LISA Technology: A Status Report

Size: px
Start display at page:

Download "LISA Technology: A Status Report"

Transcription

1 LISA Technology: A Status Report Guido Mueller University of Florida Minnesota

2 Content LISA Concept Gravitational Reference Sensor Interferometry Measurement System Status/Outlook 2

3 LISA Concept 3 spacecraft constellation S/C separated by 5x10 6 km Two Drag-free proof masses inside each S/C Interferometer measure variations in proof mass distances Earth-trailing solar orbit 3

4 LISA Requirements GW-Strain: h = δl L Red: Requirement Blue: Goal Limited by noise in the IMS (Interferometry Measurement System): S 1/2 pm δl (f) 18 Hz 1+ 2mHz f 2 Limited by noise (residual acceleration) in the DRS (Disturbance Reduction System): S 1/2 m δα (f) s 2 Hz mhz f 4

5 Disturbance Reduction System Shield the Proof masses from all external forces SUN Solar Pressure Build a S/C around it Drag free navigation Monitor S/C to PM position PM Steer the S/C around the PM µn-thrusters 5

6 Experimental Verification of DRS Torsion pendulum in Trento Space-based test with LISA Pathfinder Other experiments with Gravitional Reference Sensors: Space: Grace, Goce, Microscope,... Torsion Pendula: Adelberger, Gundlach,... 6

7 Experimental Verification of DRS Capacitive Sensing: δx(f) =2 nm Hz δθ(f) = 200 nrad Hz 6cm The Noise model: a n = f str m + k m Spring-like Actuation: x n + f S/C Mω 2 k = C X d 2 V 2 inj 7

8 Experimental Verification of DRS The Noise model: a n = f str m + k m x n + f S/C Mω 2 Stray Forces: - Gravitation - Electro-magnetic - Radiation pressure - Residual gas

9 Status of LTP All flight hardware has been delivered except FEEPs (µn-thrusters) Final Caging Mechanism Engineering model of Caging mechanism has been tested All subsystems are now being integrated into engineering model Flight unit is under construction S/C+Payload is just passed Transfer orbit thermal balance tests (see pic) Next tests: Environmental and vibrational tests mid 2011 To be launched 2012/13 9

10 LISA Requirements GW-Strain: h = δl L Red: Requirement Blue: Goal Limited by noise in the IMS (Interferometry Measurement System): S 1/2 pm δl (f) 18 Hz 1+ 2mHz f 2 Limited by noise (residual acceleration) in the DRS (Disturbance Reduction System): S 1/2 m δα (f) s 2 Hz mhz f 10

11 IMS IMS Environment: Orbits cause relative Motion of Proof Masses: v = ±10 m s Changing Doppler shifts Point ahead angle L 12 PM 1 L 13 Changes angles: Maintain Alignment φ ±0.5 PM 2 L 23 PM 3 Very dynamic Interferometer 11

12 Interferometry Measurement System: Spreads over entire configuration 5 Gm 5 Gm 5 Gm 12

13 Spacecraft Laser Bench Optical Benches Telescopes Proof Mass Photo detector Laser System Phase Modulator 13

14 Spacecraft Laser Bench Optical Benches Telescopes Proof Laser Mass System IMS-Signals: Phase Evolution of Laser Beat Signals Dominated by laser frequency noise Photo detector Phase Modulator 13

15 Time Delay Interferometry sin (ω 1 t + φ 1 (t)) L1 S 12 = φ 1 (t) φ 2 (t τ 21 )+δl 21 (t) sin (ω 2 t + φ 2 (t)) L2 PM1 S 13 = φ 1 (t) φ 3 (t τ 31 )+δl 31 (t) PM2 S 21 = φ 1 (t τ 12 ) φ 2 (t) δl 12 (t) S 31 = φ 1 (t τ 13 ) φ 3 (t) δl 13 (t) PM3 L3 Snm (t τ j )= δl nm (t τ j ) sin (ω 3 t + φ 3 (t)) 14

16 Time Delay Interferometry sin (ω 1 t + φ 1 (t)) L1 S 12 = φ 1 (t) φ 2 (t τ 21 )+δl 21 (t) sin (ω 2 t + φ 2 (t)) L2 PM1 S 13 = φ 1 (t) φ 3 (t τ 31 )+δl 31 (t) PM2 S 21 = φ 1 (t τ 12 ) φ 2 (t) δl 12 (t) S 31 = φ 1 (t τ 13 ) φ 3 (t) δl 13 (t) PM3 Cancels laser frequency noise, keeps signal L3 Snm (t τ j )= δl nm (t τ j ) sin (ω 3 t + φ 3 (t)) 14

17 Digital The Tool: Phasemeter Phase Lock Loop PD sin (Ω B t + φ) ADC USO Local τ DDS sin CIC 128 Clock f 128 P-I DSP φ 2 17 Ω O 15

18 Phasemeter Requirements: Phase Noise δφ(f) < 2π λ 1pm 6 rad 2π 10 Hz Hz Diff. Clock Noise: δt(f) < δφ(f) Ω B < 0.05 ps Hz Residual noise due to laser frequency noise: δφ =2πδν τ Timing (Ranging): τ =3ns L =1m Laser Frequency Noise: δν(f) < 141 Hz Hz mhz f 4 16

19 Phasemeter Status Digital Part: Filters Digital Noise Meet requirements cylc/rthz Frequency [Hz] ADCs: Timing Jitter Dispersion Might need Pilot tone Temperature stabilization 17

20 Laser Frequency Noise δν(f) < 141 Hz Hz mhz f 4 New Requirement Options: Stabilized to Zerodur Reference Cavity using PDH Heterodyne Interferometry use LISA Phasemeter Cavity Mach-Zehnder (LTP-style) Arm Locking 18

21 Laser Frequency Noise With Arm Locking δν(f) < 141 Hz Hz mhz f 4 New Requirement Options: Stabilized to Zerodur Reference Cavity using PDH Heterodyne Interferometry use LISA Phasemeter Cavity Mach-Zehnder (LTP-style) Arm Locking 19

22 Ranging PRN Ranging: Modulate/Demodulate Carrier/Carrier Beat Phase with PRN Known local start times used to synchronize clocks m Measures also S/C velocities Differential Clock rates Inter S/C Communication: Switch Sign of PRN Code 20

23 Clock Noise Fiber Modulator Local Laser 2-8 GHz Up 10MHz USO Sidebands carry clock noise SB/SB beat 1MHz off from Carrier/Carrier beat SB/SB phase - Carrier/Carrier beat gives clock noise 14

24 Clock Noise Phase Fidelity of Fiber Modulator: Requirement relaxed by 20 MHz f Mod ~ RL UP UP X EOM L1 EOM X ~ CC SS 3 PM cylc/rthz Frequency [Hz] 22 Successfully tested at AEI, JPL, UF integrated at JPL and UF into testbeds Additional signals for TDI combinations 15

25 TDI for LISA LISA uses 18+ Signals: to cancel: Laser frequency noise Spacecraft motion to generate: TDI Combinations Depend only on PM motion 3 Types of IFO: 1. Bench to Bench Measure S/C to S/C motion 2. Backlink Correlate the local laser 3. Proof mass to Bench Measure PM to S/C motion 23

26 JPL Testbed Injected 800Hz/rtHz laser frequency noise 6 GHz clock noise transfer PRN Ranging Two independent multi-channel PM Two independent clocks (USOs) Post-processed TDI: Fractional delay filtered Time delays determined by PRN Clock Noise corrected 10 9 suppressen at 3mHz See: Experimental Demonstration of Time-Delay Interferometry for the Laser Interferometer Space Antenna, Glenn de Vine, Brent Ware, Kirk McKenzie, Robert E. Spero, William M. Klipstein, and Daniel A. Shaddock, Phys. Rev. Lett. 104, (May 2010) 24

27 UF Testbed Generation of TDI-X Combination with: One Laser per S/C LISA-like delays Doppler shifts GW Cycl./rtHz Frequency [Hz] Optical PLL s Frequency pre-stabilization Fractional Delay Filtering Ranging with ranging tone at 1.5Hz Within factor 4 of LISA req. Limited by ADC noise Use Common Clock 25

28 TDI for LISA LISA uses 18+ Signals: to cancel: Laser frequency noise Spacecraft motion to generate: TDI Combinations Depend only on PM motion 3 Types of IFO: 1. Bench to Bench Measure S/C to S/C motion 2. Backlink Correlate the local laser 3. Proof mass to Bench Measure PM to S/C motion 26

29 Local Reference Beat Ref Phase Meter Ref Compares local lasers: Laser counter-propagate through fiber One Beat Signal on each bench Requires reciprocity of fiber Fiber: Reciprocity of optical path? From Laser Bench Courtesy of the Albert Einstein Institute in Hannover 27

30 Local Interferometer Phase Meter S a = φ 1 (t) φ 2 (t)+ω 1 δl 1a ω 2 δl 2a S b = φ 1 (t) φ 2 (t)+ω 1 δl 1b ω 2 δl 2b To/From Other Bench Ref L 1a Phase Meter δl < 1 pm Hz 3 nm Hz on Bench δl 2b L 1b L 2a L 2b PM S a S b : measures changes in Bench to Proof mass distance From Pol. Laser Bench Wave plate Vacuum window 28

31 TDI for LISA LISA uses 18+ Signals: to cancel: Laser frequency noise Spacecraft motion 3 Types of IFO: 1. Bench to Bench Measure S/C to S/C motion 2. Backlink Correlate the local laser to generate: TDI Combinations Depend only on PM motion Length measurements are under control 3. Proof mass to Bench Measure PM to S/C motion 29

32 Half of the story... Critical Components: Lasers Switch board Telescopes Photo detectors Point Ahead Actuator... 30

33 Laser Concept Fiber Modulator Master Laser Fiber Amplifier 10-50mW 1-2W Laser: >1W Around 1064nm Single Frequency Single Mode Challenges: Shot noise limited 2MHz Phase fidelity of Ampl. Space qualified (Radiation,...) Lifetime 31

34 Laser Development Master laser: Tesat laser (LTP) Fiber laser ECDL Thermal cycl. of Fiber Laser Pictures: Courtesy of Kenji Numata, GSFC Phase Fidelity of Laser Amplifier: Initial test results Pictures: Courtesy of Gerhard Heinzel, AEI 32

35 Telescope 40cm Diameter 60cm Long 50nm Wavefront error 2 Concepts: On-axis Cassegrain pm/rthz stability um long term stability Scattered light from Secondary Schiefspiegler Off-axis, no direct scattered light Optical truss IFO Refocus mechanism Telescope requirements similar to Herschel and Silex telescopes 33

36 Half of the story... Critical Components: Lasers Telescopes Point Ahead Actuator Prototype has been successfully tested Photo detectors Experiments started at GSFC and AEI... Still many optical, mechanical, electrical components need to be tested, but So far, so good 34

37 The End 35

TDI Ranging for the GRACE-FO Laser Ranging Interferometer

TDI Ranging for the GRACE-FO Laser Ranging Interferometer TDI Ranging for the GRACE-FO Laser Ranging Interferometer Andrew Sutton Jet Propulsion Laboratory, California Institute of Technology Kirk McKenzie William Klipstien Brent Ware Robert Spero Glenn DeVine

More information

LISA mission design. Guido Mueller. APS April Meeting, Jan 30th, 2017, Washington DC

LISA mission design. Guido Mueller. APS April Meeting, Jan 30th, 2017, Washington DC LISA mission design Guido Mueller University of Florida APS April Meeting, Jan 30th, 2017, Washington DC 1 L3 from ESA s perspective 2013: Selection of L3 Science Theme by ESA The Gravitational Universe

More information

LISA Pathfinder measuring pico-meters and femto-newtons in space

LISA Pathfinder measuring pico-meters and femto-newtons in space LISA Pathfinder measuring pico-meters and femto-newtons in space M Hewitson for the LPF team Barcelona, February 15th 2012 Observing from Space 2 Observing from Space 2 Observing from Space Push down to

More information

KAGAYA studio. Status of DECIGO. Shuichi Sato Hosei University. For the DECIGO and the DPF collaboration

KAGAYA studio. Status of DECIGO. Shuichi Sato Hosei University. For the DECIGO and the DPF collaboration KAGAYA studio Status of DECIGO Shuichi Sato Hosei University For the DECIGO and the DPF collaboration Title Outline v DECIGO v DECIGO pathfinder v Mission status Idea of DECIGO v DECi-hertz Interferometer

More information

Space-based gravitational wave observatories

Space-based gravitational wave observatories elisa/ngo and LISA Pathfinder Max Planck Institute for Gravitational Physics Astroteilchenphysik-Tagung Zeuthen, 20.09.2012 Sources of gravitational waves Binary systems NS-NS, BH-BH, close WD Massive

More information

Developement and operation of an electro-optical gravitational waves detector simulator as part of the space mission elisa/ngo

Developement and operation of an electro-optical gravitational waves detector simulator as part of the space mission elisa/ngo gravitational space mission PhD student : Pierre Gruning Thesis director : Hubert Halloin Contents gravitational Contents gravitational Contents gravitational Contents gravitational Plan gravitational

More information

SPACECRAFT NAVIGATION AND MISSION SIMULATION

SPACECRAFT NAVIGATION AND MISSION SIMULATION TianQin Space-borne gravitational wave detector SPACECRAFT NAVIGATION AND MISSION SIMULATION December 9, 2015 - Prepared by Viktor T. Toth A PERSPECTIVE Precision navigation End-to-end mission simulation

More information

Progress towards a high dimensional stability telescope for gravitational wave detection

Progress towards a high dimensional stability telescope for gravitational wave detection Progress towards a high dimensional stability telescope for gravitational wave detection Shannon Sankar shannon.r.sankar@nasa.gov USRA/CRESST/GSFC Jeffrey Livas (PI), Peter Blake, Joseph Howard, Garrett

More information

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Jeff Livas for the US LISA Telescope Team NASA Goddard Space Flight Center Greenbelt, MD 20771 Nov 2017 Telescope Team GSFC

More information

The preliminary analysis of Tianqin mission and developments of key technologies

The preliminary analysis of Tianqin mission and developments of key technologies The3 rd KAGRA International Workshop The preliminary analysis of Tianqin mission and developments of key technologies Hsien-Chi Yeh Tianqin Research Center for Gravitational Physics Sun Yat-sen University

More information

The Stanford Gravitational Reference Sensor

The Stanford Gravitational Reference Sensor The Stanford Gravitational Reference Sensor S. Buchman, B. Allard, G. Allen, R. Byer, W. Davis, D. DeBra, D. Gill, J. Hanson, G.M. Keiser, D. Lauben, I. Mukhar, N. A. Robertson, B. Shelef, K. Sun, S. Williams

More information

Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics

Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics Template reference : 100181670S-EN Stefano Cesare, Thales Alenia Space Italia, Torino Workshop GG/GGG: state of the

More information

Control of the Laser Interferometer Space Antenna

Control of the Laser Interferometer Space Antenna Control of the Laser Interferometer Space Antenna P. G. Maghami, T. T. Hyde NASA Goddard Space Flight Center Guidance, Navigation and Control Division Greenbelt, MD 20771 J. Kim Swales Aerospace, Inc.

More information

Preparation of the data analysis of the gravitational wave space antenna.

Preparation of the data analysis of the gravitational wave space antenna. Preparation of the data analysis of the gravitational wave space antenna. 1) LISA (Laser Interferometer Space Antenna) Why? 2)How? 1 Frequency Limitation Seismic noise cannot be cancelled at low-frequency

More information

1

1 Daniel.Schuetze@aei.mpg.de 1 Satellite gravimetry Mapping the global gravity field Static and dynamic components Many applications in geosciences Techniques Orbit determination and tracking Satellite-to-satellite

More information

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1 Fundamental Physics in Space S. Vitale, University of Trento Vitale@science.unitn.it ESO-Garching-15-09-03 S. Vitale 1 Using Space to Investigate Fundamental Laws of Physics: Quantum measurements, entanglement,

More information

arxiv: v1 [astro-ph.im] 16 Jun 2009

arxiv: v1 [astro-ph.im] 16 Jun 2009 TOPICAL REVIEW LISA technology and instrumentation arxiv:0906.2901v1 [astro-ph.im] 16 Jun 2009 O Jennrich 1 ESA/ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands E-mail: oliver.jennrich@esa.int Abstract.

More information

Thermal experiments in LISA Pathfinder: preparing for operations. Ferran Gibert

Thermal experiments in LISA Pathfinder: preparing for operations. Ferran Gibert Thermal experiments in LISA Pathfinder: preparing for operations Ferran Gibert 5th IGWM, Barcelona, May 13th 2015 LISA Pathfinder overview ESA mission with NASA collaboration to fly this year (!!!) Technology

More information

Squeezed Light Techniques for Gravitational Wave Detection

Squeezed Light Techniques for Gravitational Wave Detection Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory Seminar at TIFR, Mumbai, India G1200688-v1 Squeezed Light Interferometry 1 Abstract Several

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

Shally Saraf, Stanford University

Shally Saraf, Stanford University LAser GRavitational-wave ANtenna in GEocentric Orbit Shally Saraf, Stanford University for the LAGRANGE team Background LAser GRavitational-wave ANtenna in GEocentric Orbit was proposed originally as a

More information

Observing the gravitational universe from space

Observing the gravitational universe from space Observing the gravitational universe from space Peter Wass Tim Sumner, Daniel Hollington, Jonathon Baird High Energy Physics Group Imperial Space Lab 29 September 2015 Gravitational Waves Gravitational

More information

2 Each satellite will have two test masses, each being the end mirror for an interferometer.

2 Each satellite will have two test masses, each being the end mirror for an interferometer. Ground Testing for LISA Test Masses with a Torsion Pendulum Matthew Schmidt Valdosta State University International REU: University of Trento, Italy Advisor: Dr. Bill Weber Abstract: One of the most important

More information

Astrophysics & Gravitational Physics with the LISA Mission

Astrophysics & Gravitational Physics with the LISA Mission Astrophysics & Gravitational Physics with the LISA Mission Peter L. Bender JILA, University of Colorado, and NIST Workshop on Robotic Science from the Moon Boulder, CO 5-6 October, 2010 LISA Overview The

More information

Pioneer anomaly: Implications for LISA?

Pioneer anomaly: Implications for LISA? Pioneer anomaly: Implications for LISA? Denis Defrère Astrophysics and Geophysics Institute of Liege (Belgium) Andreas Rathke EADS Astrium GmbH Friedrichshafen (Germany) ISSI Meeting - Bern November 10th

More information

Exploring the Gravitational Wave Universe Challenges for a LISA Successor

Exploring the Gravitational Wave Universe Challenges for a LISA Successor Exploring the Gravitational Wave Universe Challenges for a LISA Successor H Ward University of Glasgow Cosmic Vision 2015 2025 Paris 15 th September 2004 With contributions from : P Bender, K Danzmann,

More information

Stanford, Space Gravity Research Group

Stanford, Space Gravity Research Group Stanford, Space Gravity Research Group John W. Conklin, Sasha Buchman, and Robert Byer Gravitational science Earth observation: Geodesy, aeronomy Gravity-waves 1 Space Gravity Technology Development Drag-free

More information

GEO 600: Advanced Techniques in Operation

GEO 600: Advanced Techniques in Operation GEO 600: Advanced Techniques in Operation Katherine Dooley for the GEO team DCC# G1400554-v1 LISA Symposium X Gainesville, FL May 21, 2014 GEO600 Electronics shop Corner building Operator's station Offices

More information

DECIGO and DECIGO Pathfinder

DECIGO and DECIGO Pathfinder DECIGO and DECIGO Pathfinder Tomotada Akutsu National Astronomical Observatory of Japan on behalf of DECIGO working group Contents 1. DECIGO - Overview - Roadmap - Current status 2. DECIGO Pathfinder (DPF)

More information

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS)

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS) Microgravity White Paper Decadal Survey on Biological and Physical Sciences in Space Fundamental Physics Sciences (FPS) Applied Physical Sciences (APS) Nanosat Science Instruments for Modular Gravitational

More information

Section E. Mission Implementation Plan

Section E. Mission Implementation Plan Section E. Mission Implementation Plan This section addresses the implementation of the LISA science requirements presented in Section D. The LISA mission builds on a solid foundation of gravitational

More information

LISA Pathfinder Coldgas Thrusters

LISA Pathfinder Coldgas Thrusters LISA Pathfinder Coldgas Thrusters Joseph Martino/Eric Plagnol - LPF collaboration Lisa Symposium September 2016 Zurich Outline System Description External Disturbances and thruster noise In Flight dedicated

More information

Lab Characterization of the LISA Pathfinder Optical Metrology System

Lab Characterization of the LISA Pathfinder Optical Metrology System Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute) Lab Characterization of the LISA Pathfinder Optical Metrology System Keeley Criswell Adviser: Martin Hewitson 8/11/2014 LISA Pathfinder

More information

LISA. William Joseph Weber Dipartimento di Fisica, Università di Trento. 4 th VESF School on Gravitational Waves VIRGO Cascina 28 May 2009

LISA. William Joseph Weber Dipartimento di Fisica, Università di Trento. 4 th VESF School on Gravitational Waves VIRGO Cascina 28 May 2009 LISA William Joseph Weber Dipartimento di Fisica, Università di Trento LISA / LISA Pathfinder Project 4 th VESF School on Gravitational Waves VIRGO Cascina 28 May 2009 Laser Interferometer Space Antenna

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Ray Frey, University of Oregon 1. GW Physics and Astrophysics 2. How to detect GWs The experimental challenge 3. Prospects June 16, 2004 R. Frey QNet 1 General Relativity Some

More information

Listening to the Universe

Listening to the Universe Listening to the Universe with Gravitational Waves: LISA and LISA Pathfinder Karsten Danzmann Albert Einstein Institut Hannover: MPI für Gravitationsphysik sik and Universität Hannover with input from

More information

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu Drag free concept and applications

More information

Gravitational & Planetary Research Program

Gravitational & Planetary Research Program 2012 Gravitational & Planetary Research Program Goals Why? Relativity, Gravitational Waves, Geodesy, Aeronomy Space Technology Education and Training: STEM Team Who? NASA Universities Industry Foreign

More information

DECIGO and DECIGO Pathfiner

DECIGO and DECIGO Pathfiner DECIGO and DECIGO Pathfiner DPF Fig by M.Ando Tomotada Akutsu National Astronomical Observatory of Japan on behalf of DECIGO Working Group GWADW2011 in Isola d Elba, Italy (24 May 2011) Contents 1. DECIGO

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

From an experimental idea to a satellite

From an experimental idea to a satellite From an experimental idea to a satellite Hansjörg Dittus Institute of Space Systems, Bremen German Aerospace Center Looking back in History Yukawa potential Gravity at large scales Weak gravity Nordtvedt

More information

LISA Pathfinder: experiment details and results

LISA Pathfinder: experiment details and results LISA Pathfinder: experiment details and results Martin Hewitson on behalf of the LPF Collaboration On December 3rd 2015 at 04:04 UTC, the European Space Agency launched the LISA Pathfinder satellite on

More information

Time-Delay Interferometry

Time-Delay Interferometry Time-Delay Interferometry John Armstrong, Frank Estabrook, and Massimo Tinto Jet Propulsion Laboratory, California Institute of Technology Reminder about noise sources and spectra Time-Delay-Interferometry

More information

LIG: a miniature 10 pm accuracy Laser Interferometer Gauge Report of work performed under ESA contract ITI /16/NL/MH/GM

LIG: a miniature 10 pm accuracy Laser Interferometer Gauge Report of work performed under ESA contract ITI /16/NL/MH/GM LIG: a miniature 10 pm accuracy Laser Interferometer Gauge Report of work performed under ESA contract ITI 4000116275/16/NL/MH/GM Written by Anna M. Nobili, Marco Pisani & Massimo Zucco March 2017; Final

More information

An ultra-stable thermal environment in high precision optical metrology

An ultra-stable thermal environment in high precision optical metrology An ultra-stable thermal environment in high precision optical metrology Alejandro Torrents Rufas Outline GRLOW Mach Zehnder Interferometer Ultra-stable thermal environment OPTOMETER Passive thermal shields

More information

CLIO. Presenter : : Shinji Miyoki. S.Telada (AIST) A.Yamamoto, T.Shintomi (KEK) and CLIO collaborators

CLIO. Presenter : : Shinji Miyoki. S.Telada (AIST) A.Yamamoto, T.Shintomi (KEK) and CLIO collaborators CLIO Presenter : : Shinji Miyoki T.Uchiyama, K.Yamamoto, T.Akutsu M.Ohashi, K.Kuroda,,,(ICRR) S.Telada (AIST) T.Tomaru, T.Suzuki, T.Haruyama. N.Sato, A.Yamamoto, T.Shintomi (KEK) and CLIO collaborators

More information

Advanced accelerometer/gradiometer concepts based on atom interferometry

Advanced accelerometer/gradiometer concepts based on atom interferometry Advanced accelerometer/gradiometer concepts based on atom interferometry Malte Schmidt, Alexander Senger, Matthias Hauth, Sebastian Grede, Christian Freier, Achim Peters Humboldt-Universität zu Berlin

More information

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System B. Christophe (ONERA, Châtillon, France) on behalf of the GAP Instrument

More information

TOBA: Torsion-Bar Antenna

TOBA: Torsion-Bar Antenna TOBA: Torsion-Bar Antenna Small-scale TOBA at Tokyo Small-scale TOBA at Kyoto SWIM on SDS-1 satellite Masaki Ando (National Astronomical Observatory) K.Ishidoshiro, A.Shoda, K.Okada, W.Kokuyama, K.Yagi,

More information

Spacetime Metrology with LISA Pathfinder

Spacetime Metrology with LISA Pathfinder Spacetime Metrology with LISA Pathfinder Giuseppe Congedo Department of Physics University of Trento Advisors: Prof. Stefano Vitale Dr. Mauro Hueller A thesis submitted for the degree of PhilosophiæDoctor

More information

Testing GR with LISA Pathfinder, BBO, and Other Future Projects

Testing GR with LISA Pathfinder, BBO, and Other Future Projects Testing GR with LISA Pathfinder, BBO, and Other Future Projects Bernard Schutz Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam, Germany (thanks to K Danzmann, J Magueijo)

More information

Measurement of Angular Stray DC Potentials for. Test Masses in LISA Pathfinder

Measurement of Angular Stray DC Potentials for. Test Masses in LISA Pathfinder Measurement of Angular Stray DC Potentials for Test Masses in LISA Pathfinder Michael Aitken Università degli Studi di Trento European Space Agency University of Florida August 9, 2016 Abstract Launched

More information

Gravitational Waves & Precision Measurements

Gravitational Waves & Precision Measurements Gravitational Waves & Precision Measurements Mike Smith 1 -20 2 HOW SMALL IS THAT? Einstein 1 meter 1/1,000,000 3 1,000,000 smaller Wavelength of light 10-6 meters 1/10,000 4 10,000 smaller Atom 10-10

More information

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova Sensitivity limits of atom interferometry gravity gradiometers and strainmeters Fiodor Sorrentino INFN Genova 1 Outline AI sensors, state of the art performance Main noise sources Potential improvements

More information

LISA: THE LASER INTERFEROMETER SPACE ANTENNA

LISA: THE LASER INTERFEROMETER SPACE ANTENNA LISA: THE LASER INTERFEROMETER SPACE ANTENNA Masimo Tinto Jet Propulsion Laboratory, California Institute of Technology Abstract The Laser Interferometer Space Antenna (LISA) is a deep-space mission, jointly

More information

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G1201293 Outline Introduction: What are Gravitational Waves? The brief

More information

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University Atom Interferometry for Detection of Gravitational Waves Mark Kasevich Stanford University kasevich@stanford.edu Atom-based Gravitational Wave Detection Why consider atoms? 1) Neutral atoms are excellent

More information

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas 4 th international LISA Symposium July 22, 2002 @ Penn State University Seiji Kawamura National Astronomical

More information

Time-delay Interferometry (TDI) for LISA

Time-delay Interferometry (TDI) for LISA Time-delay Interferometry (TDI) for LISA Sanjeev Dhurandhar IUCAA, Pune TAMA Symposium 19 Feb 5 Plan of the Talk Introduction: LISA GW sources for LISA Laser phase noise cancellation problem Theoretical

More information

6WDWXVRI/,*2. Laser Interferometer Gravitational-wave Observatory. Nergis Mavalvala MIT IAU214, August 2002 LIGO-G D

6WDWXVRI/,*2. Laser Interferometer Gravitational-wave Observatory. Nergis Mavalvala MIT IAU214, August 2002 LIGO-G D 6WDWXVRI/,*2 Laser Interferometer Gravitational-wave Observatory Hanford, WA Livingston, LA Nergis Mavalvala MIT IAU214, August 2002 *UDYLWDWLRQDOZDYH,QWHUIHURPHWHUVWKHSULQ LSOH General Relativity (Einstein

More information

ARCHIVED REPORT. For data and forecasts on current programs please visit or call

ARCHIVED REPORT. For data and forecasts on current programs please visit  or call Space Systems Forecast - Satellites & Spacecraft ARCHIVED REPORT For data and forecasts on current programs please visit www.forecastinternational.com or call +1 203.426.0800 Outlook renamed New Gravitational

More information

Space Gravitational-Wave Antenna DECIGO

Space Gravitational-Wave Antenna DECIGO Space Gravitational-Wave Antenna DECIGO Original Picture : Sora Masaki Ando (Department of Physics, Kyoto University) Wataru Kokuyama (Department of Physics, University of Tokyo) On behalf of DECIGO working

More information

Mechanisation of Precision Placement and Catalysis Bonding of Optical Components. Christian Killow ICSO 2016, 21 st October

Mechanisation of Precision Placement and Catalysis Bonding of Optical Components. Christian Killow ICSO 2016, 21 st October Mechanisation of Precision Placement and Catalysis Bonding of Optical Components Christian Killow ICSO 2016, 21 st October Overview Gravitational Waves Detecting Gravitational Waves LISA Pathfinder Technology

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

The Quantum Limit and Beyond in Gravitational Wave Detectors

The Quantum Limit and Beyond in Gravitational Wave Detectors The Quantum Limit and Beyond in Gravitational Wave Detectors Gravitational wave detectors Quantum nature of light Quantum states of mirrors Nergis Mavalvala GW2010, UMinn, October 2010 Outline Quantum

More information

Laser Interferometer Space Antenna Listening to the Universe with Gravitational Waves

Laser Interferometer Space Antenna Listening to the Universe with Gravitational Waves Laser Interferometer Space Antenna Listening to the Universe with Gravitational Waves Scott E Pollack for the LISA team UW General Relativity Labs AAPT Workshop GSFC - JPL 5 January 2007 Outline LISA Overview

More information

Technology Readiness Level:

Technology Readiness Level: Technology Readiness Level: We plan to raise the TRL of the model with an acceleration noise performance requirement of < 10-12 m sec -2 Hz -1/2 at frequencies between 1 mhz and 1 Hz, from TRL 3 to TRL

More information

Optical Interferometry for Gravitational Wave Detection

Optical Interferometry for Gravitational Wave Detection Fundamentals of Optical Interferometry for Gravitational Wave Detection Yanbei Chen California Institute of Technology Gravitational Waves 2 accelerating matter oscillation in space-time curvature Propagation

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor

Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor Yongkang Dong, Xiaoyi Bao,* and Wenhai Li Fiber Optical Group, Department

More information

From the first results of LISAPathfinder to LISA : First step to observing gravitational wave from space

From the first results of LISAPathfinder to LISA : First step to observing gravitational wave from space From the first results of LISAPathfinder to LISA : First step to observing gravitational wave from space Antoine Petiteau AstroParticule et Cosmologie Université Paris-Diderot Journée GPhys APC-Paris 6th

More information

Progress on the Design of the Magnetic Field Measurement System for elisa

Progress on the Design of the Magnetic Field Measurement System for elisa Progress on the Design of the Magnetic Field Measurement System for elisa Ignacio Mateos Instituto de Ciencias del Espacio (CSIC-IEEC) Barcelona 10 th International LISA Symposium University of Florida,

More information

An Overview of Advanced LIGO Interferometry

An Overview of Advanced LIGO Interferometry An Overview of Advanced LIGO Interferometry Luca Matone Columbia Experimental Gravity group (GECo) Jul 16-20, 2012 LIGO-G1200743 Day Topic References 1 2 3 4 5 Gravitational Waves, Michelson IFO, Fabry-Perot

More information

Direct MOND/TEVES test with LISA Pathfinder

Direct MOND/TEVES test with LISA Pathfinder Direct MOND/TEVES test with LISA Pathfinder Christian Trenkel and Steve Kemble Astrium Ltd, Stevenage, UK Joao Magueijo and Neil Bevis Imperial College, London, UK Fabrizio io demarchi and Giuseppe Congedo

More information

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency The ACES Mission Fundamental Physics Tests with Cold Atom Clocks in Space L. Cacciapuoti European Space Agency La Thuile, 20-27 March 2011 Gravitational Waves and Experimental Gravity 1 ACES Mission Concept

More information

Fundamentals: Frequency & Time Generation

Fundamentals: Frequency & Time Generation Fundamentals: Frequency & Time Generation Dominik Schneuwly Oscilloquartz SA slide 1 v.1.0 24/10/12 SCDO Content 1. Fundamentals 2. Frequency Generation Atomic Cesium Clock (Cs) Rubidium Oscillator (Rb)

More information

Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer

Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer Daniel Schütze on behalf of the LRI team Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and

More information

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005 Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes Irwin Shapiro 21 October 2005 Translation of Title (a.k.a Outline) Tests of the (Weak) Equivalence Principle

More information

LISA Pathfinder pico-metres and femto-newtons in space

LISA Pathfinder pico-metres and femto-newtons in space LISA Pathfinder pico-metres and femto-newtons in space M Hewitson for the LPF team The LPF Mission 2 The LPF Mission Technology demonstrator for a GW Observatory in Space (LISA-like design): micro-newton

More information

In-flight thermal experiments for LISA Pathfinder

In-flight thermal experiments for LISA Pathfinder , on behalf the LTPDA team Institut de Cie ncies de l Espai (ICE-CSIC/IEEC) Barcelona th LISA Symposium Gainesville, Florida, USA 1 Thermal Diagnostics in LISA Pathfinder Temperature noise in LISA Pathfinder

More information

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05 Overview Ground-based Interferometers Barry Barish Caltech Amaldi-6 20-June-05 TAMA Japan 300m Interferometer Detectors LIGO Louisiana 4000m Virgo Italy 3000m AIGO Australia future GEO Germany 600m LIGO

More information

Status and Prospects for LIGO

Status and Prospects for LIGO Status and Prospects for LIGO Crab Pulsar St Thomas, Virgin Islands Barry C. Barish Caltech 17-March-06 LIGO Livingston, Louisiana 4 km 17-March-06 Confronting Gravity - St Thomas 2 LIGO Hanford Washington

More information

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves. Gravitational Wave Astronomy With LISA Rajesh Kumble Nayak, IISER-Kolkata Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

More information

arxiv: v2 [astro-ph.im] 21 Nov 2018

arxiv: v2 [astro-ph.im] 21 Nov 2018 Analytic Model and Simulations of Residual Laser Noise after Time-Delay Interferometry in LISA Jean-Baptiste Bayle, Marc Lilley, Antoine Petiteau, Hubert Halloin APC, Université Paris Diderot, CNRS/INP3,

More information

STABILITY OF MATERIALS FOR USE IN SPACE-BASED INTERFEROMETRIC MISSIONS

STABILITY OF MATERIALS FOR USE IN SPACE-BASED INTERFEROMETRIC MISSIONS STABILITY OF MATERIALS FOR USE IN SPACE-BASED INTERFEROMETRIC MISSIONS By ALIX PRESTON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration Advanced Virgo: Status and Perspectives A.Chiummo on behalf of the VIRGO collaboration Advanced Virgo 2 Advanced Virgo What s that? 3 Advanced Virgo Advanced Virgo (AdV): upgrade of the Virgo interferometric

More information

Development of ground based laser interferometers for the detection of gravitational waves

Development of ground based laser interferometers for the detection of gravitational waves Development of ground based laser interferometers for the detection of gravitational waves Rahul Kumar ICRR, The University of Tokyo, 7 th March 2014 1 Outline 1. Gravitational waves, nature & their sources

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

System optimization of a long-range Brillouin-loss-based distributed fiber sensor System optimization of a long-range Brillouin-loss-based distributed fiber sensor Yongkang Dong, 1,2 Liang Chen, 1 and Xiaoyi Bao 1, * 1 Fiber Optics Group, Department of Physics, University of Ottawa,

More information

Advanced LIGO Status Report

Advanced LIGO Status Report Advanced LIGO Status Report Gregory Harry LIGO/MIT On behalf of the LIGO Science Collaboration 22 September 2005 ESF PESC Exploratory Workshop Perugia Italy LIGO-G050477 G050477-00-R Advanced LIGO Overview

More information

Gravitational wave detection. K.A. Strain

Gravitational wave detection. K.A. Strain Gravitational wave detection K.A. Strain Contents gravitational waves: introduction sources of waves, amplitudes and rates basics of GW detection current projects future plans and hopes Gravitational Waves:

More information

Discovery of Gravita/onal Waves

Discovery of Gravita/onal Waves Discovery of Gravita/onal Waves Avto Kharchilava QuarkNet Workshop, August 2016 https://www.ligo.caltech.edu/news/ligo20160211 Gravity Einstein s General theory of relativity: Gravity is a manifestation

More information

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago Gravitational wave cosmology Lecture 2 Daniel Holz The University of Chicago Thunder and lightning Thus far we ve only seen the Universe (and 95% of it is dark: dark matter and dark energy). In the the

More information

Low-coherence heterodyne photon correlation spectroscopy

Low-coherence heterodyne photon correlation spectroscopy Low-coherence heterodyne photon correlation spectroscopy J.H. Johnson, S.L. Siefken, A. Schmidt, R. Corey, and P. Saulnier Department of Physics, Gustavus Adolphus College Saint Peter, MN 56082 ABSTRACT

More information

Searching for Stochastic Gravitational Wave Background with LIGO

Searching for Stochastic Gravitational Wave Background with LIGO Searching for Stochastic Gravitational Wave Background with LIGO Vuk Mandic University of Minnesota 09/21/07 Outline LIGO Experiment:» Overview» Status» Future upgrades Stochastic background of gravitational

More information

On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna)

On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna) On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna) Dr. SUCHETA KOSHTI IISER, Pune, India. ICSW-7, IPM, Tehran,Iran Jun4, 27 Motivation Einstein s General theory of relativity (GR)

More information

ESA activities towards the Gravitation Waves Space Observatory

ESA activities towards the Gravitation Waves Space Observatory ESA activities towards the Gravitation Waves Space Observatory Frédéric Safa ESA Science Directorate, Future Missions LISA Symposium, Zurich 2016 The Gravitation Wave Observatory in ESA Science Programme

More information

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms Construction of an absolute gravimeter using atom interferometry with cold 87 Rb atoms Patrick Cheinet Julien Le Gouët Kasper Therkildsen Franck Pereira Dos Santos Arnaud Landragin David Holleville André

More information