RADIATION HARD UV LED S

Size: px
Start display at page:

Download "RADIATION HARD UV LED S"

Transcription

1 RADIATION HARD UV LED S LIGO Livingston Sasha Buchman Ke-Xun Sun Stanford University LIGO Hanford 11th ICATPP Conference Villa Olmo, 5-9 October, 2009 GP-B, Relativity Mission, Gravity Probe B Page LISA, 1 Laser Interferometer Space Antenna

2 Outline The UV LED Charge management The Relativity Mission, Gravity Probe B GP-B The Laser Interferometer Space Antenna LISA Laser Interferometer Gravitational-Wave Observatory LIGO UV LED Lifetime and Radiation Testing Lifetime Testing Radiation Testing Environmental Testing Page 2

3 UV LED Based on gallium nitride (GaN) UV LED in TO39 packaging Various other packaging ~255 nm central frequency 10 nm WHM UV LED fiber coupled UV LED Performance UV LED with ball lens Page 3

4 UV Charge Management Page 4 Use of UV Sources Photoelectrons for charge management of test bodies (TB) Photoemission from TB and its enclosure Bipolar discharging using photoelectrons and bias Test Bodies Insulators (LIGO, VIRGO, GEO600) Floating conductors (LISA, LPF, GP-B) Charging Sources Handling and installation Pump-down or other gas flow Separation of dissimilar materials Cosmic radiation Patch effects Vacuum field emission (Field >10 7 V/m) Charge Magnitude Typically pc/day Typically <1nC/event

5 Sources for Charge Management I Ion Sprayers / Ion Bars For use in air Standard for clean rooms and benches STATIC CLEAN DC Ionizer DC-ESR-C Clean room use SIMCO, Type P-Sh-N Working distance mm Voltage7000 V - AC UV photoelectrons For use in vacuum GP-B, LISA, GEO 600 GP-B: Hg UV UV LED Page 5

6 Sources for Charge Management II Studies and Proposals For use in vacuum Field emission cathodes 1 Ion & Electron guns 2 Thermal filaments Ion Gun IGL-2101 / IGPS eV to 2000eV 10eV to 1keV Spot : 1-20mm Field emission cathodes Electron Gun ELG-2/ EGPS eV to 2000eV 1nA to 10µA Spot : 0.5-5mm Page 6 Kimball Physics Inc. 1 GP-B Gyroscope Charge Control Using Field Emission Cathodes, S Buchman T. Quinn, M. Keiser and D. Gill, J. Vac. Sci. Technol. B 11, (1993) 2 Charge neutralization in vacuum for non-conducting and isolated objects using directed low-energy electron and ion beams S Buchman, R.L.Byer, D Gill, N A Robertson, and K-X Sun, Class. Quantum Grav. 25 (2008)

7 UV Lamps Lifetime UV Lamp A Intensity vs Operating Hours Normalized Discharge Rates vs Time - LAMP B, -3V Bias E+00 Intensity Monitor y = e x R 2 = Operating Hours Rate (DN/min/IM count) -1.0E E E E E-03 G1 G2 G3 G4-6.0E time (hours) UV Lamp B Intensity vs Operating Hours 1100 Intensity Monitor y = e x R 2 = UV lamp intensity decay time constant ~ 230 hours Large variability of discharge rates between gyroscopes Operating Hours Page 7 The GP-B Hg UV lamps met all requirements

8 GP-B Charge Management Charging Sources Ground Test/Analysis SM Results Levitation < 1V test mv He gas spin-up < 1V test Not observed: < 10 mv Cosmic radiation ~ mv/day (GEANT) mv/day Variations in cosmic radiation charging Shielding: Decreasing from Gyro #1 to Gyro # 4 Solar flares Rotor charge controlled with UV excited electrons 2 UV Hg lamps (254 nm line) 8 UV switches 2 UV fibers per gyroscope UV Lamp A UV Lamp B 1 mv = 1 pc Schematic of GP-B UV architecture 4 gyroscopes UV switch #1A UV switch #1B Gyro #1 Continuous measurement at the 0.1 mv precision Control to 5 mv (meets requirement of 15 mv) Page 8

9 GP-B Charge Control: Discharge of G#1 450mV UV Switches Gyro1 Charge (mv) 70mV/hour discharge Lamp A Lamp B UV Lamp Assembly 100mV 0 mv Day of year, 2004 Page 9 Charge controlled to < 5 mv UV Electrode

10 UV LED Lifetime and Radiation Testing ILX Precision Current Source Computer Function Generator UV LED Lifetime Testing System (both vacuum & nitrogen tests) Modulation (1 khz, 10% duty cycle) GPIB Amp Nitrogen/Vacuum Chambers UV LED UV Photodiode Oscilloscope Signal to UV LED Fast LED Driver and Photodetection PCB Signal from UV Photodiode Driving Signal Page 10

11 UV LED Based AC Charge Management Output fast modulated to generate electron packets Modulation of electrode phase locked for steering electrons Phase adjusted for bipolar charge management UV e - e - UV e - e - Page 11

12 Charging and Discharging of a proof mass potential of +/- 20 mv Results for AC charge transfer studies using a UV LED with observed power or ~11 µw at a center wavelength of nm UV test facility Page 12

13 UV LED Lifetime in Nitrogen, 1 atm Spectral Stability After 19,800 Hours Power Stability After 20,000 Hours UV LED emission spectrum Spectral shift 2 nm shorter UV LED power level No significant power variation Page 13 UV LED lifetime test in Nitrogen: > 28,000 hours (3.2 years)

14 UV LED Lifetime in Vacuum, 10-7 torr Initial Spectrum Power Stability After 9,000 Hours UV LED emission spectrum UV LED power level No significant power variation Page 14 UV LED lifetime test in vacuum: > 17,500 hours (2 years)

15 Proton Irradiation 63.8 MeV proton irradiation test Test at UC Davis Total fluence 2x10 12 proton/cm 2 > 100 years of dose at LISA orbit UV LEDs maintained light output Spectral shape unchanged Power intensity unchanged Page 15

16 Page 16

17 Proton Irradiation Setup at UC Davis Proton Accelerator Ames Chamber (removed for high flux proton irradiation) Protons 63.8 MeV Alignment Aperture Bread Board Stanford Platform Optics Table Lab Jack Page 17

18 Radiation Qualification Test Setup Si Photodiode Protons 63.8 MeV Beam current 20-15,000 pa Flat Window UV LED Ball Lens UV LED SiC Photodiode Aluminum Shielding Block Electronics Electronics Shielding Wall (>1 m Concrete) Page 18 Experimental setup (top view) for UV LED proton radiation tests.

19 UV LED Spectral Shift Measurements Before and After Proton Irradiation UV LED 63.8 MeV proton irradiation test Central wavelength 255 nm for both, no shift observed Page 19

20 Proton Irradiation Results UV LED + SiC Detector 80 pa Run 500 pa Run 15,000 pa Run Proton Fluence Proton Fluence Proton Fluence 1x10 10 p/cm 2 6.3x10 10 p/cm 2 2x10 12 p/cm 2 Proton energy: 59.0 MeV for 80 pa 59.0 MeV for 500 pa 63.8 MeV for 15,000 pa Space proton energy: 2~5 MeV Total fluence: > 100 year Proton fluence in LISA orbit Page 20 Reference for proton test of other LED and laser diodes: A. H. Johnston and T. F. Miyahira, Characterization of Proton Damage in Light- Emitting Diodes, IEEE Trans. Nuclear Science, 47 (6), 1999

21 Environmental Testing UV LED in TO39 packaging tested at Ames Center Shake: 3g + 7g random vibration in all three axes Bake: thermal vac chamber -30 C~+ 60 C, including soak Beam profile, spectra, V-I-P curves staged measurements Preliminary conclusion: PASS Fiber coupled UV LED UV LED mounted for testing Page 21

22 The Shake & Bake Setup at NASA Ames Z-direction shake test platform Bake Chamber x, y - direction shake test platform UV LED SMA Packaging Grating & Mount Page 22 UV LED TOS39 Packaging

23 Shake & Bake Results Beam Profile Spectrum V-I-P Curves Page 23 Before test After shake After shake & bake

24 UV LED s for LISA & LIGO Charge Control Long lifetime >28,000 hours to date Radiation hard Lower power consumption Lower mass AC modulation up to 1 GHz UV LED Performance UV LED Page 24

25 NASA- Stanford Gravity Reference NanoSatellites 1 pm/hz 1/2 Grating Cavity Displacement Sensor Towards ultra high precision gravitation reference sensors and multi vehicle space interferometry 256 nm Deep UV LED Roundest sphere and drag free sensor 1 nrad/hz 1/2 grating angular sensor The Program Frequent launches on ride-along platforms Standard low cost bus configurations month project duration The Benefits New science: Physical, Life, Engineering Critical technology demonstrations Fast advance of NASA mission objectives Train engineers & scientists for the future STANFORD NANOSAT AMES GENESAT NASA-Ames provides nanosatellite Platform, payload integration, and mission operations Technologies Roadmap UV Diode Grating & Laser Grating Displacement Grating Interferometer Other Instruments Tech. Integration Stanford provides gravitational reference technologies Platforms Caging Mechanism Drag Free Flight Other Capabilities Micro/Nanothrusters Formation Flying 3U Cubesat 6U Cubesat About one mission per year beginning in 2011 Estimated total cost per mission is $3-5M Page 25 Falcon 1 Launch Opportunities GeneBox ; Flown 16 July 2006 GeneSat-1; Flown 16 Dec 2006 Pharmasat-1; Launch 10 Dec 2007 Minotaur I Atlas V Minotaur IV Microsatellite Sorties Microsatellite Constellation 2Q 08 1Q 09 3Q 09 1Q 10 4Q 10 2Q 11 4Q 11 Overarching Goal: Provide Rewarding, Focused Objectives for the Next Generation of Space Scientists and Technologists

26 The First Planned Project UV LED Space Demonstration Charge management for high precision GRS Calibration source for UV and X-ray telescope Telescope surface and window de-charging Life maintaining system for space flight Nick Leindecker Payload Functional Components GENESAT Page 26 UV LED Performance UV LED

27 UV LED Testing to Date Lifetime Test Lifetime test in N 2 > 28,000 hours Llifetime test in vacuum: >17,500 hours The spectra in N 2 shifted to shorter wavelength ~2 nm Radiation Test 63.8 MeV proton irradiation test Output power maintained for total fluence 2x10 12 proton/cm 2 (>100 yr LISA ) Spectral shape and power intensity unchanged after proton irradiation Shake & Bake Shake test 3g + 7g random vibration in all three axes Bake: thermal vac chamber -30 C~+ 60 C, +soak Spectral shape and power unchanged 1) LED deep UV source for charge management of gravitational reference sensors, Ke-Xun Sun, B. Allard, S. Buchman, S. Williams, and R. L. Byer Class. Quantum Grav. 23 (2006) S141 S ) UV LED Space Qualification, Ke-Xun Sun, N. Leindecker, S. Higuchi, S. Buchman, R. L. Byer, J. Goebel, M. McKelvey, R. McMurray, Draft in refereeing Page 27

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS)

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS) Microgravity White Paper Decadal Survey on Biological and Physical Sciences in Space Fundamental Physics Sciences (FPS) Applied Physical Sciences (APS) Nanosat Science Instruments for Modular Gravitational

More information

Effects of Ultraviolet Irradiation on LIGO Mirror Coating

Effects of Ultraviolet Irradiation on LIGO Mirror Coating Effects of Ultraviolet Irradiation on LIGO Mirror Coating Ke-Xun Sun, Nick Leindecker, Ashot Markosyan, Sasha Buchman, Roger Route, Marty Fejer, Robert Byer, Helena Armandula, Dennis Ugolini, Gregg Harry

More information

Gravitational & Planetary Research Program

Gravitational & Planetary Research Program 2012 Gravitational & Planetary Research Program Goals Why? Relativity, Gravitational Waves, Geodesy, Aeronomy Space Technology Education and Training: STEM Team Who? NASA Universities Industry Foreign

More information

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu Drag free concept and applications

More information

Modular Gravitational Reference Sensor (MGRS) A core fiduciary instrument for space Development Program at Stanford

Modular Gravitational Reference Sensor (MGRS) A core fiduciary instrument for space Development Program at Stanford Modular Gravitational Reference Sensor (MGRS) A core fiduciary instrument for space Development Program at Stanford Ke-Xun Sun, Saps Buchman, Robert L. Byer, Dan DeBra, Graham Allen, John Conklin, Domenico

More information

Stanford, Space Gravity Research Group

Stanford, Space Gravity Research Group Stanford, Space Gravity Research Group John W. Conklin, Sasha Buchman, and Robert Byer Gravitational science Earth observation: Geodesy, aeronomy Gravity-waves 1 Space Gravity Technology Development Drag-free

More information

The Stanford Gravitational Reference Sensor

The Stanford Gravitational Reference Sensor The Stanford Gravitational Reference Sensor S. Buchman, B. Allard, G. Allen, R. Byer, W. Davis, D. DeBra, D. Gill, J. Hanson, G.M. Keiser, D. Lauben, I. Mukhar, N. A. Robertson, B. Shelef, K. Sun, S. Williams

More information

Gravitational Reference Technologies for Precision Navigation and Control in Space

Gravitational Reference Technologies for Precision Navigation and Control in Space Gravitational Reference Technologies for Precision Navigation and Control in Space Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu

More information

UV LED charge control of an electrically isolated proof mass at 255 nm

UV LED charge control of an electrically isolated proof mass at 255 nm UV LED charge control of an electrically isolated proof mass at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu MGRS System Overview Differential

More information

LISA: Drag-free Formation Flying at 5 million kilometers

LISA: Drag-free Formation Flying at 5 million kilometers LISA: Drag-free Formation Flying at 5 million kilometers Robert L. Byer Department of Applied Physics Hansen Experimental Physics Laboratory (HEPL) Stanford University rlbyer@stanford.edu Abstract The

More information

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect.

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. Chapter 1 Photoelectric Effect Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. History The photoelectric effect and its understanding

More information

Precision Attitude and Translation Control Design and Optimization

Precision Attitude and Translation Control Design and Optimization Precision Attitude and Translation Control Design and Optimization John Mester and Saps Buchman Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. Abstract Future

More information

LISA Pathfinder measuring pico-meters and femto-newtons in space

LISA Pathfinder measuring pico-meters and femto-newtons in space LISA Pathfinder measuring pico-meters and femto-newtons in space M Hewitson for the LPF team Barcelona, February 15th 2012 Observing from Space 2 Observing from Space 2 Observing from Space Push down to

More information

Shally Saraf, Stanford University

Shally Saraf, Stanford University LAser GRavitational-wave ANtenna in GEocentric Orbit Shally Saraf, Stanford University for the LAGRANGE team Background LAser GRavitational-wave ANtenna in GEocentric Orbit was proposed originally as a

More information

The preliminary analysis of Tianqin mission and developments of key technologies

The preliminary analysis of Tianqin mission and developments of key technologies The3 rd KAGRA International Workshop The preliminary analysis of Tianqin mission and developments of key technologies Hsien-Chi Yeh Tianqin Research Center for Gravitational Physics Sun Yat-sen University

More information

Astro 2010 White Paper. Technology Development for Modular Gravitational Reference Sensor (MGRS)

Astro 2010 White Paper. Technology Development for Modular Gravitational Reference Sensor (MGRS) Astro 2010 White Paper Technology Development for Modular Gravitational Reference Sensor (MGRS) Ke-Xun Sun, Saps Buchman, Robert Byer, Dan DeBra, John Goebel*, Graham Allen, John Conklin, Domenico Geradi**,

More information

Photoelectric Effect Experiment

Photoelectric Effect Experiment Experiment 1 Purpose The photoelectric effect is a key experiment in modern physics. In this experiment light is used to excite electrons that (given sufficient energy) can escape from a material producing

More information

(i) Show that the energy of a single photon is about 3 x J.

(i) Show that the energy of a single photon is about 3 x J. 1(a) A helium-neon laser emits red light of wavelength 6.3 x 10 7 m. (i) Show that the energy of a single photon is about 3 x 10 19 J. [2] The power of the laser beam is 1.0 mw. Show that about 3 x 10

More information

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1 Fundamental Physics in Space S. Vitale, University of Trento Vitale@science.unitn.it ESO-Garching-15-09-03 S. Vitale 1 Using Space to Investigate Fundamental Laws of Physics: Quantum measurements, entanglement,

More information

Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster

Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Tb_31-Tb_35, 2014 Topics Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster By Yuto SUGITA 1), Hiroyuki

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

HaloSat Overview. Philip Kaaret August 17, 2016

HaloSat Overview. Philip Kaaret August 17, 2016 HaloSat Overview Philip Kaaret (philip-kaaret@uiowa.edu) August 17, 2016 Outline Scientific Motivation Missing Baryon Problem Mission Goal and Science Requirements Impediments Mission Level 1 Requirements

More information

Progress of the interaction between e - and molecule in Fudan University

Progress of the interaction between e - and molecule in Fudan University Progress of the interaction between e - and molecule in Fudan University B. Wei, Z. Chen, X. Wang, R. Hutton, Y. Zou Fudan University, Shanghai The 2nd Research Coordination Meeting (RCM) of the CRP, 23-25

More information

DIANA A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY

DIANA A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY DIANA D. Leitner for the DIANA collaboration Michigan State University PAC 2011 New York, April 2011 A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY Outline of the Talk Why underground? Brief science

More information

Space Flight Considerations for Precision Optical Instruments

Space Flight Considerations for Precision Optical Instruments Space Flight Considerations for Precision Optical Instruments M. Shao KISS workshop on Optical Freq Combs in Space Nov 2, 2015 2015 California Institute of Technology. Government sponsorship acknowledged

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

Assessment of the Azimuthal Homogeneity of the Neutral Gas in a Hall Effect Thruster using Electron Beam Fluorescence

Assessment of the Azimuthal Homogeneity of the Neutral Gas in a Hall Effect Thruster using Electron Beam Fluorescence Assessment of the Azimuthal Homogeneity of the Neutral Gas in a Hall Effect Thruster using Electron Beam Fluorescence IEPC-2015-91059 / ISTS-2015-b-91059 Presented at Joint Conference of 30th International

More information

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G1201293 Outline Introduction: What are Gravitational Waves? The brief

More information

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys Vacuum Arc thruster development for Horyu-4 satellite KaterynaAheieva, Shingo Fuchikami, Hiroshi Fukuda, Tatsuo Shimizu, Kazuhiro Toyoda, Mengu Cho Kyushu Institute of Technology1 N589502a@mail.kyutech.jp

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

Silicate bonding for stable optical systems for space

Silicate bonding for stable optical systems for space Silicate bonding for stable optical systems for space S. Rowan 1, J. Bogenstahl 2, A. Deshpande 3, E. Elliffe 1, J. Hough 1, C. Killow 1, S. Reid 1, D. Robertson 1, H. Ward 1 1 University of Glasgow 2

More information

Gravitational Wave Astronomy

Gravitational Wave Astronomy Gravitational Wave Astronomy Giles Hammond SUPA, University of Glasgow, UK on behalf of the LIGO Scientific Collaboration and the Virgo Collaboration 14 th Lomonosov conference on Elementary Particle Physics

More information

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05 Overview Ground-based Interferometers Barry Barish Caltech Amaldi-6 20-June-05 TAMA Japan 300m Interferometer Detectors LIGO Louisiana 4000m Virgo Italy 3000m AIGO Australia future GEO Germany 600m LIGO

More information

LISA mission design. Guido Mueller. APS April Meeting, Jan 30th, 2017, Washington DC

LISA mission design. Guido Mueller. APS April Meeting, Jan 30th, 2017, Washington DC LISA mission design Guido Mueller University of Florida APS April Meeting, Jan 30th, 2017, Washington DC 1 L3 from ESA s perspective 2013: Selection of L3 Science Theme by ESA The Gravitational Universe

More information

GaN for use in harsh radiation environments

GaN for use in harsh radiation environments 4 th RD50 - Workshop on radiation hard semiconductor devices for very high luminosity colliders GaN for use in harsh radiation environments a (W Cunningham a, J Grant a, M Rahman a, E Gaubas b, J Vaitkus

More information

M2 TP. Low-Energy Electron Diffraction (LEED)

M2 TP. Low-Energy Electron Diffraction (LEED) M2 TP Low-Energy Electron Diffraction (LEED) Guide for report preparation I. Introduction: Elastic scattering or diffraction of electrons is the standard technique in surface science for obtaining structural

More information

Grating Angle Magnification Enhanced Angular and Integrated Sensors for LISA Applications

Grating Angle Magnification Enhanced Angular and Integrated Sensors for LISA Applications Institute of Physics Publishing Journal of Physics: Conference Series 32 (2006) 167 179 doi:10.1088/1742-6596/32/1/026 Sixth Edoardo Amaldi Conference on Gravitational Waves Grating Angle Magnification

More information

Observing the gravitational universe from space

Observing the gravitational universe from space Observing the gravitational universe from space Peter Wass Tim Sumner, Daniel Hollington, Jonathon Baird High Energy Physics Group Imperial Space Lab 29 September 2015 Gravitational Waves Gravitational

More information

Your Partner in Environment Monitoring

Your Partner in Environment Monitoring Your Partner in Environment Monitoring Radiation Environment in Space The ionizing radiation in space represents one of the most severe environmental loads to space hardware and can cause a large number

More information

Simulation of Radiation Monitors for Future Space Missions

Simulation of Radiation Monitors for Future Space Missions 1 Simulation of Radiation Monitors for Future Space Missions P.Gonçalves, M. Pimenta, B. Tomé LIP - Laboratório de Instrumentação e Física Experimental de Partículas Lisboa, Portugal Space radiation environment

More information

Astrophysics & Gravitational Physics with the LISA Mission

Astrophysics & Gravitational Physics with the LISA Mission Astrophysics & Gravitational Physics with the LISA Mission Peter L. Bender JILA, University of Colorado, and NIST Workshop on Robotic Science from the Moon Boulder, CO 5-6 October, 2010 LISA Overview The

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

An Astrophysics Mission of Opportunity on the International Space Station

An Astrophysics Mission of Opportunity on the International Space Station GSFC 1 An Astrophysics Mission of Opportunity on the International Space Station Science: Understanding ultra-dense matter through observations of neutron stars in the soft X-ray band Launch: October 2016,

More information

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction Introduction In this lab you will use a diffraction grating to split up light into its various colors (like a rainbow). You will assemble a spectrometer, incorporating the diffraction grating. A spectrometer

More information

Control of the Laser Interferometer Space Antenna

Control of the Laser Interferometer Space Antenna Control of the Laser Interferometer Space Antenna P. G. Maghami, T. T. Hyde NASA Goddard Space Flight Center Guidance, Navigation and Control Division Greenbelt, MD 20771 J. Kim Swales Aerospace, Inc.

More information

Ma5: Auger- and Electron Energy Loss Spectroscopy

Ma5: Auger- and Electron Energy Loss Spectroscopy Ma5: Auger- and Electron Energy Loss Spectroscopy 1 Introduction Electron spectroscopies, namely Auger electron- and electron energy loss spectroscopy are utilized to determine the KLL spectrum and the

More information

and another with a peak frequency ω 2

and another with a peak frequency ω 2 Physics Qualifying Examination Part I 7-Minute Questions September 13, 2014 1. A sealed container is divided into two volumes by a moveable piston. There are N A molecules on one side and N B molecules

More information

KAGAYA studio. Status of DECIGO. Shuichi Sato Hosei University. For the DECIGO and the DPF collaboration

KAGAYA studio. Status of DECIGO. Shuichi Sato Hosei University. For the DECIGO and the DPF collaboration KAGAYA studio Status of DECIGO Shuichi Sato Hosei University For the DECIGO and the DPF collaboration Title Outline v DECIGO v DECIGO pathfinder v Mission status Idea of DECIGO v DECi-hertz Interferometer

More information

Lab Characterization of the LISA Pathfinder Optical Metrology System

Lab Characterization of the LISA Pathfinder Optical Metrology System Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute) Lab Characterization of the LISA Pathfinder Optical Metrology System Keeley Criswell Adviser: Martin Hewitson 8/11/2014 LISA Pathfinder

More information

Searching for gravitational waves

Searching for gravitational waves Searching for gravitational waves Matteo Barsuglia (barsuglia@apc.univ-paris7.fr) CNRS - Laboratoire Astroparticule et Cosmologie 1 The gravitational waves (GW) Perturbations of the space-time metrics

More information

AIAA Low-Temperature Supersonic Boundary Layer Control Using Repetitively Pulsed MHD Forcing. Munetake Nishihara, Naibo Jiang,

AIAA Low-Temperature Supersonic Boundary Layer Control Using Repetitively Pulsed MHD Forcing. Munetake Nishihara, Naibo Jiang, AIAA 2005-5178 Low-Temperature Supersonic Boundary Layer Control Using Repetitively Pulsed MHD Forcing Munetake Nishihara, Naibo Jiang, J. William Rich, Walter R. Lempert, Igor V. Adamovich Dept. of Mechanical

More information

The Silicon-Tungsten Tracker of the DAMPE Mission

The Silicon-Tungsten Tracker of the DAMPE Mission The Silicon-Tungsten Tracker of the DAMPE Mission Philipp Azzarello, DPNC, University of Geneva for the DAMPE-STK collaboration 10th International Hiroshima Symposium on the Development and Application

More information

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter 431-ICD Date: September 15, 2005

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter 431-ICD Date: September 15, 2005 DRAFT Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter Lunar Reconnaissance Orbiter to Comic Ray Telescope for the Effects of Radiation Mechanical Interface Control Document Date: September

More information

Question 11.1: Find the

Question 11.1: Find the Question 11.1: Find the (a) maximum frequency, and (b) minimum wavelength of X-rays produced by 30 kv electrons. Potential of the electrons, V = 30 kv = 3 10 4 V Hence, energy of the electrons, E = 3 10

More information

Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC

Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC Daniel Kramer,, Eva Barbara Holzer,, Bernd Dehning, Gianfranco Ferioli, Markus Stockner CERN AB-BI BI 4.10.2006 IPRD06,

More information

Chemistry (

Chemistry ( Question 2.1: (i) Calculate the number of electrons which will together weigh one gram. (ii) Calculate the mass and charge of one mole of electrons. Answer 2.1: (i) Mass of one electron = 9.10939 10 31

More information

STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA *

STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA * STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA * V. TIRON 1, L. MIHAESCU 1, C.P. LUNGU 2 and G. POPA 1 1 Faculty of Physics, Al. I. Cuza University, 700506, Iasi, Romania 2 National Institute

More information

Exploring the Gravitational Wave Universe Challenges for a LISA Successor

Exploring the Gravitational Wave Universe Challenges for a LISA Successor Exploring the Gravitational Wave Universe Challenges for a LISA Successor H Ward University of Glasgow Cosmic Vision 2015 2025 Paris 15 th September 2004 With contributions from : P Bender, K Danzmann,

More information

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Jeff Livas for the US LISA Telescope Team NASA Goddard Space Flight Center Greenbelt, MD 20771 Nov 2017 Telescope Team GSFC

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

SPITZER SPACE TELESCOPE

SPITZER SPACE TELESCOPE SPITZER SPACE TELESCOPE The Rationale for Infrared Astronomy reveal cool states of matter explore the hidden Universe provide access to many spectral features probe the early life of the cosmos WANT TO

More information

On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna)

On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna) On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna) Dr. SUCHETA KOSHTI IISER, Pune, India. ICSW-7, IPM, Tehran,Iran Jun4, 27 Motivation Einstein s General theory of relativity (GR)

More information

Measurement of Angular Stray DC Potentials for. Test Masses in LISA Pathfinder

Measurement of Angular Stray DC Potentials for. Test Masses in LISA Pathfinder Measurement of Angular Stray DC Potentials for Test Masses in LISA Pathfinder Michael Aitken Università degli Studi di Trento European Space Agency University of Florida August 9, 2016 Abstract Launched

More information

minimum wavelength of X-rays produced by 30 kv electrons.

minimum wavelength of X-rays produced by 30 kv electrons. Question 11.1: Find the maximum frequency, and minimum wavelength of X-rays produced by 30 kv electrons. Potential of the electrons, V = 30 kv = 3 10 4 V Hence, energy of the electrons, E = 3 10 4 ev Where,

More information

EUV lithography and Source Technology

EUV lithography and Source Technology EUV lithography and Source Technology History and Present Akira Endo Hilase Project 22. September 2017 EXTATIC, Prague Optical wavelength and EUV (Extreme Ultraviolet) VIS 13.5nm 92eV Characteristics of

More information

Preview from Notesale.co.uk Page 4 of 35

Preview from Notesale.co.uk Page 4 of 35 field 64 If a dielectric is inserted b/w the plates of a charged capacitor, its Remains Becomes infinite capacitance constant decreases increases 65 Selenium is an insulator in the dark but when exposed

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

arxiv:physics/ v1 3 Aug 2006

arxiv:physics/ v1 3 Aug 2006 Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon arxiv:physics/6834 v1 3 Aug 26 K. Ni, E. Aprile, K.L. Giboni, P. Majewski, M. Yamashita Physics Department and Columbia Astrophysics Laboratory

More information

Gravitational Physics. Experiments in Space. Sasha Buchman Stanford University. Lisbon & Porto, STAR 2015 Space Time Asymmetry Research

Gravitational Physics. Experiments in Space. Sasha Buchman Stanford University. Lisbon & Porto, STAR 2015 Space Time Asymmetry Research Gravitational Physics STAR 2015 Space Time Asymmetry Research Experiments in Space Sasha Buchman Stanford University Lisbon & Porto, 2010 GP-B, 2004-2005 Relativity Mission, Gravity Probe B LISA, 2025

More information

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL R. Kuroda, H. Ogawa, N. Sei, H. Toyokawa, K. Yagi-Watanabe, M. Yasumoto, M. Koike, K. Yamada, T. Yanagida*, T. Nakajyo*, F. Sakai*

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics Gravitational Waves & Intermediate Mass Black Holes Lee Samuel Finn Center for Gravitational Wave Physics Outline What are gravitational waves? How are they produced? How are they detected? Gravitational

More information

LAAPD Performance Measurements in Liquid Xenon

LAAPD Performance Measurements in Liquid Xenon LAAPD Performance Measurements in Liquid Xenon David Day Summer REU 2004 Nevis Laboratories, Columbia University Irvington, NY August 3, 2004 Abstract Performance measurements of a 16mm diameter large

More information

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key 1. Which of these Electromagnetic radiation bands has the longest wavelength (λ)? [Section 12.1] a. X-Ray b. Visible Light c. Infrared d. Radio 2. How is energy in Electromagnetic (EM) radiation related

More information

EXPERIMENTS CHARACTERIZING THE X-RAY EMISSION FROM A SOLID-STATE CATHODE USING A HIGH-CURRENT GLOW DISCHARGE

EXPERIMENTS CHARACTERIZING THE X-RAY EMISSION FROM A SOLID-STATE CATHODE USING A HIGH-CURRENT GLOW DISCHARGE EXPERIMENTS CHARACTERIZING THE X-RAY EMISSION FROM A SOLID-STATE CATHODE USING A HIGH-CURRENT GLOW DISCHARGE A.B. KARABUT AND S.A. KOLOMEYCHENKO FSUE SIA LUCH 24 Zheleznodorozhnaja Street, Podolsk, Moscow

More information

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7 Advanced Lab Course X-Ray Photoelectron Spectroscopy M210 As of: 2015-04-01 Aim: Chemical analysis of surfaces. Content 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT 3 3.1 Qualitative analysis 6 3.2 Chemical

More information

Chapiter VII: Ionization chamber

Chapiter VII: Ionization chamber Chapiter VII: Ionization chamber 1 Types of ionization chambers Sensitive volume: gas (most often air direct measurement of exposure) ionization chamber Sensitive volume: semiconductor (silicon, germanium,

More information

Measurments with Michelson interferometers

Measurments with Michelson interferometers Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Measurments with Michelson interferometers Objectives In this experiment you will: Understand the

More information

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010 Introduction In this lab, you will use a diffraction grating to split up light into the various colors which make up the different wavelengths of the visible electromagnetic spectrum. You will assemble

More information

NGRM Next Generation Radiation Monitor new standard instrument for ESA

NGRM Next Generation Radiation Monitor new standard instrument for ESA For NGRM Team: Wojtek Hajdas (PSI) NGRM Next Generation Radiation Monitor new standard instrument for ESA 13 th European Space Weather Week, 14-18 Nov 2016, Oostende, Belgium Outline 1. NGRM requirements

More information

EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR

EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR Keith G. Balmain University of Toronto Department of Electrical and Computer Engineering 10 King s College Rd Toronto, Ontario M5S 3G4, Canada

More information

FORMATION FLYING WITH SHEPHERD SATELLITES NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute

FORMATION FLYING WITH SHEPHERD SATELLITES NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute FORMATION FLYING WITH SHEPHERD SATELLITES 2001 NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute WHAT IS FORMATION FLYING? Two or more satellites flying in prescribed orbits at a fixed separation

More information

Experiment 3 1. The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado

Experiment 3 1. The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado Experiment 3 1 Introduction The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado The Michelson interferometer is one example of an optical interferometer.

More information

PO Beam Waist Size and Location on the ISC Table

PO Beam Waist Size and Location on the ISC Table LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T980054-0- D 8/4/98 PO Beam Waist Sie and Location

More information

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path?

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path? T5-1 [237 marks] 1. A circuit is formed by connecting a resistor between the terminals of a battery of electromotive force (emf) 6 V. The battery has internal resistance. Which statement is correct when

More information

The Photoelectric Effect and the Quantization of Light

The Photoelectric Effect and the Quantization of Light The Photoelectric Effect and the Quantization of Light INTRODUCTION When a light with a sufficiently high frequency shines on a metal plate, electrons are ejected from the plate. This effect is known as

More information

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I 1 Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I - Vibration-Reduction Method and Measurement - T. Tomaru A, T. Suzuki A, T. Haruyama A, T. Shintomi A, N. Sato A, A. Yamamoto

More information

Advanced accelerometer/gradiometer concepts based on atom interferometry

Advanced accelerometer/gradiometer concepts based on atom interferometry Advanced accelerometer/gradiometer concepts based on atom interferometry Malte Schmidt, Alexander Senger, Matthias Hauth, Sebastian Grede, Christian Freier, Achim Peters Humboldt-Universität zu Berlin

More information

Carrier lifetime variations during irradiation by 3-8 MeV K in MCZ Si

Carrier lifetime variations during irradiation by 3-8 MeV K in MCZ Si Carrier lifetime variations during irradiation by 3-8 MeV protons @ 40-300 K in MCZ Si E.Gaubas 1, J.Vaitkus 1, A.Uleckas 1,J.Raisanen 2 Outline 1) Vilnius university, Institute of Materials Science and

More information

Estec final presentation days 2018

Estec final presentation days 2018 Estec final presentation days 2018 Background VESPER Facility Conclusion & Outlook Jovian environment Radiation Effects VESPER history VESPER status Overview Experimental Results External Campaign Summary

More information

ICALEPCS Oct. 6-11, 2013

ICALEPCS Oct. 6-11, 2013 Outline 2 SOHO (ESA & NASA) 3 SOHO (ESA & NASA) 4 SOHO (ESA & NASA) EGRET Team 5 Heavy Ions Charged Ionizing Radiation Outer-Space is full of them Figures reproduced from: 1.Mewaldt, R.A., "Elemental Composition

More information

Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation

Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation Ettore Vittone Physics Department University of Torino - Italy 1 IAEA Coordinate Research

More information

Chemistry Instrumental Analysis Lecture 17. Chem 4631

Chemistry Instrumental Analysis Lecture 17. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 17 Introduction to Optical Atomic Spectrometry From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry

More information

arxiv: v1 [physics.ins-det] 19 Apr 2014

arxiv: v1 [physics.ins-det] 19 Apr 2014 Sub to Chinese Physics C Vol. 33, No. X, Xxx, 9 Proton irradiation effect on SCDs * arxiv:144.4931v1 [physics.ins-det] 19 Apr 14 YANG Yan-Ji() 1,;1) LU Jing-Bin() 1 WANG Yu-Sa() CHEN Yong() XU Yu-Peng()

More information

Calibration of photo sensors for the space-based cosmic ray telescope JEM-EUSO

Calibration of photo sensors for the space-based cosmic ray telescope JEM-EUSO Calibration of photo sensors for the space-based cosmic ray telescope JEM-EUSO Michael Karus for the JEM-EUSO Collaboration Carpathian Summer School of Physics 2014 Sinaia Romania July 2014 Michael Karus

More information

University of Trieste INFN section of Trieste. ALP signatures in low background photon measurements

University of Trieste INFN section of Trieste. ALP signatures in low background photon measurements University of Trieste INFN section of Trieste ALP signatures in low background photon measurements Valentina Lozza March 5 th 2010 Summary Axion Like Particles: a brief introduction Experimental searches

More information