From an experimental idea to a satellite

Size: px
Start display at page:

Download "From an experimental idea to a satellite"

Transcription

1 From an experimental idea to a satellite Hansjörg Dittus Institute of Space Systems, Bremen German Aerospace Center

2 Looking back in History Yukawa potential Gravity at large scales Weak gravity Nordtvedt effect Time dependence of G LLR, LAGEOS, ASTROD, LATOR, OPTIS, SEE, DSGE Einstein s theory of gravity Metric theory of gravity Einstein s Equivalence Principle Gravitational redshift Perihelion shift Light deflection Gravit. time delay Lense-Thirring effect Schiff effect Gravitational waves GP-A, Cassini, LAGEOS, GP-B, LISA, HYPER, DSGE, ASTROD, LATOR, OPTIS Universality of Free Fall MICROSCOPE, STEP, GG, HYPER, DSGE Universality of Gravitational Redshift ACES /PHARAO, SPACETIME, OPTIS, DSGE Local Lorentz Invariance ACES, OPTIS, PARCS, RACE

3

4 Everything outside the Solar System refuses to follow the laws of General Relativity. Joao Magueijo, Imperial College

5 Why satellite experiments to test EP Centrifugal force Torsionsfaden Gravity Test masses made of different materials Torsion balance uses only 0.3 % (earth mode) and 0.07 % (solare mode) of the inertial force wrt to earth gravity. Gravity acts vertically Centrifugal force acts horizontally Direct measurement (full signal) Influence of torsion fibre Periodic long termexperiment Periodic free fall in space.. Free fall experiment Y (+) N (+) N (-) Torsion balance experiment N (-) Y (-) Y (+)

6 EP-Maesurement on satellite dr 1 rη 3 1 = E m r 1 Differential orbit differences cannot be maesured directly For weak coupling, both test masses and the time satellite form a springmass-system 1 ORBIT Relative test mass position

7 Development of precise differential accelerometers k 2 (1) Moveable test masses: a β δx m β= 0 and weak k: high resolution position sensor Problem: Complicated test mass movement (2) Closed loop control: a acontrol ω testmass = k m β 2 + k control m 2 β control Stiffness can be much higher than k: large bandwidth, but lower resolution Problem: back-action by noise

8 Drag-free AOCS for satellites Concepts: (1) Closed loop control large bandwidth two test masses: aligned e.g. MICROSCOPE 10-7 m / s 2 at Hz (2) Open loop for two moveable test masses (aligned) very small bandwidth (3) Virtual reference point for more than one test mass m / s 2 at 10-3 to 10-4 Hz (4) Free floating control for more than one test mass misaligned needs multiple parameter control

9 Drag forces and torques (for 1.5 m 2 cross area) Atmospheric drag Linear drag: ca. 1mN Torque: 10 µn m Radiation pressure by Earth albedo Linear drag: ca. 10 µn Torque: 1 µn m Magnetic torque (interaction with Earth magnetic field) Torque: 100 µn m After torque compensation: 10 µn m Solar radiation pressure Linear drag: ca. 10 µn Torque: 1 µn m

10 Two-test-mass problem external perturbaitons Drag free point -Air-drag -Radiation pressure -Magnetic fields -Solar wind, etc. internal perturbations -Patch effects -Radiometer effect -Non-perfect shielding etc. Huge complexity of signal!

11 Low thrust propulsion systems Balancing drag forces and torques Atmospheric drag Linear drag: ca. 1mN Torque: 10 µn m Radiation pressure by Earth albedo Linear drag: ca. 10 µn Torque: 1 µn m Magnetic torque (interaction with Earth magnetic field) Torque: 100 µn m After torque compensation: 10 µn m Solar radiation pressure Linear drag: ca. 10 µn Torque: 1 µn m Propulsion system requirements: Thrust control: S < ± 0.1 µn Residual acceleration: < m/(s 2 Hz 0.5 ) Permanent operation Sourc:e: Purdue School of Aeronautics and Astronautics Sourc:e: NASA Sourc:e: NASA

12 Simulation Example: differential acceleration of 2 test masses Satellite orbit: ω o Test mass coupling: ω k 2 = k/m k typ. = N/m S/C spin rate: ω spin 3.0x10-7 a x (k,gg,rot) 3.0x10-7 a x (k,gg,rot) 2.0x x x x10-7 a / ms x10-7 a / ms x x x x x x x Orbit 1 Orbit 0 1x10 5 2x10 5 Time / s 5.0x x x x10 4 Time / s

13 EGM 6th order ω spin = 4.6ω o ω k η= 0 = 2.9ω o Amplitude 1x x x x x s5c5gm6neta Frequenz (ω orbit ) ω spin = 4.6ω o ω k = 2.9ω o η= Amplitude 1x x x x x x ω η s5c5gm6eta15 = ω o + ω spin = 5.6ω o Frequenz (ω orbit )

14 High Performance Simulation Objectives Provide comprehensive simulation of the real system including science signal and error sources Provide simulation environment for control system performance validation Generate data needed to test data reduction methods Provide capability for identification of the satellite and instrument Core features Simulation of full satellite and test mass/experiment dynamics in six degrees of freedom by numerical integration of the equations of motion Multi-body system Consideration of linear and nonlinear coupling forces and torques between S/C and TMes Modelling of cross-coupling interaction Earth gravity model up to 360th degree and order + solar system effects Gravity-gradient forces and torques 5th order Runge-Kutta numerical integration, Bulirsch-Stoehr, Euler-Cauchy Misalignment, displacements, attitude errors, coupling biases

15 Satellite Dynamics and Interface Experiment / Spacecraft Important problem in order to keep accuracy Needs modelling of all experimental components and S/C subsystems Combining thermal and mechanical requirements Out1 Orbit Disturbances Simulation software High precision models 1 Guidance In1 Out1 Controller In1 Out1 In1 Out1 Thruster Actuation Actuators & System Configuration Out1 In1 Sensors In1 Out1 Spacecraft Dynamic In1 Analysis Mission Req Validation with flight data Hardware-in-the-Loop-Testbed Modular design Applicable to different missions Test facilities for AOCS components GPS-Simulator 3-Axis Rotation Table

16 Precise thermal models Albedo and Planetshine Earth Model Improved S/C thermal models: based on FEM 1,0 0,8 Albedo per Latitude 0,6 Planetshine Map 0,4 0,2 0, Planetshine per Latitude 300,0 200,0 100,0 0, Südpol Äquator Nordpol

17 Mission Scenarios Science Satellites Low earth orbit S/C Gravity Probe B Launched in a 642 km circular, polar orbit S/Cmass: 3,145 kg Pointing accuracy: 0.2 arcs achieved by means of a Cassegrain telescope Residual acceleration requirement: < 10-9 m/(s 2 Hz 0.5 ), achieved: < m/(s 2 Hz 0.5 ) Use of gas proportional thrusters with He-boil-off) Use of gyroscopes (niobium coated exact silica spheres) with SQUID-based rerad-out Measurement of the precession of a gyroscope due to space-time curvature r ds dt r r = Ω S = 6,6 arcsec per year by geodetic precession; confirmed within 0.5 % 0,041 arcsec per year due to frame dragging (Lense-Thirring precession), confirmed within r r v a r r r v U + h S

18 Mission Scenarios Science Satellites Drag-free performance of GP-B Proof mass acceleation (m-sec -2 ) Acceleration (m/sec 2 ) x10 x -8 Engagement of DF control on Gyro 1 (Z axis) Drag-free off Drag-free on Day of Year, 2004 Acceleration (m/sec 2 ) Control effort, m/sec 2 Gyro 1 - Space Vehicle and Gyro Ctrl Effort - Inertial space (2005/200, 14 days) Gravity gradient Cross-axis avg. 1.1 x g Roll rate X Gyro CE X SV CE 2 Orbit Frequency (Hz) F. Everitt et al.

19 Machining Cylindrical test masse Identical moments of inertia in all axes in order to minimize influences of the gravity gradient High precision alignment Gold coating of the zerodurstructures and electrodes Blocking system for test masses during launch Ultra high vacuum Fixed Stops Electrical Connectors Housing Mobile Stops Vacuum System External Acc Electrode Cylinders External PM (PtRh10 or TA6V) Internal PM (PtRh10) Internal Acc Electrode Cylinders Magentic shielding Sole Plate Blocking System

20 Test mass selection and machining characteristics η = N + Z N Z 5 ( γ 1) c + + baryon clepton µ Atom µ Atom µ Atom E 1 Pt Au Analyis for η E = f (N+Z), (N-Z), (Z-(Z-1)(N+Z) 1/3 Ti V TiC Cu Zr Nb 0.2 Be C CH Mg 2 Al Si 0-0.2

21 Test mass machining and tolerances Ti-Testmasse, PTB Macining precision in all axes: 1.5 µm Misalignment along symmetry axes dependent on: Maching accuracy (12µm worst case) Capacitive metrology due to test mass conicity (worst case 17µm, 8.5µm due to improved metrology x

22 Test and verification environment with free flyer

23 Conclusion Extremely challenging space experiment Various innovative space technology developments: S/C AOCS of highest precision ( no moving parts ) S/C dynamic simulation Low thrust propulsion Thermal modelling Differential accelerometers Machining on sub mµ-level Coating of non flat surfaces Stimulus for many new mission concepts: LISA STAR / OPTIS STE-QUEST X-ray telescope missions GRACE-Follow-on Earth observation on high precision level

Inertial Frame frame-dragging

Inertial Frame frame-dragging Frame Dragging Frame Dragging An Inertial Frame is a frame that is not accelerating (in the sense of proper acceleration that would be detected by an accelerometer). In Einstein s theory of General Relativity

More information

Precision Attitude and Translation Control Design and Optimization

Precision Attitude and Translation Control Design and Optimization Precision Attitude and Translation Control Design and Optimization John Mester and Saps Buchman Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. Abstract Future

More information

The Stanford Gravitational Reference Sensor

The Stanford Gravitational Reference Sensor The Stanford Gravitational Reference Sensor S. Buchman, B. Allard, G. Allen, R. Byer, W. Davis, D. DeBra, D. Gill, J. Hanson, G.M. Keiser, D. Lauben, I. Mukhar, N. A. Robertson, B. Shelef, K. Sun, S. Williams

More information

Gravity Probe B Data Analysis Challenges, Insights, and Results

Gravity Probe B Data Analysis Challenges, Insights, and Results Gravity Probe B Data Analysis Challenges, Insights, and Results Mac Keiser April 15, 27 April 15, 27 Jacksonville, FL 1 Topics Data Analysis Strategy and Methods Challenges and Insights Trapped Magnetic

More information

Technology Readiness Level:

Technology Readiness Level: Technology Readiness Level: We plan to raise the TRL of the model with an acceleration noise performance requirement of < 10-12 m sec -2 Hz -1/2 at frequencies between 1 mhz and 1 Hz, from TRL 3 to TRL

More information

GP-B Attitude and Translation Control. John Mester Stanford University

GP-B Attitude and Translation Control. John Mester Stanford University GP-B Attitude and Translation Control John Mester Stanford University 1 The GP-B Challenge Gyroscope (G) 10 7 times better than best 'modeled' inertial navigation gyros Telescope (T) 10 3 times better

More information

INTERNAL THALES ALENIA SPACE

INTERNAL THALES ALENIA SPACE Workshop Galileo Galilei (GG) and GGG lab prototype: state of the art and new possibilities Template reference : 100181670S-EN GG error budget from the end-to-end simulator developed at TAS-I Giuseppe

More information

Catapult tests for microgravity characterization of the MICROSCOPE accelerometers. Manuel Rodrigues On behalf ONERA & ZARM team

Catapult tests for microgravity characterization of the MICROSCOPE accelerometers. Manuel Rodrigues On behalf ONERA & ZARM team Catapult tests for microgravity characterization of the MICROSCOPE accelerometers Manuel Rodrigues mrodrig@onera.fr On behalf ONERA & ZARM team 1 Instrument Description SU sqm Sensor Unit (SU) = differential

More information

LISA Pathfinder Coldgas Thrusters

LISA Pathfinder Coldgas Thrusters LISA Pathfinder Coldgas Thrusters Joseph Martino/Eric Plagnol - LPF collaboration Lisa Symposium September 2016 Zurich Outline System Description External Disturbances and thruster noise In Flight dedicated

More information

Precision Tests of General Relativity in Space

Precision Tests of General Relativity in Space Precision Tests of General Relativity in Space John Mester Stanford University Orbit 1 Fundamental Physics in Space Space provides unique opportunities to advance our knowledge of fundamental physics enabling

More information

LISA Pathfinder measuring pico-meters and femto-newtons in space

LISA Pathfinder measuring pico-meters and femto-newtons in space LISA Pathfinder measuring pico-meters and femto-newtons in space M Hewitson for the LPF team Barcelona, February 15th 2012 Observing from Space 2 Observing from Space 2 Observing from Space Push down to

More information

5.12 The Aerodynamic Assist Trajectories of Vehicles Propelled by Solar Radiation Pressure References...

5.12 The Aerodynamic Assist Trajectories of Vehicles Propelled by Solar Radiation Pressure References... 1 The Two-Body Problem... 1 1.1 Position of the Problem... 1 1.2 The Conic Sections and Their Geometrical Properties... 12 1.3 The Elliptic Orbits... 20 1.4 The Hyperbolic and Parabolic Trajectories...

More information

Experiment Design and Performance. G. Catastini TAS-I (BUOOS)

Experiment Design and Performance. G. Catastini TAS-I (BUOOS) Experiment Design and Performance G. Catastini TAS-I (BUOOS) 10 EP and the GRT Einstein s General Relativity Theory Weak Equivalence Principle: all test particles at the same space-time point in a given

More information

Technical Note. Secondary AOCS Design. Laszlo Szerdahelyi, Astrium GmbH. Walter Fichter, Astrium GmbH. Alexander Schleicher, ZARM Date:

Technical Note. Secondary AOCS Design. Laszlo Szerdahelyi, Astrium GmbH. Walter Fichter, Astrium GmbH. Alexander Schleicher, ZARM Date: Technical Note HYPER Title: Secondary AOCS Design Laszlo Szerdahelyi, Astrium GmbH Walter Fichter, Astrium GmbH Prepared by: Alexander Schleicher, ZARM Date: 28-05-2003 Project Management: Ulrich Johann

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

Control of the Laser Interferometer Space Antenna

Control of the Laser Interferometer Space Antenna Control of the Laser Interferometer Space Antenna P. G. Maghami, T. T. Hyde NASA Goddard Space Flight Center Guidance, Navigation and Control Division Greenbelt, MD 20771 J. Kim Swales Aerospace, Inc.

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu Drag free concept and applications

More information

2 Each satellite will have two test masses, each being the end mirror for an interferometer.

2 Each satellite will have two test masses, each being the end mirror for an interferometer. Ground Testing for LISA Test Masses with a Torsion Pendulum Matthew Schmidt Valdosta State University International REU: University of Trento, Italy Advisor: Dr. Bill Weber Abstract: One of the most important

More information

GG studies at TAS-I: state of the art

GG studies at TAS-I: state of the art GG studies at TAS-I: state of the art A. Anselmi INRIM, 24-10-2014 83230350-DOC-TAS-EN-002 GG@ThalesAleniaSpace! 1996 Early experiment concept presented to ESA HQ! Industrial support on satellite & drag-free

More information

Astrophysics & Gravitational Physics with the LISA Mission

Astrophysics & Gravitational Physics with the LISA Mission Astrophysics & Gravitational Physics with the LISA Mission Peter L. Bender JILA, University of Colorado, and NIST Workshop on Robotic Science from the Moon Boulder, CO 5-6 October, 2010 LISA Overview The

More information

arxiv:gr-qc/ v2 16 Feb 2006

arxiv:gr-qc/ v2 16 Feb 2006 Acceleration disturbances due to local gravity gradients in ASTROD I arxiv:gr-qc/0510045v2 16 Feb 2006 Sachie Shiomi Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30013 R.O.C. E-mail:

More information

The Design and On-orbit Performance of the Relativity Mission Gyroscopes

The Design and On-orbit Performance of the Relativity Mission Gyroscopes The Design and On-orbit Performance of the Relativity Mission Gyroscopes Sasha Buchman, Stanford University Symposium on Gyro Technology 2010 Karlsruhe, September 21 st 2010 1 2 642 km Guide Star IM Pegasi

More information

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Outline 1. Overview of Attitude Determination and Control system. Problem formulation 3. Control schemes

More information

Stanford, Space Gravity Research Group

Stanford, Space Gravity Research Group Stanford, Space Gravity Research Group John W. Conklin, Sasha Buchman, and Robert Byer Gravitational science Earth observation: Geodesy, aeronomy Gravity-waves 1 Space Gravity Technology Development Drag-free

More information

Drag-free Control and Drag Force Recovery of Small Satellites

Drag-free Control and Drag Force Recovery of Small Satellites Drag-free Control and Drag Force Recovery of Small Satellites Anh N. Nguyen NASA Ames Research Center NASA Ames Research Center, M/S 202-3, Bldg N202, Moffett Field, CA 93035 anh.n.nguyen@nasa.gov John

More information

Clocks and Gravity. Claus Lämmerzahl and Hansjörg Dittus. Airlie From Quantum to Cosmos, May

Clocks and Gravity. Claus Lämmerzahl and Hansjörg Dittus. Airlie From Quantum to Cosmos, May Clocks and Gravity Claus Lämmerzahl and Hansjörg Dittus Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation Center for Applied Space Technology and Microgravity (ZARM) University of Bremen

More information

3D Pendulum Experimental Setup for Earth-based Testing of the Attitude Dynamics of an Orbiting Spacecraft

3D Pendulum Experimental Setup for Earth-based Testing of the Attitude Dynamics of an Orbiting Spacecraft 3D Pendulum Experimental Setup for Earth-based Testing of the Attitude Dynamics of an Orbiting Spacecraft Mario A. Santillo, Nalin A. Chaturvedi, N. Harris McClamroch, Dennis S. Bernstein Department of

More information

Gravitational & Planetary Research Program

Gravitational & Planetary Research Program 2012 Gravitational & Planetary Research Program Goals Why? Relativity, Gravitational Waves, Geodesy, Aeronomy Space Technology Education and Training: STEM Team Who? NASA Universities Industry Foreign

More information

Gravity Probe B: Interim Report & First Results. APS Meeting Jacksonville, FL. Francis Everitt. 14 April Page 1

Gravity Probe B: Interim Report & First Results. APS Meeting Jacksonville, FL. Francis Everitt. 14 April Page 1 Gravity Probe B: Interim Report & First Results APS Meeting Jacksonville, FL 14 April 2007 Francis Everitt Page 1 The Relativity Mission Concept 1 marc-sec/yr = 3.2 10-11 deg/hr width of a human hair seen

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E 22 Part B, Lecture 22 19 April, 2017 C O N T E N T S Attitude stabilization passive and active. Actuators for three axis or active stabilization.

More information

Gravity Probe B. Testing Einstein s Universe

Gravity Probe B. Testing Einstein s Universe Gravity Probe B Testing Einstein s Universe STORY 1: What is Einstein s curved spacetime? Newton s Inference In the Principia (1687), Newton states: there is a power of gravity pertaining to all bodies,

More information

Storyboards for GP-B Animations Bob Kahn & James Overduin July 6, 2007

Storyboards for GP-B Animations Bob Kahn & James Overduin July 6, 2007 Storyboards for GP-B Animations Bob Kahn & James Overduin July 6, 2007 Changes in this Version: Scene 4 - Slide 5b Corrected; See page 24. July 6, 2007 GP-B Animation Storyboards Page 1 Seven GP-B Animation

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

PRECESSIONS IN RELATIVITY

PRECESSIONS IN RELATIVITY PRECESSIONS IN RELATIVITY COSTANTINO SIGISMONDI University of Rome La Sapienza Physics dept. and ICRA, Piazzale A. Moro 5 00185 Rome, Italy. e-mail: sigismondi@icra.it From Mercury s perihelion precession

More information

HYPER Industrial Feasibility Study Final Presentation Orbit Selection

HYPER Industrial Feasibility Study Final Presentation Orbit Selection Industrial Feasibility Study Final Presentation Orbit Selection Steve Kemble Astrium Ltd. 6 March 2003 Mission Analysis Lense Thiring effect and orbit requirements Orbital environment Gravity Atmospheric

More information

Measuring the Whirling of Spacetime

Measuring the Whirling of Spacetime Measuring the Whirling of Spacetime Lecture series on Experimental Gravity (revised version) Kostas Glampedakis Prologue: does spin gravitate? M 1 M 2 System I: F = GM 1M 2 r 2 J 1 J 2 System II: M 1?

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: Midterm Preparation Dr. Kostas Alexis (CSE) Areas of Focus Coordinate system transformations (CST) MAV Dynamics (MAVD) Navigation Sensors (NS) State Estimation

More information

1

1 Daniel.Schuetze@aei.mpg.de 1 Satellite gravimetry Mapping the global gravity field Static and dynamic components Many applications in geosciences Techniques Orbit determination and tracking Satellite-to-satellite

More information

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000 Generation X Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San July 27, 2000 ACS Overview Requirements Assumptions Disturbance Torque Assessment Component and Control Mode Recommendations

More information

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1 Fundamental Physics in Space S. Vitale, University of Trento Vitale@science.unitn.it ESO-Garching-15-09-03 S. Vitale 1 Using Space to Investigate Fundamental Laws of Physics: Quantum measurements, entanglement,

More information

LISA Technology: A Status Report

LISA Technology: A Status Report LISA Technology: A Status Report Guido Mueller University of Florida Minnesota 2010 1 Content LISA Concept Gravitational Reference Sensor Interferometry Measurement System Status/Outlook 2 LISA Concept

More information

1 st results of the MICROSCOPE test of the equivalence principle in space. Manuel RODRIGUES

1 st results of the MICROSCOPE test of the equivalence principle in space. Manuel RODRIGUES 1 st results of the MICROSCOPE test of the equivalence principle in space. Manuel RODRIGUES On behalf of the MICROSCOPE team STEP : THE MICROSCOPE ORIGINS Pr. Francis Everitt : PI of GPB & STEP had been

More information

Mach, Thirring & Lense, Gödel - getting dizzy in space-time

Mach, Thirring & Lense, Gödel - getting dizzy in space-time Mach, Thirring & Lense, Gödel - getting dizzy in space-time Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Institute for Theoretical Physics University of Vienna

More information

FRAME-DRAGGING (GRAVITOMAGNETISM) AND ITS MEASUREMENT

FRAME-DRAGGING (GRAVITOMAGNETISM) AND ITS MEASUREMENT FRAME-DRAGGING (GRAVITOMAGNETISM) AND ITS MEASUREMENT INTRODUCTION Frame-Dragging and Gravitomagnetism EXPERIMENTS Past, Past, present and future experimental efforts to measure frame-dragging Measurements

More information

Possible advantages of equipping GNSS satellites with on-board accelerometers

Possible advantages of equipping GNSS satellites with on-board accelerometers Possible advantages of equipping GNSS satellites with on-board accelerometers - a way to get profits - Maciej Kalarus (1) Krzysztof Sośnica (2) Agata Wielgosz (1) Tomasz Liwosz (3) Janusz B. Zielioski

More information

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005 Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes Irwin Shapiro 21 October 2005 Translation of Title (a.k.a Outline) Tests of the (Weak) Equivalence Principle

More information

Gravitational Physics with Optical Clocks in Space

Gravitational Physics with Optical Clocks in Space Workshop on an Optical Clock Mission in ESA s Cosmic Vision Program Düsseldorf 8. - 9. 3. 2007 Gravitational Physics with Optical Clocks in Space S. Schiller Heinrich-Heine Heine-Universität Düsseldorf

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System B. Christophe (ONERA, Châtillon, France) on behalf of the GAP Instrument

More information

Lecture Module 5: Introduction to Attitude Stabilization and Control

Lecture Module 5: Introduction to Attitude Stabilization and Control 1 Lecture Module 5: Introduction to Attitude Stabilization and Control Lectures 1-3 Stability is referred to as a system s behaviour to external/internal disturbances (small) in/from equilibrium states.

More information

On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D.

On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. SSC07-VII-9 On-Orbit Performance of AOCS 2007. 8. Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. 1 Program - is Low Earth Orbit Satellite - Mission : Cartographic Mission of Korean Peninsula

More information

The Cosmic Barber: Counting Gravitational Hair in the Solar System and beyond. Clifford Will Washington University, St. Louis

The Cosmic Barber: Counting Gravitational Hair in the Solar System and beyond. Clifford Will Washington University, St. Louis The Cosmic Barber: Counting Gravitational Hair in the Solar System and beyond Clifford Will Washington University, St. Louis Testing GR with Astrophysical Systems May 17, 2012 Counting Gravitational Hair

More information

Advances in Geosciences

Advances in Geosciences Advances in Geosciences (2003) 1: 57 63 c European Geosciences Union 2003 Advances in Geosciences Integrated sensor analysis for GRACE development and validation B. Frommknecht 1, H. Oberndorfer 1, F.

More information

HYPER Feasibility Study

HYPER Feasibility Study B Page 1 of 126 Hyper Initial Feasibility Orbit Trade-Off Report HYP-1-01 Prepared by: Date: September2002 Stephen Kemble Checked by: Date: September 2002 Stephen Kemble Authorised by: Date: September2002

More information

Gravity Probe B Overview

Gravity Probe B Overview Gravity Probe B Overview Barry Muhlfelder HEPL-AA Seminar June 17, 2009 Page 1 GPB Overview HEPL Seminar, June 17, 2009 The Relativity Mission Concept Ω 3GM GI 3R = R ω 2 3 2 3 2 2c R c R R ( v ) + ( ω

More information

TRAJECTORY SIMULATIONS FOR THRUST-VECTORED ELECTRIC PROPULSION MISSIONS

TRAJECTORY SIMULATIONS FOR THRUST-VECTORED ELECTRIC PROPULSION MISSIONS RAJECORY SIMULAIONS FOR HRUS-VECORED ELECRIC PROPULSION MISSIONS Abstract N. Leveque, C. Welch, A. Ellery, A. Curley Kingston University, Astronautics and Space Systems Group School of Engineering Friars

More information

SPACECRAFT NAVIGATION AND MISSION SIMULATION

SPACECRAFT NAVIGATION AND MISSION SIMULATION TianQin Space-borne gravitational wave detector SPACECRAFT NAVIGATION AND MISSION SIMULATION December 9, 2015 - Prepared by Viktor T. Toth A PERSPECTIVE Precision navigation End-to-end mission simulation

More information

Shally Saraf, Stanford University

Shally Saraf, Stanford University LAser GRavitational-wave ANtenna in GEocentric Orbit Shally Saraf, Stanford University for the LAGRANGE team Background LAser GRavitational-wave ANtenna in GEocentric Orbit was proposed originally as a

More information

Laws of gyroscopes / cardanic gyroscope

Laws of gyroscopes / cardanic gyroscope Principle If the axis of rotation of the force-free gyroscope is displaced slightly, a nutation is produced. The relationship between precession frequency or nutation frequency and gyrofrequency is examined

More information

UV LED charge control of an electrically isolated proof mass at 255 nm

UV LED charge control of an electrically isolated proof mass at 255 nm UV LED charge control of an electrically isolated proof mass at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu

More information

AA 528 Spacecraft Dynamics and Control. Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington

AA 528 Spacecraft Dynamics and Control. Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington AA 528 Spacecraft Dynamics and Control Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington Spacecraft dynamics and control What is this class all about? what is in the name?

More information

Physics of Extreme Gravitomagnetic and Gravity-Like Fields for Novel Space Propulsion and Energy Generation

Physics of Extreme Gravitomagnetic and Gravity-Like Fields for Novel Space Propulsion and Energy Generation Physics of Extreme Gravitomagnetic and Gravity-Like Fields for Novel Space Propulsion and Energy Generation Jochem Hauser 1, Walter Dröscher 2 Abstract - Gravity in the form of Newtonian gravity is the

More information

Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites 56th International Astronautical Congress 25 35th Student Conference (IAF W.) IAC-5-E2.3.6 Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites Rouzbeh Amini, Jesper

More information

Quadcopter Dynamics 1

Quadcopter Dynamics 1 Quadcopter Dynamics 1 Bréguet Richet Gyroplane No. 1 1907 Brothers Louis Bréguet and Jacques Bréguet Guidance of Professor Charles Richet The first flight demonstration of Gyroplane No. 1 with no control

More information

LAWS OF GYROSCOPES / CARDANIC GYROSCOPE

LAWS OF GYROSCOPES / CARDANIC GYROSCOPE LAWS OF GYROSCOPES / CARDANC GYROSCOPE PRNCPLE f the axis of rotation of the force-free gyroscope is displaced slightly, a nutation is produced. The relationship between precession frequency or nutation

More information

Analytical Mechanics. of Space Systems. tfa AA. Hanspeter Schaub. College Station, Texas. University of Colorado Boulder, Colorado.

Analytical Mechanics. of Space Systems. tfa AA. Hanspeter Schaub. College Station, Texas. University of Colorado Boulder, Colorado. Analytical Mechanics of Space Systems Third Edition Hanspeter Schaub University of Colorado Boulder, Colorado John L. Junkins Texas A&M University College Station, Texas AIM EDUCATION SERIES Joseph A.

More information

Astronomy 421. Lecture 24: Black Holes

Astronomy 421. Lecture 24: Black Holes Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates

More information

Experimental Tests and Alternative Theories of Gravity

Experimental Tests and Alternative Theories of Gravity Experimental Tests and Alternative Theories of Gravity Gonzalo J. Olmo Alba gonzalo.olmo@uv.es University of Valencia (Spain) & UW-Milwaukee Experimental Tests and Alternative Theories of Gravity p. 1/2

More information

General Relativity: Einstein s Theory of Gravitation. Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC

General Relativity: Einstein s Theory of Gravitation. Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC General Relativity: Einstein s Theory of Gravitation Presented By Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC The Motivations of General Relativity General Relativity, or GR, was created

More information

HYPER Industrial Feasibility Study

HYPER Industrial Feasibility Study HYPER Industrial Feasibility Study Executive Summary / Final Report Document Number HYP-9-04 Authors: Dr. Walter Fichter, Dr. Ulrich Johann Date: 25 June 2003 Astrium GmbH Page 2 Distribution List Name

More information

HYPER: A POTENTIAL ESA FLEXI-MISSION IN THE FUNDAMENTAL PHYSICS DOMAIN i. Giorgio Bagnasco 1, Stephen Airey 2

HYPER: A POTENTIAL ESA FLEXI-MISSION IN THE FUNDAMENTAL PHYSICS DOMAIN i. Giorgio Bagnasco 1, Stephen Airey 2 HYPER: A POTENTIAL ESA FLEXI-MISSION IN THE FUNDAMENTAL PHYSICS DOMAIN i Giorgio Bagnasco 1, Stephen Airey 2 1 Scientific Projects Department, ESA/ESTEC, Noordwijk, The Netherlands 2 Electrical Engineering

More information

The Gravity Probe B electrostatic gyroscope suspension system (GSS)

The Gravity Probe B electrostatic gyroscope suspension system (GSS) Classical and Quantum Gravity PAPER OPEN ACCESS The Gravity Probe B electrostatic gyroscope suspension system (GSS) To cite this article: 2015 Class. Quantum Grav. 32 224005 View the article online for

More information

EE565:Mobile Robotics Lecture 6

EE565:Mobile Robotics Lecture 6 EE565:Mobile Robotics Lecture 6 Welcome Dr. Ahmad Kamal Nasir Announcement Mid-Term Examination # 1 (25%) Understand basic wheel robot kinematics, common mobile robot sensors and actuators knowledge. Understand

More information

Accurate measurements and calibrations of the MICROSCOPE mission. Gilles METRIS on behalf the MICRSCOPE Team

Accurate measurements and calibrations of the MICROSCOPE mission. Gilles METRIS on behalf the MICRSCOPE Team Accurate measurements and calibrations of the MICROSCOPE mission Gilles METRIS on behalf the MICRSCOPE Team 1 Testing the universality of free fall by means of differential accelerometers in space 1,2

More information

Attitude Determination and. Attitude Control

Attitude Determination and. Attitude Control Attitude Determination and Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky area with the telescope.

More information

Direct MOND/TEVES test with LISA Pathfinder

Direct MOND/TEVES test with LISA Pathfinder Direct MOND/TEVES test with LISA Pathfinder Christian Trenkel and Steve Kemble Astrium Ltd, Stevenage, UK Joao Magueijo and Neil Bevis Imperial College, London, UK Fabrizio io demarchi and Giuseppe Congedo

More information

Atom Quantum Sensors on ground and in space

Atom Quantum Sensors on ground and in space Atom Quantum Sensors on ground and in space Ernst M. Rasel AG Wolfgang Ertmer Quantum Sensors Division Institut für Quantenoptik Leibniz Universität Hannover IQ - Quantum Sensors Inertial Quantum Probes

More information

ST-7 gravitational reference sensor: analysis of magnetic noise sources

ST-7 gravitational reference sensor: analysis of magnetic noise sources INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 20 (2003) S109 S116 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(03)55737-9 ST-7 gravitational reference sensor: analysis of magnetic noise sources John

More information

Equivalence Principle

Equivalence Principle July 16, 2015 Universality of free fall (Galileo) Aristoteles view: the manner in which a body falls, does depend on its weight (at least plausible, if one does not abstract from air resistance etc.) Galileo

More information

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Aman Saluja #1, Manish Bansal #2, M Raja #3, Mohd Maaz #4 #Aerospace Department, University of Petroleum and Energy

More information

Development of a Drag-Free Control System. Author: R. Haines

Development of a Drag-Free Control System. Author: R. Haines Development of a Drag-Free Control System Author: R. Haines Principal Adviser: Dr. C. J. Eyles School of Physics & Astronomy University of Birmingham, UK Email: rh@star.sr.bham.ac.uk ABSTRACT A Drag-Free

More information

Sensors for mobile robots

Sensors for mobile robots ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Mobile & Service Robotics Sensors for Robotics 2 Sensors for mobile robots Sensors are used to perceive, analyze and understand the environment

More information

MICROSCOPE. MICRO-Satellite pour l Observation du Principe d Equivalence. An Equivalence Principle test in space on the way to launch

MICROSCOPE. MICRO-Satellite pour l Observation du Principe d Equivalence. An Equivalence Principle test in space on the way to launch MICROSCOPE MICRO-Satellite pour l Observation du Principe d Equivalence An Equivalence Principle test in space on the way to launch Manuel Rodrigues, ONERA project manager On behalf of the Microscope team

More information

Formation Flying and Rendezvous and Docking Simulator for Exploration Missions (FAMOS-V2)

Formation Flying and Rendezvous and Docking Simulator for Exploration Missions (FAMOS-V2) Formation Flying and Rendezvous and Docking Simulator for Exploration Missions (FAMOS-V2) Galder Bengoa, F. Alonso, D. García, M. Graziano (GMV S.A.) Dr. Guillermo Ortega (ESA/ESTEC) 2nd ESA Workshop on

More information

Attitude Determination using Infrared Earth Horizon Sensors

Attitude Determination using Infrared Earth Horizon Sensors SSC14-VIII-3 Attitude Determination using Infrared Earth Horizon Sensors Tam Nguyen Department of Aeronautics and Astronautics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge,

More information

Space mission environments: sources for loading and structural requirements

Space mission environments: sources for loading and structural requirements Space structures Space mission environments: sources for loading and structural requirements Prof. P. Gaudenzi Università di Roma La Sapienza, Rome Italy paolo.gaudenzi@uniroma1.it 1 THE STRUCTURAL SYSTEM

More information

MAE 142 Homework #5 Due Friday, March 13, 2009

MAE 142 Homework #5 Due Friday, March 13, 2009 MAE 142 Homework #5 Due Friday, March 13, 2009 Please read through the entire homework set before beginning. Also, please label clearly your answers and summarize your findings as concisely as possible.

More information

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin Attitude Determination and Attitude Control Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky

More information

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley,

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley, A GENERAL RELATIVITY WORKBOOK Thomas A. Moore Pomona College University Science Books Mill Valley, California CONTENTS Preface xv 1. INTRODUCTION 1 Concept Summary 2 Homework Problems 9 General Relativity

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications Como, 3. -7. 10. 2011 STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle):

More information

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu MGRS System Overview Differential

More information

GOCE. Gravity and steady-state Ocean Circulation Explorer

GOCE. Gravity and steady-state Ocean Circulation Explorer GOCE Gravity and steady-state Ocean Circulation Explorer Reiner Rummel Astronomical and Physical Geodesy Technische Universität München rummel@bv.tum.de ESA Earth Observation Summerschool ESRIN/Frascati

More information

Asteroid Impact Mission AIM Workshop. Electric Propulsion for Attitude & Orbit Control

Asteroid Impact Mission AIM Workshop. Electric Propulsion for Attitude & Orbit Control Asteroid Impact Mission AIM Workshop Electric Propulsion for Attitude & Orbit Control ESA, ESTEC, Noordwijk, The Netherlands, 22-23 February 2016 Christophe R. Koppel Consulting Ind., 75008 Paris, France

More information

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 1: In the Beginning Introduction to Spacecraft Dynamics Overview of Course Objectives Determining Orbital Elements Know

More information

I. APPENDIX: THE GG SIMULATOR. A. Motivation and Background

I. APPENDIX: THE GG SIMULATOR. A. Motivation and Background 1 I. APPENDIX: THE GG SIMULATOR A. Motivation and Background Space missions in Fundamental Physics like GG require high precision experiments to be performed in space with no direct access to the apparatus

More information

Thrust Measurements with the ONERA Micronewton Balance

Thrust Measurements with the ONERA Micronewton Balance Thrust Measurements with the ONERA Micronewton Balance IEPC-27-118 Presented at the 3 th International Electric Propulsion Conference, Florence, Italy Denis Packan *, Jean Bonnet and Simone Rocca ONERA,

More information

SPACE SHUTTLE ROLL MANEUVER

SPACE SHUTTLE ROLL MANEUVER SPACE SHUTTLE ROLL MANEUVER Instructional Objectives Students will analyze space shuttle schematics and data to: demonstrate graph and schematic interpretation skills; apply integration techniques to evaluate

More information

Gravitational Physics. Experiments in Space. Sasha Buchman Stanford University. Lisbon & Porto, STAR 2015 Space Time Asymmetry Research

Gravitational Physics. Experiments in Space. Sasha Buchman Stanford University. Lisbon & Porto, STAR 2015 Space Time Asymmetry Research Gravitational Physics STAR 2015 Space Time Asymmetry Research Experiments in Space Sasha Buchman Stanford University Lisbon & Porto, 2010 GP-B, 2004-2005 Relativity Mission, Gravity Probe B LISA, 2025

More information