE and STEREO Inferred Ionic Charge States for Solar Energetic Particle Events from 2012-2015 with ACE and STEREO A. W. Labrador 1,*, L. S. Sollitt 2, C. M. S. Cohen 1, A. C. Cummings 1, R. A. Leske 1, G. M. Mason 3,

More information

SPIS current status and achievements. S. Hess, J-C Matéo-Vélez, P Sarrailh

SPIS current status and achievements. S. Hess, J-C Matéo-Vélez, P Sarrailh 1 SPIS current status and achievements S. Hess, J-C Matéo-Vélez, P Sarrailh 2 Zoom on most recent activities SPIS GEO ESTEC/ESA contract SPIS-SCIENCE Technical officer: David Rodgers Consortium: Artenum,

More information

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

More information

Radio Emission from the Sun Observed by LOFAR and SKA

Radio Emission from the Sun Observed by LOFAR and SKA Radio Emission from the Sun Observed by LOFAR and SKA Gottfried Mann Leibniz-Institut für Astrophysik Potsdam (AIP) An der Sternwarte 16, D-14482 Potsdam, Germany e-mail: GMann@aip.de September 2011 LOFAR

More information

Solar Energetic Particles in the Inner Heliosphere

Solar Energetic Particles in the Inner Heliosphere Author: Mariona Adillón Corbera Advisor: Neus Agueda Costafreda Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Abstract: The upcoming missions Solar Orbiter (SolO)

More information

Space Weather. S. Abe and A. Ikeda [1] ICSWSE [2] KNCT

Space Weather. S. Abe and A. Ikeda [1] ICSWSE [2] KNCT Space Weather S. Abe and A. Ikeda [1] ICSWSE [2] KNCT Outline Overview of Space Weather I. Space disasters II. Space weather III. Sun IV. Solar wind (interplanetary space) V. Magnetosphere VI. Recent Space

More information

Cross-Scale: multi-scale coupling in space plasmas

Cross-Scale: multi-scale coupling in space plasmas Cross-Scale: multi-scale coupling in space plasmas Steve Schwartz on behalf of the international Cross-Scale community (www.cross-scale.org) including 372 scientists from 23 Countries X supported by Masaki

More information

Proton-proton cycle 3 steps PHYS 162 1

Proton-proton cycle 3 steps PHYS 162 1 Proton-proton cycle 3 steps PHYS 162 1 4 Layers of the Sun CORE : center, where fusion occurs RADIATION: energy transfer by radiation CONVECTION: energy transfer by convection PHOTOSPHERE: what we see

More information

Science 30 Unit C Review Outline GCCHS. Negatively charged Positively charged Coulomb Conductor Electric potential difference

Science 30 Unit C Review Outline GCCHS. Negatively charged Positively charged Coulomb Conductor Electric potential difference Science 30 Unit C Review Outline GCCHS Negatively charged Positively charged Coulomb Conductor Electric potential difference volt voltage Insulator Test body Gravitational field Field lines Solar wind

More information

Non Thermal Continuum radiation observed from the Cluster fleet

Non Thermal Continuum radiation observed from the Cluster fleet Non Thermal Continuum radiation observed from the Cluster fleet P. Décréau, S. Grimald, M. Parrot, O. Randriamboarison, J.-L. Rauch, J._G. Trotignon, X. Vallières, LPCE Orléans, F. P. Canu, N. Cornilleau,

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

Type III radio bursts observed by Ulysses pole to pole, and simultaneously by wind

Type III radio bursts observed by Ulysses pole to pole, and simultaneously by wind Astron. Astrophys. 316, 46 412 (1996) ASTRONOMY AND ASTROPHYSICS Type III radio bursts observed by Ulysses pole to pole, and simultaneously by wind Y. Leblanc 1, G.A. Dulk 1,2, S. Hoang 1, J.-L. Bougeret

More information

In situ Investigations of the Local Interstellar Medium. Science Mission Technology, TRL

In situ Investigations of the Local Interstellar Medium. Science Mission Technology, TRL Science Mission Technology, TRL 1 Introduction Astrospheres are a ubiquitous phenomenon... LL Orionis Visible Hubble Astrosphere: The region in space influenced by the outflowing stellar wind and embedded

More information

~1 V ~20-40 V. Electron collector PLASMA. Ion extraction optics. Ionization zone. Mass Resolving section Ion detector. e - ~20 V Filament Heater

~1 V ~20-40 V. Electron collector PLASMA. Ion extraction optics. Ionization zone. Mass Resolving section Ion detector. e - ~20 V Filament Heater RGAs and Leak detectors [Note that standard Ion Implanters are just overgrown RGAs!] RGAs or Residual Gas Analyzers are also known as Mass Spectrum Analyzers. These can sometimes be upgraded to also include

More information

Lecture 3: The Earth, Magnetosphere and Ionosphere.

Lecture 3: The Earth, Magnetosphere and Ionosphere. Lecture 3: The Earth, Magnetosphere and Ionosphere. Sun Earth system Magnetospheric Physics Heliophysics Ionospheric Physics Spacecraft Heating of Solar Corona Convection cells Charged particles are moving

More information

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer Huashun Zhang Ion Sources With 187 Figures and 26 Tables Э SCIENCE PRESS Springer XI Contents 1 INTRODUCTION 1 1.1 Major Applications and Requirements 1 1.2 Performances and Research Subjects 1 1.3 Historical

More information

Solar energetic particles and space weather

Solar energetic particles and space weather Solar energetic particles and space weather ROSITSA MITEVA rmiteva@space.bas.bg Space Research and Technology Institute Bulgarian Academy of Sciences The International Workshop Eruptive energy release

More information

Observing the gravitational universe from space

Observing the gravitational universe from space Observing the gravitational universe from space Peter Wass Tim Sumner, Daniel Hollington, Jonathon Baird High Energy Physics Group Imperial Space Lab 29 September 2015 Gravitational Waves Gravitational

More information

The perspective of X-ray galaxy clusters with the XIFU/Athena instrument

The perspective of X-ray galaxy clusters with the XIFU/Athena instrument The perspective of X-ray galaxy clusters with the XIFU/Athena instrument Nicolas Clerc IRAP Toulouse, France AtomDB workshop 17, Athens, GA November 3rd 17 Clusters of galaxies ; large-scale structure

More information

SpaceMaster - Joint European Master in Space Science and Technology INTRODUCTION TO SPACE PHYSICS

SpaceMaster - Joint European Master in Space Science and Technology INTRODUCTION TO SPACE PHYSICS Erasmus Mundus SpaceMaster - Joint European Master in Space Science and Technology INTRODUCTION TO SPACE PHYSICS Wolfgang Droege University of Wuerzburg 2017/2018 Prof. Dr. Wolfgang Dröge Lehrstuhl für

More information

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,

More information

Chapter 7 Plasma Basic

Chapter 7 Plasma Basic Chapter 7 Plasma Basic Hong Xiao, Ph. D. hxiao89@hotmail.com www2.austin.cc.tx.us/hongxiao/book.htm Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm 1 Objectives List at least three IC processes

More information

Simulating the Ionosphere, one electron at a time.

Simulating the Ionosphere, one electron at a time. Simulating the Ionosphere, one electron at a time. Meers Oppenheim CEDAR June 2016 Research supported by NSF, NASA, AFRL, and DOE Grants What? Plasma Physics Particle-in-Cell Simulations Two Examples:

More information

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF Ion Energy Distributions in Pulsed Plasmas with Synchronous DC Bias: Effect of Noble Gas W. Zhu, H. Shin, V. M. Donnelly and D. J. Economou Plasma Processing Laboratory University of Houston Acknowledgements:

More information

Occurrence characteristics of Saturn s radio burst

Occurrence characteristics of Saturn s radio burst Occurrence characteristics of Saturn s radio burst D. Maruno 1, Y. Kasaba 1, T. Kimura 2, A. Morioka 1, B. Cecconi 3 1 Department of Geophysics, Tohoku University 2 ISAS, JAXA 3 LESIA, Observatorire de

More information

Experiments with a Supported Dipole

Experiments with a Supported Dipole Experiments with a Supported Dipole Reporting Measurements of the Interchange Instability Excited by Electron Pressure and Centrifugal Force Introduction Ben Levitt and Dmitry Maslovsky Collisionless Terrella

More information

Ultra High Energy Cosmic Rays I

Ultra High Energy Cosmic Rays I Ultra High Energy Cosmic Rays I John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020 ev. Problem: the microwave background radiation is discovered

More information