Gravitational Reference Technologies for Precision Navigation and Control in Space

Size: px
Start display at page:

Download "Gravitational Reference Technologies for Precision Navigation and Control in Space"

Transcription

1 Gravitational Reference Technologies for Precision Navigation and Control in Space Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University

2 Outline Overview of drag free technology and applications MGRS Stanford s drag-free implementation Small satellites as a path to a full MGRS UV-LED (2013) Overview of UV-LED charge management Mission Coating selection Caging on zero-g (2013) DOSS (2014) Drag-free cubesat (2015)

3 Fphoton Micro Meets Macro, Space Horizons 2013, Brown University Drag Free Fundamentals Spacecraft experiences many disturbance forces that cause a deviation from a geodetic orbit Solar radiation pressure Atmospheric drag Fdrag Use an isolated proof mass inside of a housing Proof mass follows geodesic isolated from non-gravitational forces Spacecraft flies itself around PM

4 Drag Free Design Considerations Other disturbances: Vehicle gravity g Proof mass at mass center of spacecraft Fine tune/measure mass-center offset of PM Image attraction of charged PM g Proof mass charge control Induced magnetic moment g Proof mass made with material of low magnetic susceptibility Shielding with MuMetal, Metglas, etc Sensor capacitive (if used) 10-8 g If used, use high bridge frequency to spectrally shift acceleration noise Sensor optical (if used) g Balance sensors Micro Meets Macro, Space Horizons 2013, Brown University

5 Drag-Free History and Applications 1 drag-free spacecraft Autonomous precision orbit determination, Aeronomy, Fundamental physics 2 drag-free spacecraft differential between two geodesics Geodesy, e.g. GRACE 3+ spacecraft Gravity-waves LISA, ~2026 GP-B, 2004 Triad I st drag-free GRACE, 2003 (non-drag-free)

6 MGRS System: Full Micro Meets Macro, Space Horizons 2013, Brown University Differential Optical Shadow Sensor Grating Angular Sensor Grating Displacement Sensor nanometer sensing for drag free signal Lower resolution, high dynamic range Andreas Zoellner Nanoradian level angular sensing picometer sensing for science signal High sensitivity, low dynamic range Graham Allen (alum) Proof Mass Caging UV LED Charge Management Full System 700 g clamping of proof mass during launch Minimal residual velocity on release No damage to proof mass surface Eric Hultgren, Chin-Yang Lui Solid state 255nm light source Charge control of proof mass and housing potential Karthik Balakrishnan 2.9 kg 70mm dia Be-Cu sphere Carbide coated sphere

7 MGRS: simplified for smallsats Micro Meets Macro, Space Horizons 2013, Brown University Drag-free error budget Spinning spherical Test Mass Housing (metrology reference)

8 Charging sources and effects The spacecraft and housing protect the proof mass from many disturbances: solar, atmospheric, etc. However, direct and secondary charging of the proof mass is still possible leading to a potential imbalance between the proof mass and housing walls Direct: High energy particles pass through the shielding and directly accumulate on either proof mass or housing Secondary: High energy particles interact with spacecraft materials, knocking off electrons which then accumulate on the proof mass or housing Approx electrons/second expected charging rate Potential imbalance leads to an electrostatic force on the proof mass

9 Charge Management Overview Micro Meets Macro, Space Horizons 2013, Brown University Positive Charge Transfer Negative Charge Transfer

10 Sphere Potential UV LED Small Sat Demonstration Micro Meets Macro, Space Horizons 2013, Brown University 2.5 Charge Amp Time (minutes) Scheduled for launch in Sept 2013

11 Proof mass coatings Want tough and robust coating on proof mass During caging, 100 g s preload on proof mass Want proof mass surface to be robust in the event it contacts housing walls Alternatives: carbide coatings Very tough, wide bandgap (close to AlGaN) Desired properties at 255 nm Sufficient QE at 255 nm (> approx. 1E-9) Reflectivity > 5% Workfunction near or lower than 4.86 ev (can be slightly higher due to Fermi Tail)

12 Coatings samples Test: carbide pellets coated on to aluminum substrates via e-beam deposition Substrate material: Al 6061-T6 machined into 1 squares Pellets: 2-4 mm diameter Samples cleaned via HF etch prior to coating, then immediately vacuum bagged for cleanliness Samples immediately vacuum bagged after coating for cleanliness Sample materials: Carbides: SiC, TiC, MoC, ZrC, TaC Metals: Au (LISA/LP-F proof mass coating), Nb (GP-B) Top row (from left): Au, Nb, Ir, SiC Bottom row (from left): TiC, MoC, ZrC, TaC SiC coated Al sphere

13 Measurements: Proof mass coating measurements Quantum efficiency (λ cent =255 nm) Measured twice: 2 weeks after coating, and 16 months after coating Used an integrating sphere with 10 V bias between coated sample and sphere Samples isolated from ground via Ω Ultem tubes 50 µw UV incident power Current measured using Keithley 6485 Picoemmeter Reflectivity (λ cent =255 nm, θ=45 ) Used Newport 918D head connected to Newport 1931-C power meter Material QE (2 wk) QE (16 mos) R (255 nm) φ (ev)* Au 3.40E E Nb 5.64E E SiC 4.34E E TiC 4.48E E ZrC 3.85E E MoC 6.82E E TaC 6.35E E QE measurement setup Ir

14 Differential Optical Shadow Sensor LED-diode Emitter-Detector pairs Differential common mode rejection Photon pressure balanced TM position sensor goals ~nm/hz 1/2 position in 3 dof < m/sec 2 TM disturbance

15 DOSS Sat 2U CubeSat Raise Shadow Sensor TRL Test attitude control algorithms Completion: Late 2013 Previous setup (in-air) 1nm Courtesy A. Zoellner

16 Proof Mass Caging System Clamp proof mass during launch with >200 N force 13.5:1 gear ratio Will be tested on NASA Zero-G flight at the end of April Courtesy E. Hultgren

17 Drag Free Cubesat 3U CubeSat Full MGRS demo Completion: mid 2015 Research goals: Drag-free control algorithm On-orbit performance evaluation of MGRS Performance goal: m/sec 2 Hz 1/2 (for geodesy) Courtesy A. Zoellner

18 Questions? 1. B. Lange. The Control and use of Drag-free Satellites. PhD thesis, Stanford University, D. B. DeBra and J. W. Conklin. Measurement of drag and its cancellation. Classical and Quantum Gravity, 28(9):094015, May Ke-Xun Sun, Saps Buchman, Robert Byer, Dan DeBra, John Goebel, Graham Allen, John W Conklin, Domenico Gerardi, Sei Higuchi, Nick Leindecker, Patrick Lu, Aaron Swank, Edgar Torres, and Martin Trittler. Modular gravitational reference sensor development. Journal of Physics: Conference Series, 154:012026, K.-X. Sun, A. Alfauwaz, M. Alrufaydah, H. Altwaijry, K. Balakrishnan, S. Buchman, R. L. Byer, J. W. Conklin, D. B. DeBra, J. Goebel, E. Hultgren, and A. Zoellner. Modular Gravitational Reference Sensor (MGRS) Technology Development. In Proceedings of the 8th International LISA Symposium, Journal of Physics Conference Series, T J Sumner, DNA Shaul, M O Schulte, S Waschke, D Hollington, and H Araujo. LISA and LISA Pathfinder charging. Classical and Quantum Gravity, 26(9):094006, May S. Buchman, T. Quinn, G. M. Keiser, D. Gill, and T. J. Sumner. Charge measurement and control for the Gravity Probe B gyroscopes. Review of Scientific Instruments, 66:120{129, January Ke-Xun Sun, Brett Allard, Saps Buchman, Scott Williams, and Robert L Byer. LED deep UV source for charge management of gravitational reference sensors. Classical and Quantum Gravity, 23(8):S141{S150, Ke-Xun Sun, Nick Leindecker, Sei Higuchi, John Goebel, Sasha Buchman, and Robert L Byer. UV LED operation lifetime and radiation hardness qualification for space flights. Journal of Physics: Conference Series, 154:012028, K. Balakrishnan, E. Hultgren, J. Goebel, and K.-X. Sun. Space Qualification Test Results of Deep UV LEDs for AC Charge Management. In 11th Spacecraft Charging Technology Conference, poster presentation, September Construction of satellite engineering model ongoing at NASA Ames

19 Error sources on proof mass orbit Micro Meets Macro, Space Horizons 2013, Brown University B. Lange. The Drag Free Satellite. AIAA Journal, May 26, 1964.

20 Coating adhesion test results - carbides Adhesion test procedure Scotch tape pull test Performed at two different speeds, once on each half of the sample (1) Tape put down, pressed firmly onto coating, and then slowly pulled off (2) Tape put down, pressed firmly onto coating, and then yanked off quickly All carbides adhered well, with no pulloff during the test

21 Coating adhesion test results gold (E-beam) Same adhesion test was performed with the gold sample which was coated by e- beam dep Gold coating significant section peeled off Not a significant issue for UV LED sat the proof mass is clamped in place, with no chance for contacting walls, and no caging or uncaging Issue for any future drag-free missions using a free-floating proof mass

UV LED charge control of an electrically isolated proof mass at 255 nm

UV LED charge control of an electrically isolated proof mass at 255 nm UV LED charge control of an electrically isolated proof mass at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu

More information

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu Drag free concept and applications

More information

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu MGRS System Overview Differential

More information

Gravitational & Planetary Research Program

Gravitational & Planetary Research Program 2012 Gravitational & Planetary Research Program Goals Why? Relativity, Gravitational Waves, Geodesy, Aeronomy Space Technology Education and Training: STEM Team Who? NASA Universities Industry Foreign

More information

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS)

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS) Microgravity White Paper Decadal Survey on Biological and Physical Sciences in Space Fundamental Physics Sciences (FPS) Applied Physical Sciences (APS) Nanosat Science Instruments for Modular Gravitational

More information

Stanford, Space Gravity Research Group

Stanford, Space Gravity Research Group Stanford, Space Gravity Research Group John W. Conklin, Sasha Buchman, and Robert Byer Gravitational science Earth observation: Geodesy, aeronomy Gravity-waves 1 Space Gravity Technology Development Drag-free

More information

Modular Gravitational Reference Sensor (MGRS) A core fiduciary instrument for space Development Program at Stanford

Modular Gravitational Reference Sensor (MGRS) A core fiduciary instrument for space Development Program at Stanford Modular Gravitational Reference Sensor (MGRS) A core fiduciary instrument for space Development Program at Stanford Ke-Xun Sun, Saps Buchman, Robert L. Byer, Dan DeBra, Graham Allen, John Conklin, Domenico

More information

The Stanford Gravitational Reference Sensor

The Stanford Gravitational Reference Sensor The Stanford Gravitational Reference Sensor S. Buchman, B. Allard, G. Allen, R. Byer, W. Davis, D. DeBra, D. Gill, J. Hanson, G.M. Keiser, D. Lauben, I. Mukhar, N. A. Robertson, B. Shelef, K. Sun, S. Williams

More information

arxiv: v1 [physics.ins-det] 13 Jul 2016

arxiv: v1 [physics.ins-det] 13 Jul 2016 arxiv:1607.03564v1 [physics.ins-det] 13 Jul 2016 Ground Testing and Flight Demonstration of Charge Management of Insulated Test Masses Using UV-LED Electron Photoemission Shailendhar Saraf 1,4, Sasha Buchman

More information

LISA: Drag-free Formation Flying at 5 million kilometers

LISA: Drag-free Formation Flying at 5 million kilometers LISA: Drag-free Formation Flying at 5 million kilometers Robert L. Byer Department of Applied Physics Hansen Experimental Physics Laboratory (HEPL) Stanford University rlbyer@stanford.edu Abstract The

More information

Astro 2010 White Paper. Technology Development for Modular Gravitational Reference Sensor (MGRS)

Astro 2010 White Paper. Technology Development for Modular Gravitational Reference Sensor (MGRS) Astro 2010 White Paper Technology Development for Modular Gravitational Reference Sensor (MGRS) Ke-Xun Sun, Saps Buchman, Robert Byer, Dan DeBra, John Goebel*, Graham Allen, John Conklin, Domenico Geradi**,

More information

RADIATION HARD UV LED S

RADIATION HARD UV LED S RADIATION HARD UV LED S LIGO Livingston Sasha Buchman Ke-Xun Sun Stanford University LIGO Hanford 11th ICATPP Conference Villa Olmo, 5-9 October, 2009 GP-B, Relativity Mission, Gravity Probe B Page LISA,

More information

Effects of Ultraviolet Irradiation on LIGO Mirror Coating

Effects of Ultraviolet Irradiation on LIGO Mirror Coating Effects of Ultraviolet Irradiation on LIGO Mirror Coating Ke-Xun Sun, Nick Leindecker, Ashot Markosyan, Sasha Buchman, Roger Route, Marty Fejer, Robert Byer, Helena Armandula, Dennis Ugolini, Gregg Harry

More information

Precision Attitude and Translation Control Design and Optimization

Precision Attitude and Translation Control Design and Optimization Precision Attitude and Translation Control Design and Optimization John Mester and Saps Buchman Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. Abstract Future

More information

Technology Readiness Level:

Technology Readiness Level: Technology Readiness Level: We plan to raise the TRL of the model with an acceleration noise performance requirement of < 10-12 m sec -2 Hz -1/2 at frequencies between 1 mhz and 1 Hz, from TRL 3 to TRL

More information

Shally Saraf, Stanford University

Shally Saraf, Stanford University LAser GRavitational-wave ANtenna in GEocentric Orbit Shally Saraf, Stanford University for the LAGRANGE team Background LAser GRavitational-wave ANtenna in GEocentric Orbit was proposed originally as a

More information

LISA Pathfinder Coldgas Thrusters

LISA Pathfinder Coldgas Thrusters LISA Pathfinder Coldgas Thrusters Joseph Martino/Eric Plagnol - LPF collaboration Lisa Symposium September 2016 Zurich Outline System Description External Disturbances and thruster noise In Flight dedicated

More information

LISA Pathfinder measuring pico-meters and femto-newtons in space

LISA Pathfinder measuring pico-meters and femto-newtons in space LISA Pathfinder measuring pico-meters and femto-newtons in space M Hewitson for the LPF team Barcelona, February 15th 2012 Observing from Space 2 Observing from Space 2 Observing from Space Push down to

More information

From an experimental idea to a satellite

From an experimental idea to a satellite From an experimental idea to a satellite Hansjörg Dittus Institute of Space Systems, Bremen German Aerospace Center Looking back in History Yukawa potential Gravity at large scales Weak gravity Nordtvedt

More information

ST-7 gravitational reference sensor: analysis of magnetic noise sources

ST-7 gravitational reference sensor: analysis of magnetic noise sources INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 20 (2003) S109 S116 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(03)55737-9 ST-7 gravitational reference sensor: analysis of magnetic noise sources John

More information

Drag-free Control and Drag Force Recovery of Small Satellites

Drag-free Control and Drag Force Recovery of Small Satellites Drag-free Control and Drag Force Recovery of Small Satellites Anh N. Nguyen NASA Ames Research Center NASA Ames Research Center, M/S 202-3, Bldg N202, Moffett Field, CA 93035 anh.n.nguyen@nasa.gov John

More information

LISA-2020 an Intermediate-Scale Space Gravitational Wave Observatory for This Decade

LISA-2020 an Intermediate-Scale Space Gravitational Wave Observatory for This Decade Information contained herein is not subject to Export Control or ITAR Gravitational Wave Astrophysics The Next Frontier in Understanding the Universe An Experimentalist's View LISA-2020 an Intermediate-Scale

More information

Observing the gravitational universe from space

Observing the gravitational universe from space Observing the gravitational universe from space Peter Wass Tim Sumner, Daniel Hollington, Jonathon Baird High Energy Physics Group Imperial Space Lab 29 September 2015 Gravitational Waves Gravitational

More information

GG studies at TAS-I: state of the art

GG studies at TAS-I: state of the art GG studies at TAS-I: state of the art A. Anselmi INRIM, 24-10-2014 83230350-DOC-TAS-EN-002 GG@ThalesAleniaSpace! 1996 Early experiment concept presented to ESA HQ! Industrial support on satellite & drag-free

More information

Control of the Laser Interferometer Space Antenna

Control of the Laser Interferometer Space Antenna Control of the Laser Interferometer Space Antenna P. G. Maghami, T. T. Hyde NASA Goddard Space Flight Center Guidance, Navigation and Control Division Greenbelt, MD 20771 J. Kim Swales Aerospace, Inc.

More information

arxiv:gr-qc/ v2 16 Feb 2006

arxiv:gr-qc/ v2 16 Feb 2006 Acceleration disturbances due to local gravity gradients in ASTROD I arxiv:gr-qc/0510045v2 16 Feb 2006 Sachie Shiomi Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30013 R.O.C. E-mail:

More information

Infrared Earth Horizon Sensors for CubeSat Attitude Determination

Infrared Earth Horizon Sensors for CubeSat Attitude Determination Infrared Earth Horizon Sensors for CubeSat Attitude Determination Tam Nguyen Department of Aeronautics and Astronautics Massachusetts Institute of Technology Outline Background and objectives Nadir vector

More information

2 Each satellite will have two test masses, each being the end mirror for an interferometer.

2 Each satellite will have two test masses, each being the end mirror for an interferometer. Ground Testing for LISA Test Masses with a Torsion Pendulum Matthew Schmidt Valdosta State University International REU: University of Trento, Italy Advisor: Dr. Bill Weber Abstract: One of the most important

More information

INTERNAL THALES ALENIA SPACE

INTERNAL THALES ALENIA SPACE Workshop Galileo Galilei (GG) and GGG lab prototype: state of the art and new possibilities Template reference : 100181670S-EN GG error budget from the end-to-end simulator developed at TAS-I Giuseppe

More information

Infrared Earth Horizon Sensors for CubeSat Attitude Determination

Infrared Earth Horizon Sensors for CubeSat Attitude Determination Infrared Earth Horizon Sensors for CubeSat Attitude Determination Tam Nguyen Department of Aeronautics and Astronautics Massachusetts Institute of Technology Outline Background and objectives Nadir vector

More information

Astrophysics & Gravitational Physics with the LISA Mission

Astrophysics & Gravitational Physics with the LISA Mission Astrophysics & Gravitational Physics with the LISA Mission Peter L. Bender JILA, University of Colorado, and NIST Workshop on Robotic Science from the Moon Boulder, CO 5-6 October, 2010 LISA Overview The

More information

GP-B Attitude and Translation Control. John Mester Stanford University

GP-B Attitude and Translation Control. John Mester Stanford University GP-B Attitude and Translation Control John Mester Stanford University 1 The GP-B Challenge Gyroscope (G) 10 7 times better than best 'modeled' inertial navigation gyros Telescope (T) 10 3 times better

More information

Exploring the Gravitational Wave Universe Challenges for a LISA Successor

Exploring the Gravitational Wave Universe Challenges for a LISA Successor Exploring the Gravitational Wave Universe Challenges for a LISA Successor H Ward University of Glasgow Cosmic Vision 2015 2025 Paris 15 th September 2004 With contributions from : P Bender, K Danzmann,

More information

Integrated Test Facility for Nanosat Assessment and Verification

Integrated Test Facility for Nanosat Assessment and Verification Integrated Test Facility for Nanosat Assessment and Verification Steve Wassom, Quinn Young, Bryan Bingham, Rees Fullmer, Mitch Whiteley, Robert Burt, Mike Watson, Tom Ortiz, Joe Richards, Sam Wilcox Utah

More information

Inertial Frame frame-dragging

Inertial Frame frame-dragging Frame Dragging Frame Dragging An Inertial Frame is a frame that is not accelerating (in the sense of proper acceleration that would be detected by an accelerometer). In Einstein s theory of General Relativity

More information

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System B. Christophe (ONERA, Châtillon, France) on behalf of the GAP Instrument

More information

Attitude Determination using Infrared Earth Horizon Sensors

Attitude Determination using Infrared Earth Horizon Sensors SSC14-VIII-3 Attitude Determination using Infrared Earth Horizon Sensors Tam Nguyen Department of Aeronautics and Astronautics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge,

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

Orbiting L 2 Observation Point in Space. Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009

Orbiting L 2 Observation Point in Space. Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009 Orbiting L 2 Observation Point in Space Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009 LIBRATION (LANGRANGE) POINTS IN THE SUN-EARTH SYSTEM Libration Points: 5 Lagrange Points L 1 and

More information

Nano-JASMINE project

Nano-JASMINE project Nano-JASMINE project NAOJ Y. Kobayashi Overview nj project Plan of talk Aim of nj project Historic facts Collaboration with University of Tokyo Telescope and CCD Observation along great circle Cosmic radiation

More information

Experiment Design and Performance. G. Catastini TAS-I (BUOOS)

Experiment Design and Performance. G. Catastini TAS-I (BUOOS) Experiment Design and Performance G. Catastini TAS-I (BUOOS) 10 EP and the GRT Einstein s General Relativity Theory Weak Equivalence Principle: all test particles at the same space-time point in a given

More information

Grating Angle Magnification Enhanced Angular and Integrated Sensors for LISA Applications

Grating Angle Magnification Enhanced Angular and Integrated Sensors for LISA Applications Institute of Physics Publishing Journal of Physics: Conference Series 32 (2006) 167 179 doi:10.1088/1742-6596/32/1/026 Sixth Edoardo Amaldi Conference on Gravitational Waves Grating Angle Magnification

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

SPACECRAFT NAVIGATION AND MISSION SIMULATION

SPACECRAFT NAVIGATION AND MISSION SIMULATION TianQin Space-borne gravitational wave detector SPACECRAFT NAVIGATION AND MISSION SIMULATION December 9, 2015 - Prepared by Viktor T. Toth A PERSPECTIVE Precision navigation End-to-end mission simulation

More information

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Outline 1. Overview of Attitude Determination and Control system. Problem formulation 3. Control schemes

More information

Pioneer anomaly: Implications for LISA?

Pioneer anomaly: Implications for LISA? Pioneer anomaly: Implications for LISA? Denis Defrère Astrophysics and Geophysics Institute of Liege (Belgium) Andreas Rathke EADS Astrium GmbH Friedrichshafen (Germany) ISSI Meeting - Bern November 10th

More information

Catapult tests for microgravity characterization of the MICROSCOPE accelerometers. Manuel Rodrigues On behalf ONERA & ZARM team

Catapult tests for microgravity characterization of the MICROSCOPE accelerometers. Manuel Rodrigues On behalf ONERA & ZARM team Catapult tests for microgravity characterization of the MICROSCOPE accelerometers Manuel Rodrigues mrodrig@onera.fr On behalf ONERA & ZARM team 1 Instrument Description SU sqm Sensor Unit (SU) = differential

More information

and another with a peak frequency ω 2

and another with a peak frequency ω 2 Physics Qualifying Examination Part I 7-Minute Questions September 13, 2014 1. A sealed container is divided into two volumes by a moveable piston. There are N A molecules on one side and N B molecules

More information

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy:

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy: Space weather Introduction to lectures by Dr John S. Reid Image courtesy: http://www.astro-photography.com/ss9393.htm Sunspot 9393 First pass from late March to early April, 2001 See: Storms from the Sun

More information

The preliminary analysis of Tianqin mission and developments of key technologies

The preliminary analysis of Tianqin mission and developments of key technologies The3 rd KAGRA International Workshop The preliminary analysis of Tianqin mission and developments of key technologies Hsien-Chi Yeh Tianqin Research Center for Gravitational Physics Sun Yat-sen University

More information

mstar: Space-Time Asymmetry Research

mstar: Space-Time Asymmetry Research mstar: Space-Time Asymmetry Research Testing Lorentz Invariance in Low-Earth Orbit Abdulaziz Alhussien for the mstar team November 15 th, 2013 1 Kinematic Approach to LIV Is the CMB a preferred frame?

More information

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo instrument commissioning & performance assessment José M. G. Merayo DTU Space, Technical University of Denmark Division Measurement & Instrumentation Systems overview Fluxgate principle Amorphous magnetic

More information

Progress towards a high dimensional stability telescope for gravitational wave detection

Progress towards a high dimensional stability telescope for gravitational wave detection Progress towards a high dimensional stability telescope for gravitational wave detection Shannon Sankar shannon.r.sankar@nasa.gov USRA/CRESST/GSFC Jeffrey Livas (PI), Peter Blake, Joseph Howard, Garrett

More information

Attitude Determination using Infrared Earth Horizon Sensors

Attitude Determination using Infrared Earth Horizon Sensors Attitude Determination using Infrared Earth Horizon Sensors Tam N. T. Nguyen Department of Aeronautics and Astronautics Massachusetts Institute of Technology 28 th Annual AIAA/USU Conference on Small Satellites

More information

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Shin SATORI*, Hiroyuki MAE**, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI # and Atsushi NAGATA # * Hokkaido Institute of

More information

LISA Technology: A Status Report

LISA Technology: A Status Report LISA Technology: A Status Report Guido Mueller University of Florida Minnesota 2010 1 Content LISA Concept Gravitational Reference Sensor Interferometry Measurement System Status/Outlook 2 LISA Concept

More information

1

1 Daniel.Schuetze@aei.mpg.de 1 Satellite gravimetry Mapping the global gravity field Static and dynamic components Many applications in geosciences Techniques Orbit determination and tracking Satellite-to-satellite

More information

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna Presentation by Indian Delegation to 49 th STSC UNCOPUOS February 2012 Vienna ASTROSAT Astrosat is India s first dedicated multiwavelength astronomy satellite with a capability to observe target sources

More information

ADCSS 2017: Sodern presentation

ADCSS 2017: Sodern presentation ADCSS 2017: Sodern presentation 1 Agenda Star trackers road map: a wide range of products End of CCD star trackers: SED26 replaced by Horus as standalone multi mission star tracker Hydra maintained beyond

More information

T10 [186 marks] y 2. w 2

T10 [186 marks] y 2. w 2 T10 [186 marks] 1. A particle of charge q is at point S in a uniform electric field of strength E. The particle moves a distance w parallel to the field lines and then a distance y perpendicular to the

More information

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1 Fundamental Physics in Space S. Vitale, University of Trento Vitale@science.unitn.it ESO-Garching-15-09-03 S. Vitale 1 Using Space to Investigate Fundamental Laws of Physics: Quantum measurements, entanglement,

More information

AP Physics 1 Chapter 7 Circular Motion and Gravitation

AP Physics 1 Chapter 7 Circular Motion and Gravitation AP Physics 1 Chapter 7 Circular Motion and Gravitation Chapter 7: Circular Motion and Angular Measure Gravitation Angular Speed and Velocity Uniform Circular Motion and Centripetal Acceleration Angular

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

Solar & Electric Sailing Overview

Solar & Electric Sailing Overview Solar & Electric Sailing Overview KISS Technology Development Workshop (May 15-18, 2018) NASA Image NASA Image Jared Dervan NASA/MSFC Acknowledgments Les Johnson (MSFC Project Formulation Office) Bruce

More information

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Overview What is gravity? Newton and Einstein What does gravity do? Extreme gravity The true power of gravity Getting things moving

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Dominant Perturbations Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation Assumption of a two-body system in which the central body acts gravitationally as a point

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information

More information

Plan for Compensation of Self-Gravity on ST-7/DRS

Plan for Compensation of Self-Gravity on ST-7/DRS Plan for Compensation of Self-Gravity on ST-7/DRS Jordan P. Evans Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109 Jordan.P.Evans@jpl.nasa.gov 5th International LISA Symposium

More information

2013 CAP Prize Examination

2013 CAP Prize Examination Canadian Association of Physicists SUPPORTING PHYSICS RESEARCH AND EDUCATION IN CANADA 2013 CAP Prize Examination Compiled by the Department of Physics & Engineering Physics, University of Saskatchewan

More information

Spacecraft Environment Interaction Engineering

Spacecraft Environment Interaction Engineering Spacecraft Environment Interaction Engineering Electrodynamic Tether Lunar charging Future issues Mengu Cho Laboratory of Spacecraft Environment Interaction Engineering Kyushu Institute of Technology cho@ele.kyutech.ac.jp

More information

Possible advantages of equipping GNSS satellites with on-board accelerometers

Possible advantages of equipping GNSS satellites with on-board accelerometers Possible advantages of equipping GNSS satellites with on-board accelerometers - a way to get profits - Maciej Kalarus (1) Krzysztof Sośnica (2) Agata Wielgosz (1) Tomasz Liwosz (3) Janusz B. Zielioski

More information

Gravitational Wave Astronomy

Gravitational Wave Astronomy Gravitational Wave Astronomy Giles Hammond SUPA, University of Glasgow, UK on behalf of the LIGO Scientific Collaboration and the Virgo Collaboration 14 th Lomonosov conference on Elementary Particle Physics

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Presentation Outline Mission Overview Mission Relevance

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Mission Overview Mission Relevance ConOps INCA Payload

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Dominant Perturbations Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation Assumption of a two-body system in which the central body acts gravitationally as a point

More information

Space plasmas measurement techniques Milan Maksimovic CNRS & LESIA, Paris Observatory, France

Space plasmas measurement techniques Milan Maksimovic CNRS & LESIA, Paris Observatory, France Space plasmas measurement techniques Milan Maksimovic CNRS & LESIA, Paris Observatory, France Maksimovic : Space plasmas measurement techniques 1 ESA mission with NASA participation (launcher + two instruments)

More information

Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites 56th International Astronautical Congress 25 35th Student Conference (IAF W.) IAC-5-E2.3.6 Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites Rouzbeh Amini, Jesper

More information

Gravity Probe B Data Analysis Challenges, Insights, and Results

Gravity Probe B Data Analysis Challenges, Insights, and Results Gravity Probe B Data Analysis Challenges, Insights, and Results Mac Keiser April 15, 27 April 15, 27 Jacksonville, FL 1 Topics Data Analysis Strategy and Methods Challenges and Insights Trapped Magnetic

More information

The Design and On-orbit Performance of the Relativity Mission Gyroscopes

The Design and On-orbit Performance of the Relativity Mission Gyroscopes The Design and On-orbit Performance of the Relativity Mission Gyroscopes Sasha Buchman, Stanford University Symposium on Gyro Technology 2010 Karlsruhe, September 21 st 2010 1 2 642 km Guide Star IM Pegasi

More information

Goddard Space Flight Center

Goddard Space Flight Center 1 Solar Coronagraphs Observe off-disk coronal emissions from Sun. Dominant noise source: Diffraction of on-disk light around the occulter Vignetting on externally occulted coronagraphs Noise inversely

More information

Spacer Development and Analysis

Spacer Development and Analysis Spacer Development and Analysis Mission Overview POPACS MISSION To measure changes in the density of the auroral zone upper atmosphere in response to various solar stimuli DREXEL OBJECTIVE To design and

More information

The Engineering of LISA Pathfinder the quietest Laboratory ever flown in Space

The Engineering of LISA Pathfinder the quietest Laboratory ever flown in Space Journal of Physics: Conference Series PAPER OPEN ACCESS The Engineering of LISA Pathfinder the quietest Laboratory ever flown in Space To cite this article: Christian Trenkel et al 2017 J. Phys.: Conf.

More information

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Fuyuto Terui a, Nobutada Sako b, Keisuke Yoshihara c, Toru Yamamoto c, Shinichi Nakasuka b a National Aerospace Laboratory

More information

Gravity Probe B Overview

Gravity Probe B Overview Gravity Probe B Overview Barry Muhlfelder HEPL-AA Seminar June 17, 2009 Page 1 GPB Overview HEPL Seminar, June 17, 2009 The Relativity Mission Concept Ω 3GM GI 3R = R ω 2 3 2 3 2 2c R c R R ( v ) + ( ω

More information

subject Dan Burbank), two JAXA astronauts (including the very first subject Soichi Noguchi in 2010) and ESA astronaut Paolo Nespoli in 2011. In terms of basic research, the prolonged weightlessness on

More information

Questions from April 2003 Physics Final Exam

Questions from April 2003 Physics Final Exam Questions from April 003 Physics 111.6 Final Exam A1. Which one of the following statements concerning scalars and vectors is FALSE? (A) A vector quantity deals with magnitude and direction. (B) The direction

More information

Progress on the Design of the Magnetic Field Measurement System for elisa

Progress on the Design of the Magnetic Field Measurement System for elisa Progress on the Design of the Magnetic Field Measurement System for elisa Ignacio Mateos Instituto de Ciencias del Espacio (CSIC-IEEC) Barcelona 10 th International LISA Symposium University of Florida,

More information

Appendix G. Solar Orbiter SPICE Thermal Design, Analysis and Testing. Samuel Tustain (RAL Space, United Kingdom)

Appendix G. Solar Orbiter SPICE Thermal Design, Analysis and Testing. Samuel Tustain (RAL Space, United Kingdom) 137 Appendix G Solar Orbiter SPICE Thermal Design, Analysis and Testing Samuel Tustain (RAL Space, United Kingdom) 138 Solar Orbiter SPICE Thermal Design, Analysis and Testing Abstract 1 The Spectral Imaging

More information

YOUR NAME Sample Final Physics 1404 (Dr. Huang)), Correct answers are underlined.

YOUR NAME Sample Final Physics 1404 (Dr. Huang)), Correct answers are underlined. YOUR NAME Sample Final Physics 1404 (Dr. Huang)), Correct answers are underlined. Useful constants: e=1.6 10-19 C, m e =9.1 10-31 kg, m p =1.67 10-27 kg, ε 0 =8.85 10-12 C 2 /N m 2, c=3 10 8 m/s k e =8.99

More information

From the first results of LISAPathfinder to LISA : First step to observing gravitational wave from space

From the first results of LISAPathfinder to LISA : First step to observing gravitational wave from space From the first results of LISAPathfinder to LISA : First step to observing gravitational wave from space Antoine Petiteau AstroParticule et Cosmologie Université Paris-Diderot Journée GPhys APC-Paris 6th

More information

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03 Design of Orbits and Spacecraft Systems Engineering Scott Schoneman 13 November 03 Introduction Why did satellites or spacecraft in the space run in this orbit, not in that orbit? How do we design the

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

Nano-JASMINE: A Small Infrared Astrometry Satellite

Nano-JASMINE: A Small Infrared Astrometry Satellite SSC07-VI-4 Nano-JASMINE: A Small Infrared Astrometry Satellite 21 st Annual AIAA/USU Conference on Small Satellites 14th/August/2007 Intelligent Space Systems Laboratory, University of Tokyo Nobutada Sako,

More information

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Jeff Livas for the US LISA Telescope Team NASA Goddard Space Flight Center Greenbelt, MD 20771 Nov 2017 Telescope Team GSFC

More information

Towards a space platform for macroscopic tests of quantum physics Rainer Kaltenbaek

Towards a space platform for macroscopic tests of quantum physics Rainer Kaltenbaek Towards a space platform for macroscopic tests of quantum physics Rainer Kaltenbaek Science case Testing quantum physics the superposition principle Science case Testing quantum physics the superposition

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

LRO Lunar Reconnaissance Orbiter

LRO Lunar Reconnaissance Orbiter LRO Lunar Reconnaissance Orbiter Launch Date: June 18, 2009 Destination: Earth s moon Reached Moon: June 23, 2009 Type of craft: Orbiter Intended purpose: to map the moon like never before, add additional

More information

Why Go To Space? Leon Golub, SAO BACC, 27 March 2006

Why Go To Space? Leon Golub, SAO BACC, 27 March 2006 Why Go To Space? Leon Golub, SAO BACC, 27 March 2006 Solar Observation Observation of the Sun has a long and distinguished history Especially important as calendar where e.g. seasonal monsoons produced

More information

AY2 Winter 2017 Midterm Exam Prof. C. Rockosi February 14, Name and Student ID Section Day/Time

AY2 Winter 2017 Midterm Exam Prof. C. Rockosi February 14, Name and Student ID Section Day/Time AY2 Winter 2017 Midterm Exam Prof. C. Rockosi February 14, 2017 Name and Student ID Section Day/Time Write your name and student ID number on this printed exam, and fill them in on your Scantron form.

More information