TDI Ranging for the GRACE-FO Laser Ranging Interferometer

Size: px
Start display at page:

Download "TDI Ranging for the GRACE-FO Laser Ranging Interferometer"

Transcription

1 TDI Ranging for the GRACE-FO Laser Ranging Interferometer Andrew Sutton Jet Propulsion Laboratory, California Institute of Technology Kirk McKenzie William Klipstien Brent Ware Robert Spero Glenn DeVine Samuel Francis Daniel Shaddock David McClelland

2 2 LEGOP Activities Funded NASA ROSES APRA (Dec. 2012) Research Opportunities in Space and Earth Sciences, Astrophysics Research and Analysis Program 11-APRA GRACE (Since 2002) GRACE-FO YEAR LISA PATHFINDER LEGOP ` (APRA grant) Flight LEGOP Experiment (Not supported by APRA proposal) Gravitational-Wave Astronomy Mission (Late 2020 s?) Develop interesting LISA technology experiments that can be demonstrated on GRACE-FO. Time Delay Interferometry with Optical Ranging, and Arm Locking. Simulate/demonstrate experiments with the GRACE-FO conditions and hardware. Utilise existing LISA Interferometry Testbed, Prototype algorithms & hardware.

3 Time Delay Interferometry TDI combinations rely upon relaying frequency noise between links. -- synthetic interferometer arms -- 3

4 4 GRACE-FO LRI Quadrant Photodiode Phasemeter To other SC Local Laser SC A ~200km SC B CM Measurement Axis Triple Mirror Assembly Steering Mirror Cavity Error Microwave Instrument Point-to-point measurements are combined to measure the round-trip displacement SC A ~200km SC B From other SC

5 Time Delay Interferometry Recover `active transponder architecture in post-processing 5

6 Time Delay Interferometry TDI is limited by delay knowledge GRACE-FO allows testing of TDI algorithms with a significant delay (~ms) & delay fluctuations (~30%) >> requirement (~ns) => LRI has NO explicit absolute ranging (GPS ) TDI Ranging (TDIR) Implicit TDI Ranging Minimise RMS over regions without range signal (laser freq. noise limited) Tone Assisted Minimise In-band frequency modulation upon noisy laser. 6

7 7 TDI in GRACE-FO GRACE Microwave ranging data (1-4 Jan. 2012) Displacement Amplitude Spectral Density (m/ Hz) Spacecraft A Cavity Stabilised GRACE-FO LRI Requirement Spacecraft B TDI (6 ns Error) Spacecraft B Free-running ~10 9 Suppression of free-running laser Microwave Thermal Noise (5 μm/ Hz) 10-8 Spacecraft A TDI Frequency (Hz)

8 GRACE-FO Simulation GRACE Range Range Spectrum (m/ Hz) Stabilised Master Laser Free-running Slave Laser Single Link Shot Noise Frequency (Hz) 8

9 GRACE-FO Simulation GRACE Range Range Spectrum (m/ Hz) Stabilised Master Laser Residual Master Laser Frequency Noise Free-running Slave Laser Δτ << 6 ns Single Link Shot Noise Frequency (Hz) 9

10 GRACE-FO Simulation GRACE Range + Simulation TDI Ranging Tone Range Spectrum (m/ Hz) Stabilised Master Laser Residual Master Laser Frequency Noise Free-running Slave Laser Single Link Shot Noise Frequency (Hz) 10

11 GRACE-FO Simulation GRACE Range + Simulation TDI Ranging Tone Range Spectrum (m/ Hz) Stabilised Master Laser GRACE-FO LRI Requirement Residual Master Laser Frequency Noise Free-running Slave Laser Single Link Shot Noise Frequency (Hz) 11

12 12 GRACE-FO Simulation Iteration: Window SC i data Nelder-Mead simplex Derivative-sensing FFT for delay error 1) Form un-interpolated combination - No orbit or GPS knowledge. 2) Displacement gives higher order delay terms - Iterate to fit delay. 3) Feed range estimate to smoothing & prediction filter 4) Generate TDI data product.

13 13 GRACE-FO Simulation SC 1 Range SC 2 Range Un-interpolated DOWR Interpolated DOWR DOWR Residual Theory Residual

14 14 GRACE-FO Simulation Residual Range - - Meets 2m requirement - -

15 15 GRACE-FO Simulation Structure in the ranging error is imposed onto the TDI tone. Range delay Changing phase delay Phase modulation Structure from orbital tone & harmonics. Broadband error from white noise + smoothing filter. Ranging Tone SC 1 Range SC 2 Range Un-interpolated DOWR Interpolated DOWR DOWR Residual Theory Residual

16 TDI Testbed Stablised Master + free-running Slave λ/2 Nd:YAG M Generate signals with real optical delay. O E λ/4 EO Nd:YAG M PBS PBS PD0a Add a displacement signal. PM PD1a Sense the delay using TDI Ranging. PD2a PM Nd:YAG Sensitive to optical pathλ/4length PBS λ/4 PD0b PM PD1b PD2b PM Nd:YAG PBS λ/4 α Zero-area Sagnac Interferometer λ/2 Fiber delay: 150 ns Dummy Spacecraft A P0 Truth frequency measurement Dummy Spacecraft B G. de Vine et al. Phys. Rev. Let. 104(21) (2010) ULE Glass Cavity Laser 1 Master Spacecraft Dual One-Way Range p12(t) + + p0(t) 0.85Hz p21(t) 30m optical fiber Truth Laser 2 Slave Spacecraft Displacement Signal 16

17 TDI Testbed LRI prototype phase measurement & locking Displacement injected via Sagnac phaselocking ULE bench. Out-of-loop measurement to subtract displacement signal. φ cw (t) φ' ccw (t)+d(t) Laser D1 ULE Glass Cavity Laser 1 Master Spacecraft p 12 (t) p 0 (t) + + φ ccw (t) φ' cw (t)+d(t) ADC 40 MHZ Phase Locker - Laser D2 0.85Hz p 21 (t) 30m optical fiber Phase Locker + + Laser 2 Slave Spacecraft Displacement Signal D(t) Displacement Signal 17

18 18 TDI Testbed: RESULTS P0 DOWR Int DOWR Int. Alpha Corrected Alpha PhaseLocking Req Master A cavity stabilized Slave A Free-running with a 0.85Hz tone. Phase noise [ cycles / Hz] Frequency [Hz]

19 19 TDI Testbed: RESULTS P0 DOWR Int DOWR Int. Alpha Corrected Alpha PhaseLocking Req TDIr Tone Master A cavity stabilized Slave A Free-running with a 0.85Hz tone. Phase noise [ cycles / Hz] Displacement Signal DOWR has a 0.18mHz tone added through Sagnac phaselock. TDIR finds Interpolated DOWR Frequency [Hz]

20 TDI Testbed: RESULTS P0 DOWR Int DOWR Int. Alpha Corrected Alpha PhaseLocking Req Master A cavity stabilized Slave A Free-running with a 0.85Hz tone. Phase noise [ cycles / Hz] DOWR has a 0.18mHz tone added through Sagnac phaselock. TDIR finds Interpolated DOWR. Delay used to Interpolate Alpha 10 Corrected Alpha is formed by subtracting the injected displacement Frequency [Hz] Δτ<6ns: Meets GRACE-FO Phaselocking Requirement 20

21 21 Conclusion develop in-flight tests of core-techniques and high-risk elements of laser interferometry for a future space-based gravitational-wave astronomy mission for deployment on the GRACE Follow-On (GRACE-FO) mission, using that mission s optical technology package as a Mission of Opportunity. Simulation Shows operation of Tone-Assisted TDI ranging for GRACE-FO. Demonstrated suppression of laser frequency noise. Experiment Demonstrated < 6ns ranging error using Tone-Assisted TDI Ranging. Displacement signal injection via Sagnac phase locking. Non-reciprocal displacement noise limited This project was funded under NASA ROSES-APRA Grant 11-APRA

LISA Technology: A Status Report

LISA Technology: A Status Report LISA Technology: A Status Report Guido Mueller University of Florida Minnesota 2010 1 Content LISA Concept Gravitational Reference Sensor Interferometry Measurement System Status/Outlook 2 LISA Concept

More information

LISA Pathfinder measuring pico-meters and femto-newtons in space

LISA Pathfinder measuring pico-meters and femto-newtons in space LISA Pathfinder measuring pico-meters and femto-newtons in space M Hewitson for the LPF team Barcelona, February 15th 2012 Observing from Space 2 Observing from Space 2 Observing from Space Push down to

More information

1

1 Daniel.Schuetze@aei.mpg.de 1 Satellite gravimetry Mapping the global gravity field Static and dynamic components Many applications in geosciences Techniques Orbit determination and tracking Satellite-to-satellite

More information

Preparation of the data analysis of the gravitational wave space antenna.

Preparation of the data analysis of the gravitational wave space antenna. Preparation of the data analysis of the gravitational wave space antenna. 1) LISA (Laser Interferometer Space Antenna) Why? 2)How? 1 Frequency Limitation Seismic noise cannot be cancelled at low-frequency

More information

Space-based gravitational wave observatories

Space-based gravitational wave observatories elisa/ngo and LISA Pathfinder Max Planck Institute for Gravitational Physics Astroteilchenphysik-Tagung Zeuthen, 20.09.2012 Sources of gravitational waves Binary systems NS-NS, BH-BH, close WD Massive

More information

Pioneer anomaly: Implications for LISA?

Pioneer anomaly: Implications for LISA? Pioneer anomaly: Implications for LISA? Denis Defrère Astrophysics and Geophysics Institute of Liege (Belgium) Andreas Rathke EADS Astrium GmbH Friedrichshafen (Germany) ISSI Meeting - Bern November 10th

More information

SPACECRAFT NAVIGATION AND MISSION SIMULATION

SPACECRAFT NAVIGATION AND MISSION SIMULATION TianQin Space-borne gravitational wave detector SPACECRAFT NAVIGATION AND MISSION SIMULATION December 9, 2015 - Prepared by Viktor T. Toth A PERSPECTIVE Precision navigation End-to-end mission simulation

More information

LISA: THE LASER INTERFEROMETER SPACE ANTENNA

LISA: THE LASER INTERFEROMETER SPACE ANTENNA LISA: THE LASER INTERFEROMETER SPACE ANTENNA Masimo Tinto Jet Propulsion Laboratory, California Institute of Technology Abstract The Laser Interferometer Space Antenna (LISA) is a deep-space mission, jointly

More information

Elimination of Clock Jitter Noise in Spaceborn Laser Interferometers

Elimination of Clock Jitter Noise in Spaceborn Laser Interferometers Elimination of Clock Jitter Noise in Spaceborn Laser Interferometers Ronald W. Hellings Jet Propulsion Laboratory, California Institute of Technology Pasadena, California 91109 ABSTRACT: Space gravitational

More information

Time-Delay Interferometry

Time-Delay Interferometry Time-Delay Interferometry John Armstrong, Frank Estabrook, and Massimo Tinto Jet Propulsion Laboratory, California Institute of Technology Reminder about noise sources and spectra Time-Delay-Interferometry

More information

Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics

Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics Template reference : 100181670S-EN Stefano Cesare, Thales Alenia Space Italia, Torino Workshop GG/GGG: state of the

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

Exploring the Gravitational Wave Universe Challenges for a LISA Successor

Exploring the Gravitational Wave Universe Challenges for a LISA Successor Exploring the Gravitational Wave Universe Challenges for a LISA Successor H Ward University of Glasgow Cosmic Vision 2015 2025 Paris 15 th September 2004 With contributions from : P Bender, K Danzmann,

More information

Developement and operation of an electro-optical gravitational waves detector simulator as part of the space mission elisa/ngo

Developement and operation of an electro-optical gravitational waves detector simulator as part of the space mission elisa/ngo gravitational space mission PhD student : Pierre Gruning Thesis director : Hubert Halloin Contents gravitational Contents gravitational Contents gravitational Contents gravitational Plan gravitational

More information

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1 Fundamental Physics in Space S. Vitale, University of Trento Vitale@science.unitn.it ESO-Garching-15-09-03 S. Vitale 1 Using Space to Investigate Fundamental Laws of Physics: Quantum measurements, entanglement,

More information

LISA Pathfinder Coldgas Thrusters

LISA Pathfinder Coldgas Thrusters LISA Pathfinder Coldgas Thrusters Joseph Martino/Eric Plagnol - LPF collaboration Lisa Symposium September 2016 Zurich Outline System Description External Disturbances and thruster noise In Flight dedicated

More information

Shally Saraf, Stanford University

Shally Saraf, Stanford University LAser GRavitational-wave ANtenna in GEocentric Orbit Shally Saraf, Stanford University for the LAGRANGE team Background LAser GRavitational-wave ANtenna in GEocentric Orbit was proposed originally as a

More information

Characterization of Picometer Repeatability Displacement Metrology Gauges

Characterization of Picometer Repeatability Displacement Metrology Gauges Characterization of Picometer Repeatability Displacement Metrology Gauges This paper was presented at ODIMAP III, the 3 rd Topical Meeting on Optoelectronic Distance/Displacement Measurements and Applications,

More information

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas 4 th international LISA Symposium July 22, 2002 @ Penn State University Seiji Kawamura National Astronomical

More information

Gravitational & Planetary Research Program

Gravitational & Planetary Research Program 2012 Gravitational & Planetary Research Program Goals Why? Relativity, Gravitational Waves, Geodesy, Aeronomy Space Technology Education and Training: STEM Team Who? NASA Universities Industry Foreign

More information

LISA Pathfinder: experiment details and results

LISA Pathfinder: experiment details and results LISA Pathfinder: experiment details and results Martin Hewitson on behalf of the LPF Collaboration On December 3rd 2015 at 04:04 UTC, the European Space Agency launched the LISA Pathfinder satellite on

More information

Stanford, Space Gravity Research Group

Stanford, Space Gravity Research Group Stanford, Space Gravity Research Group John W. Conklin, Sasha Buchman, and Robert Byer Gravitational science Earth observation: Geodesy, aeronomy Gravity-waves 1 Space Gravity Technology Development Drag-free

More information

LISA data-analysis tools

LISA data-analysis tools 5th LISA Symposium, July 12-15, 2004 LISA data-analysis tools Michele Vallisneri The LISA response ORBITAL MODULATION TDI RESPONSE NOISE SUBTRACTION 7/15/04 M. Vallisneri, 5th LISA Symposium 2 The LISA

More information

Time-delay Interferometry (TDI) for LISA

Time-delay Interferometry (TDI) for LISA Time-delay Interferometry (TDI) for LISA Sanjeev Dhurandhar IUCAA, Pune TAMA Symposium 19 Feb 5 Plan of the Talk Introduction: LISA GW sources for LISA Laser phase noise cancellation problem Theoretical

More information

Observing the gravitational universe from space

Observing the gravitational universe from space Observing the gravitational universe from space Peter Wass Tim Sumner, Daniel Hollington, Jonathon Baird High Energy Physics Group Imperial Space Lab 29 September 2015 Gravitational Waves Gravitational

More information

ESA activities towards the Gravitation Waves Space Observatory

ESA activities towards the Gravitation Waves Space Observatory ESA activities towards the Gravitation Waves Space Observatory Frédéric Safa ESA Science Directorate, Future Missions LISA Symposium, Zurich 2016 The Gravitation Wave Observatory in ESA Science Programme

More information

B. Loomis, D. Wiese, R. S. Nerem (1) P. L. Bender (2) P. N. A. M. Visser (3)

B. Loomis, D. Wiese, R. S. Nerem (1) P. L. Bender (2) P. N. A. M. Visser (3) Possible mission architectures for a GRACE follow-on mission including a study on upgraded instrumentation suites, and multiple satellite pairs in moderately-inclined orbits B. Loomis, D. Wiese, R. S.

More information

Squeezed Light Techniques for Gravitational Wave Detection

Squeezed Light Techniques for Gravitational Wave Detection Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory Seminar at TIFR, Mumbai, India G1200688-v1 Squeezed Light Interferometry 1 Abstract Several

More information

Lab Characterization of the LISA Pathfinder Optical Metrology System

Lab Characterization of the LISA Pathfinder Optical Metrology System Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute) Lab Characterization of the LISA Pathfinder Optical Metrology System Keeley Criswell Adviser: Martin Hewitson 8/11/2014 LISA Pathfinder

More information

LISA: a modern astrophysical observatory

LISA: a modern astrophysical observatory LISA: a modern astrophysical observatory Shane L. Larson Center for Gravitational Wave Physics shane@gravity.psu.edu SLAC Summer Institute 26 July 2005 Storyline LISA: Observatory Design LISA Interferometry

More information

The Quantum Limit and Beyond in Gravitational Wave Detectors

The Quantum Limit and Beyond in Gravitational Wave Detectors The Quantum Limit and Beyond in Gravitational Wave Detectors Gravitational wave detectors Quantum nature of light Quantum states of mirrors Nergis Mavalvala GW2010, UMinn, October 2010 Outline Quantum

More information

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago Gravitational wave cosmology Lecture 2 Daniel Holz The University of Chicago Thunder and lightning Thus far we ve only seen the Universe (and 95% of it is dark: dark matter and dark energy). In the the

More information

Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer

Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer Daniel Schütze on behalf of the LRI team Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

An ultra-stable thermal environment in high precision optical metrology

An ultra-stable thermal environment in high precision optical metrology An ultra-stable thermal environment in high precision optical metrology Alejandro Torrents Rufas Outline GRLOW Mach Zehnder Interferometer Ultra-stable thermal environment OPTOMETER Passive thermal shields

More information

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves. Gravitational Wave Astronomy With LISA Rajesh Kumble Nayak, IISER-Kolkata Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

More information

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency The ACES Mission Fundamental Physics Tests with Cold Atom Clocks in Space L. Cacciapuoti European Space Agency La Thuile, 20-27 March 2011 Gravitational Waves and Experimental Gravity 1 ACES Mission Concept

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

10. OPTICAL COHERENCE TOMOGRAPHY

10. OPTICAL COHERENCE TOMOGRAPHY 1. OPTICAL COHERENCE TOMOGRAPHY Optical coherence tomography (OCT) is a label-free (intrinsic contrast) technique that enables 3D imaging of tissues. The principle of its operation relies on low-coherence

More information

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G1201293 Outline Introduction: What are Gravitational Waves? The brief

More information

Progress towards a high dimensional stability telescope for gravitational wave detection

Progress towards a high dimensional stability telescope for gravitational wave detection Progress towards a high dimensional stability telescope for gravitational wave detection Shannon Sankar shannon.r.sankar@nasa.gov USRA/CRESST/GSFC Jeffrey Livas (PI), Peter Blake, Joseph Howard, Garrett

More information

Testing GR with LISA Pathfinder, BBO, and Other Future Projects

Testing GR with LISA Pathfinder, BBO, and Other Future Projects Testing GR with LISA Pathfinder, BBO, and Other Future Projects Bernard Schutz Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam, Germany (thanks to K Danzmann, J Magueijo)

More information

LISA mission design. Guido Mueller. APS April Meeting, Jan 30th, 2017, Washington DC

LISA mission design. Guido Mueller. APS April Meeting, Jan 30th, 2017, Washington DC LISA mission design Guido Mueller University of Florida APS April Meeting, Jan 30th, 2017, Washington DC 1 L3 from ESA s perspective 2013: Selection of L3 Science Theme by ESA The Gravitational Universe

More information

Time-Delay Interferometry

Time-Delay Interferometry Living Rev. Relativity, 8, (2005), 4 Time-Delay Interferometry Massimo Tinto Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109, U.S.A. and LIGO Laboratory California Institute

More information

TOBA: Torsion-Bar Antenna

TOBA: Torsion-Bar Antenna TOBA: Torsion-Bar Antenna Small-scale TOBA at Tokyo Small-scale TOBA at Kyoto SWIM on SDS-1 satellite Masaki Ando (National Astronomical Observatory) K.Ishidoshiro, A.Shoda, K.Okada, W.Kokuyama, K.Yagi,

More information

SPICA/SAFARI (SPace Infrared telescope for Cosmology and Astrophysics)

SPICA/SAFARI (SPace Infrared telescope for Cosmology and Astrophysics) SPICA/SAFARI (SPace Infrared telescope for Cosmology and Astrophysics) 1 SPICA/SAFARI (SPace Infrared telescope for Cosmology and Astrophysics) Summary SAFARI (SPICA far-infrared instrument) is an imaging

More information

Implementing an Alignment Sensing and Control (ASC) System for the 40m Prototype Interferometer

Implementing an Alignment Sensing and Control (ASC) System for the 40m Prototype Interferometer LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T1300555-v1-2013/06/17 Implementing an Alignment

More information

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS)

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS) Microgravity White Paper Decadal Survey on Biological and Physical Sciences in Space Fundamental Physics Sciences (FPS) Applied Physical Sciences (APS) Nanosat Science Instruments for Modular Gravitational

More information

Gravitational wave detection. K.A. Strain

Gravitational wave detection. K.A. Strain Gravitational wave detection K.A. Strain Contents gravitational waves: introduction sources of waves, amplitudes and rates basics of GW detection current projects future plans and hopes Gravitational Waves:

More information

The Stanford Gravitational Reference Sensor

The Stanford Gravitational Reference Sensor The Stanford Gravitational Reference Sensor S. Buchman, B. Allard, G. Allen, R. Byer, W. Davis, D. DeBra, D. Gill, J. Hanson, G.M. Keiser, D. Lauben, I. Mukhar, N. A. Robertson, B. Shelef, K. Sun, S. Williams

More information

arxiv: v1 [astro-ph.im] 16 Jun 2009

arxiv: v1 [astro-ph.im] 16 Jun 2009 TOPICAL REVIEW LISA technology and instrumentation arxiv:0906.2901v1 [astro-ph.im] 16 Jun 2009 O Jennrich 1 ESA/ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands E-mail: oliver.jennrich@esa.int Abstract.

More information

Analysis of Spacecraft Thermal Stability

Analysis of Spacecraft Thermal Stability Analysis of Spacecraft Thermal Stability Bryan Shaughnessy Oxfordshire, OX11 0QX, UK. Tel: +44 (0)1235 445061 Fax: +44 (0)1235 445848 e-mail: b.m.shaughnessy@rl.ac.uk 15 th European Workshop on Thermal

More information

DECIGO and DECIGO Pathfinder

DECIGO and DECIGO Pathfinder DECIGO and DECIGO Pathfinder Tomotada Akutsu National Astronomical Observatory of Japan on behalf of DECIGO working group Contents 1. DECIGO - Overview - Roadmap - Current status 2. DECIGO Pathfinder (DPF)

More information

Thermal experiments in LISA Pathfinder: preparing for operations. Ferran Gibert

Thermal experiments in LISA Pathfinder: preparing for operations. Ferran Gibert Thermal experiments in LISA Pathfinder: preparing for operations Ferran Gibert 5th IGWM, Barcelona, May 13th 2015 LISA Pathfinder overview ESA mission with NASA collaboration to fly this year (!!!) Technology

More information

DECIGO and DECIGO Pathfiner

DECIGO and DECIGO Pathfiner DECIGO and DECIGO Pathfiner DPF Fig by M.Ando Tomotada Akutsu National Astronomical Observatory of Japan on behalf of DECIGO Working Group GWADW2011 in Isola d Elba, Italy (24 May 2011) Contents 1. DECIGO

More information

Recent Advances in High Resolution Rotation Sensing

Recent Advances in High Resolution Rotation Sensing Recent Advances in High Resolution Rotation Sensing U. Schreiber 1,2, A. Gebauer 1, R. Hurst 2, J.-P. Wells 2 1 Forschungseinrichtung Satellitengeodäsie, Technische Universität München, Germany 2 Department

More information

Low-cost chirp linearization for longrange ISAL imaging application

Low-cost chirp linearization for longrange ISAL imaging application Low-cost chirp linearization for longrange ISAL imaging application 4/19/2016 Hanying Zhou, Bijan Nemati, Michael Shao, Chengxing Zhai, William B. Schulze, Russell Trahan Presented by Russell Trahan Hardware

More information

Phase-Referencing and the Atmosphere

Phase-Referencing and the Atmosphere Phase-Referencing and the Atmosphere Francoise Delplancke Outline: Basic principle of phase-referencing Atmospheric / astrophysical limitations Phase-referencing requirements: Practical problems: dispersion

More information

Quantum Mechanical Noises in Gravitational Wave Detectors

Quantum Mechanical Noises in Gravitational Wave Detectors Quantum Mechanical Noises in Gravitational Wave Detectors Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Germany Introduction Test masses in GW interferometers are Macroscopic

More information

The status of VIRGO. To cite this version: HAL Id: in2p

The status of VIRGO. To cite this version: HAL Id: in2p The status of VIRGO E. Tournefier, F. Acernese, P. Amico, M. Al-Shourbagy, S. Aoudia, S. Avino, D. Babusci, G. Ballardin, R. Barillé, F. Barone, et al. To cite this version: E. Tournefier, F. Acernese,

More information

Interferometric. Gravitational Wav. Detectors. \p World Scientific. Fundamentals of. Peter R. Sawlson. Syracuse University, USA.

Interferometric. Gravitational Wav. Detectors. \p World Scientific. Fundamentals of. Peter R. Sawlson. Syracuse University, USA. SINGAPORE HONGKONG Fundamentals of Interferometric Gravitational Wav Detectors Second Edition Peter R. Sawlson Martin A. Pomerantz '37 Professor of Physics Syracuse University, USA \p World Scientific

More information

Accelerometer Assisted Tracking for Free-Space Optical Communications. Shinhak Lee, James W. Alexander, Gerry G. Ortiz, and Chien-Chung Chen

Accelerometer Assisted Tracking for Free-Space Optical Communications. Shinhak Lee, James W. Alexander, Gerry G. Ortiz, and Chien-Chung Chen Accelerometer Assisted Tracking for Free-Space Optical Communications Shinhak Lee, James W. Alexander, Gerry G. Ortiz, and Chien-Chung Chen Jet Propulsion Laboratory California Institute of Technology

More information

Quantum enhanced magnetometer and squeezed state of light tunable filter

Quantum enhanced magnetometer and squeezed state of light tunable filter Quantum enhanced magnetometer and squeezed state of light tunable filter Eugeniy E. Mikhailov The College of William & Mary October 5, 22 Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 22 / 42 Transition

More information

Listening to the Universe

Listening to the Universe Listening to the Universe with Gravitational Waves: LISA and LISA Pathfinder Karsten Danzmann Albert Einstein Institut Hannover: MPI für Gravitationsphysik sik and Universität Hannover with input from

More information

2 Each satellite will have two test masses, each being the end mirror for an interferometer.

2 Each satellite will have two test masses, each being the end mirror for an interferometer. Ground Testing for LISA Test Masses with a Torsion Pendulum Matthew Schmidt Valdosta State University International REU: University of Trento, Italy Advisor: Dr. Bill Weber Abstract: One of the most important

More information

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo instrument commissioning & performance assessment José M. G. Merayo DTU Space, Technical University of Denmark Division Measurement & Instrumentation Systems overview Fluxgate principle Amorphous magnetic

More information

arxiv:gr-qc/ v2 4 Jun 2003

arxiv:gr-qc/ v2 4 Jun 2003 The LISA Optimal Sensitivity Thomas A. Prince, Massimo Tinto, and Shane L. Larson Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 J.W. Armstrong Jet Propulsion Laboratory,

More information

Optical Cavity Tests of Lorentz Invariance

Optical Cavity Tests of Lorentz Invariance Light driven Nuclear-Particle physics and Cosmology 2017 (Pacifico Yokohama) April 20, 2017 Optical Cavity Tests of Lorentz Invariance Yuta Michimura Department of Physics, University of Tokyo H. Takeda,

More information

Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA

Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA PTI as seen from the catwalk of the 200 telescope Michelson Interferometer stellar

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

Optical Interferometry for Gravitational Wave Detection

Optical Interferometry for Gravitational Wave Detection Fundamentals of Optical Interferometry for Gravitational Wave Detection Yanbei Chen California Institute of Technology Gravitational Waves 2 accelerating matter oscillation in space-time curvature Propagation

More information

The Status of Enhanced LIGO.

The Status of Enhanced LIGO. The Status of Enhanced LIGO. Aidan Brooks. December 2008 AIP Congress 2008, Adelaide, Australia 1 Outline Gravitational Waves» Potential sources» Initial LIGO interferometer Enhanced LIGO upgrades» Increased

More information

The preliminary analysis of Tianqin mission and developments of key technologies

The preliminary analysis of Tianqin mission and developments of key technologies The3 rd KAGRA International Workshop The preliminary analysis of Tianqin mission and developments of key technologies Hsien-Chi Yeh Tianqin Research Center for Gravitational Physics Sun Yat-sen University

More information

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration Advanced Virgo: Status and Perspectives A.Chiummo on behalf of the VIRGO collaboration Advanced Virgo 2 Advanced Virgo What s that? 3 Advanced Virgo Advanced Virgo (AdV): upgrade of the Virgo interferometric

More information

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System B. Christophe (ONERA, Châtillon, France) on behalf of the GAP Instrument

More information

Quantum Imaging Technologies: Quantum Laser Radar

Quantum Imaging Technologies: Quantum Laser Radar MURI 2005 Quantum Imaging: New Methods and Applications Year 3 Review / 17 November 2008 / UMBC, Baltimore, MD Quantum Imaging Technologies: Quantum Laser Radar Prem Kumar and Geraldo Barbosa EECS Department,

More information

Lecture 29. Lidar Data Inversion (2)

Lecture 29. Lidar Data Inversion (2) Lecture 9. Lidar Data Inversion ) q Pre-process and Profile-process q Main Process Procedure to Derive T and V R Using Ratio Doppler Technique q Derivations of n c from narrowband resonance Doppler lidar

More information

Quantum Imaging Technologies: Quantum Laser Radar

Quantum Imaging Technologies: Quantum Laser Radar MURI 2005 Quantum Imaging: New Methods and Applications Year 4 Review / 13 November 2009 / Northwestern University, Evanston, IL Quantum Imaging Technologies: Quantum Laser Radar Prem Kumar and Geraldo

More information

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Jeff Livas for the US LISA Telescope Team NASA Goddard Space Flight Center Greenbelt, MD 20771 Nov 2017 Telescope Team GSFC

More information

Stellar Intensity Interferometric Capabilities of IACT Arrays*

Stellar Intensity Interferometric Capabilities of IACT Arrays* Stellar Intensity Interferometric Capabilities of IACT Arrays* Dave Kieda Nolan Matthews University of Utah Salt Lake City, Utah *for VERITAS and CTA collaborations Photon Bunching & Intensity Interferometry

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

Quantum-noise reduction techniques in a gravitational-wave detector

Quantum-noise reduction techniques in a gravitational-wave detector Quantum-noise reduction techniques in a gravitational-wave detector AQIS11 satellite session@kias Aug. 2011 Tokyo Inst of Technology Kentaro Somiya Contents Gravitational-wave detector Quantum non-demolition

More information

KAGAYA studio. Status of DECIGO. Shuichi Sato Hosei University. For the DECIGO and the DPF collaboration

KAGAYA studio. Status of DECIGO. Shuichi Sato Hosei University. For the DECIGO and the DPF collaboration KAGAYA studio Status of DECIGO Shuichi Sato Hosei University For the DECIGO and the DPF collaboration Title Outline v DECIGO v DECIGO pathfinder v Mission status Idea of DECIGO v DECi-hertz Interferometer

More information

arxiv: v2 [astro-ph.im] 21 Nov 2018

arxiv: v2 [astro-ph.im] 21 Nov 2018 Analytic Model and Simulations of Residual Laser Noise after Time-Delay Interferometry in LISA Jean-Baptiste Bayle, Marc Lilley, Antoine Petiteau, Hubert Halloin APC, Université Paris Diderot, CNRS/INP3,

More information

Searching for Stochastic Gravitational Wave Background with LIGO

Searching for Stochastic Gravitational Wave Background with LIGO Searching for Stochastic Gravitational Wave Background with LIGO Vuk Mandic University of Minnesota 09/21/07 Outline LIGO Experiment:» Overview» Status» Future upgrades Stochastic background of gravitational

More information

Sensing Rotation with Light: From Fiber Optic Gyroscope to Exceptional Points

Sensing Rotation with Light: From Fiber Optic Gyroscope to Exceptional Points Sensing Rotation with Light: From Fiber Optic Gyroscope to Exceptional Points Michel Digonnet Applied Physics Department Stanford University Stanford University 1 The Sagnac Effect in Vacuum! The fiber

More information

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Eugeniy E. Mikhailov The College of William & Mary, USA New Laser Scientists, 4 October 04 Eugeniy E. Mikhailov

More information

Interesting times for low frequency gravitational wave detection

Interesting times for low frequency gravitational wave detection Interesting times for low frequency gravitational wave detection Neil Cornish Montana State University Why Interesting? Why Interesting? Why Interesting? ESA L2 Selection 2013/14 0.1 1000 Tev (20??) Pulsar

More information

An Overview of Advanced LIGO Interferometry

An Overview of Advanced LIGO Interferometry An Overview of Advanced LIGO Interferometry Luca Matone Columbia Experimental Gravity group (GECo) Jul 16-20, 2012 LIGO-G1200743 Day Topic References 1 2 3 4 5 Gravitational Waves, Michelson IFO, Fabry-Perot

More information

From the first results of LISAPathfinder to LISA : First step to observing gravitational wave from space

From the first results of LISAPathfinder to LISA : First step to observing gravitational wave from space From the first results of LISAPathfinder to LISA : First step to observing gravitational wave from space Antoine Petiteau AstroParticule et Cosmologie Université Paris-Diderot Journée GPhys APC-Paris 6th

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Peer Review File Description: Optical frequency (THz) 05. 0 05. 5 05.7

More information

Control of the Laser Interferometer Space Antenna

Control of the Laser Interferometer Space Antenna Control of the Laser Interferometer Space Antenna P. G. Maghami, T. T. Hyde NASA Goddard Space Flight Center Guidance, Navigation and Control Division Greenbelt, MD 20771 J. Kim Swales Aerospace, Inc.

More information

Space Gravitational-Wave Antenna DECIGO

Space Gravitational-Wave Antenna DECIGO Space Gravitational-Wave Antenna DECIGO Original Picture : Sora Masaki Ando (Department of Physics, Kyoto University) Wataru Kokuyama (Department of Physics, University of Tokyo) On behalf of DECIGO working

More information

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Ed Daw - University of Sheffield On behalf of the LIGO Scientific Collaboration and the Virgo collaboration

More information

Status and Prospects for LIGO

Status and Prospects for LIGO Status and Prospects for LIGO Crab Pulsar St Thomas, Virgin Islands Barry C. Barish Caltech 17-March-06 LIGO Livingston, Louisiana 4 km 17-March-06 Confronting Gravity - St Thomas 2 LIGO Hanford Washington

More information

arxiv:gr-qc/ v2 11 Jul 2005

arxiv:gr-qc/ v2 11 Jul 2005 Time-Delay Interferometry Massimo Tinto Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Sanjeev V. Dhurandhar IUCAA, Ganeshkhind, Pune 411 007, India (Dated: October 19,

More information

Simulations of an etched spiral axial attenuation scheme for an on-axis reflecting telescope

Simulations of an etched spiral axial attenuation scheme for an on-axis reflecting telescope Journal of Physics: Conference Series PAPER OPEN ACCESS Simulations of an etched spiral axial attenuation scheme for an on-axis reflecting telescope To cite this article: Aaron Spector and Guido Mueller

More information

On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna)

On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna) On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna) Dr. SUCHETA KOSHTI IISER, Pune, India. ICSW-7, IPM, Tehran,Iran Jun4, 27 Motivation Einstein s General theory of relativity (GR)

More information