Superconducting Magnetic Energy Storage Concepts and applications

Size: px
Start display at page:

Download "Superconducting Magnetic Energy Storage Concepts and applications"

Transcription

1 Superconducting Magnetic Energy Storage Concepts and applications Antonio Morandi DEI Guglielmo Marconi Dep. of Electrical, Electronic and Information Engineering University of Bologna, Italy ESAS Summer School on High Temperature Superconductors Technology for Sustainable Energy and Transport Systems

2 Outline SMES technology SC material and Conductor Coil Power conditioning system A case study - 1 MW / 5 s SMES Applications Energy storage SMES applications Grid Customer / Industry SMES actvities at the University of Bologna

3 SMES Superconducting Magnetic Energy Storage Current leads PCS grid vacuum vessel Control and protection system Cooling system Superconducting coil E B = dτ µ τ 0 τ coil B µ 0 d τ = 1 L I 3

4 Advantages High deliverable power Infinite number of charge discharge cycles High efficiency of the charge and discharge phase (round trip) Fast response time from stand-by to full power No safety hazard Critical aspects Low storage capacity Need for high auxiliary power (cooling) Idling losses 4

5 Conductor and cable YBCO 16 K 0 K 4 K 16 K 0 K 4 K MgB YBCO, B perpendicular MgB MaincharacteristicsofatypicalMgB Conductor Manufacturer Columbus Nominal radius 1.13 mm Number of filaments 36 Filling factor 0.14 Matrix Ni 70%, Copper 0% Critical tensile strength 300 MPa Critical current, K, self field 550 A Main charact. of a typical YBCO Coated Conductor Manufacturer Superpower Nominal Width 1 mm Nominal thickness 0.1 mm YBCO 1 µm Stabilizer, copper 0 µm Substrate, Hastelloy 100 µm Critical tensile strength 550 MPa Critical current, 77 K, self field 330 A 5

6 Typical current for the SMES operating in the MW range is in the order of several ka Several conductors have to be put in parallel for reaching the required transport current High current conductor made of G HTS tapes Continuously transposed (Roebel) cable Slotted cable made of Roebels Scraps are produced Je cable = Je tape Je cable << Je tape 6

7 Twisted stacked-tapes Cable made of twisted stacks Je cable << Je tape Conductor on Round Core (CORC) cable Institute of Electrical Engineering Slovak Academy of Science 7

8 CCRP Cable Centre de Recherches en Physique des Plasmas ENEA Cable 10 ka class cable: 150 G-wires (5 stacks x 30 wires) 8

9 Flat Rutherford cable High current conductor made of MgB wires example 6 wires Stranded MgB /Cu rope Copper MgB Example of Base Cable Unit: 1 MgB strands + 7 copper strands

10 Layout of the winding Arrangement of multiple pancake 5 MJ coil -4T Solenoid Torus Simpler and more cost effective Easier handling of the electromagnetic stress Smaller foot-print Low stray field Reduced component of magnetic field perpendicular to the conductor 10

11 Length of conductor versus the perpendicular field at the maximum current 5 MJ coil -4T A large portion of conductor experiences a large perpendicular field in the toroid as well 11

12 Coil design electromagnetic R 1 R 1 R 1 = p R 1 L = p L R 1 = R 1 R L R L H = J e R 1 H = J e R 1 E' = V SC H µ ' = π 0 π R' 1 L' = p 3 E ( R' 1+ R') R' 1 ) L' p VSC The volume of the superconductor scales less than linearly with the energy of the coil 3 V SC = k E 1

13 Coil design mechanic V k 1 σ E Virial s theorem limit V, volume of structural material [m 3 ] E, total energy of the coil [J] σ, allowable stress [N/m ] k, numerical coefficient ( 1 ) For solenoid k ranges from 1 if D/L tends to zero to 3 if D/L tends to infinite. At high energy the structural constraint is stricter than the electromagnetic one volume E Additional structural (and stabilizing ) material is required E /3 energy 13

14 Field dependence of the total conductor s length The required stored energy E is assigned The operating field B of a the SC coil is a design choice By increasing the field A reduced overall size of the coil is obtained which requires less conductor More ampere-turns at reduced Jcare needed which require more conductor Which of the two effects is dominant? 14

15 E Stored Energy B Nominal Field p aspect ratio( L/ D ) of the solenoid S tape cross section of the tape J e Eng. current dens. of the tape at field B k I / Icratio solenoid 0 solenoid 8 ) ( 1 8 ) ( 1 ) ( / B E p B J k S S S N B E p B J k S H L S B J k B E p p D L B E p D L D V B E V e tape tape SC tape e SC SC e = = = = = = = = µ π µ π π µ π µ π µ Volume of the solenoid Diameter of the solenoid Height of the solenoid Superconducting cross section Number of turns Total length of tape 15 slim solenoid given aspect ratio Isotropic conductor ) ( B J B E p k S D N L e tape tape SC = = µ π π π

16 L SC B' ( B) LSC ( B') Je( B) J e( B') B YBCO, 16 K, B perpendicular 1 3 ( 4 ) 1 3 J e ( 4)* B MgB, 16 K ( ) 1 3 J e ( )* B For practical superconductors (YBCO and MgB ) the required length of conductor needed for a solenoid with given Energy E increases with the operating field 16

17 Outline SMES technology SC material and Conductor Coil Power conditioning system Applications Energy storage SMES applications Grid Customer / Industry 17

18 PCS the magic box AC Grid P 0 PCS I SMES I 0, current of SMES at time t 0 I 1, current of SMES at time t 1 1 L I 1 LI 0 = P ( t t 0 ) I = I0 P ( t t L 0 ) During discharge 1 L I 1 L I 1 = P ( t t 1 ) I = I1 + P ( t t L 1 ) During charge I 0 I 1 t 0 t 1 18

19 PCS - Power Conditioning System Voltage source converter (VSC) V dc L C I SMES A controlled power is transferred from the DC bus to the grid by means of the inverter The voltage of the DC bus is kept constant by the SMES by means of the two quadrant chopper 19

20 I dc P = V I cosϕ V dc C The inverter regulates the power transfer between the grid and the capacitor An average positive current is established on the DC bus during power transfer to grid P V dc < I dc > The voltage of DC bus decreases if the capacitor is not recharged V dc time 0

21 The chopper controls the voltage of the DC bus Discharge I dc I dc P = V I cosϕ C V dc I SMES L < I dc > = < I dc > V dc constant i dc I SMES T ON T OFF T cycle < I dc > time The current of the SMES decreases during the ON phase If the power P is delivered to the grid during the interval t final current of the SMES is 1 L I 1 L I 1 = P t I, current of he SMES at the end of the delivery I 1, current of he SMES at the start of the delivery 1

22 Charge I dc I dc P = V I cosϕ C V dc I SMES L < I dc > = < I dc > V dc constant i dc T OFF time The current of the SMES increase during the ON phase I SMES T ON T cycle < I dc > If the power P is absorbed from the grid during the interval t final current of the SMES is 1 L I 1 L I 1 = P t I, current of he SMES at the end of the delivery I 1, current of he SMES at the start of the delivery

23 Implementation -control algorithm Grid SW v g i s L s i L Load inverter PWM * v s * i s R v g i s * V dc V dc + * i c R 3 PWM chopper * i + g R 1 i L v g * Q g ( = 0) * P g The inverter is controlled in order to provide the required service to the grid The SMES is controlled independently in order to stabilize the voltage of the DC bus 3

24 Idling Loss If no power is delivered/absorbed the SMES current of the free-wheels P = 0 C V dc I SMES L V on IGBT = V V on DIODE = V Losses are produced during the idling phase P IGBT = I SMES V on IGBT P DIODE = I SMES V on DIODE P idling = 1 10 kw / ka Time constants of RL circuit of typical SMES (1-5 MJ) during the standby phases are in the order of hundreds of seconds at most 4

25 SMES The whole energy of the SMES is lost in the power electronics within a few minutes Continuous recharge/compensation is needed

26 The use of a thermal actuated SC switch for avoiding the losses during the standby is possible in principle but it is unfeasible in practice since it lowers the response time of the SMES P = 0 V dc C I SMES L 6

27 Outline SMES technology SC material and Conductor Coil Power conditioning system A case study - 1 MW / 5 s SMES Applications Energy storage SMES applications Grid Customer / Industry SMES actvities at the University of Bologna 7

28 Main characteristics of the 1 MW - 5s SMES Systems 8

29 Grid performance of the 1 MW -5s SMES System 9

30 Estimated AC losses of the 1 MW -5s SMES System during one discharge/charge cycle. Round trip efficiency of the 1 MW -5 s SMES System during one discharge/charge cycle. 30

31 Outline SMES technology SC material and Conductor Coil Power conditioning system Applications Energy storage SMES applications Grid Customer / Industry 31

32 National electric balance - Italy Production (grid immission) 310 TWh, 014 Thermal 47.5% Rinnovabili 37.9% Importazioni 14.0% Loss 19.5 TWh(6 %) Average power demand 39.1 GW Night average (011).0 GW Day average(011) 5.0 GW Absolute minimum (009) 1.5 GW Absolute maximum ( 015) 53.3 GW, 1 July Installed power (01) 14.0 GW Installed power (010) GW Average available power (01) 69.3 GW Usage rate 57.3 % 3

33 Electric power system ICT storage storage Active load Non progr. power Non progr. power Non progr. power. Active load 33

34 Grid energy management Generation / load imbalance is inherent in the power grid due to random fluctuation of loads induced by customers variation of generation from renewables Sudden and Large generation / load imbalance can also occur due to contingency Continuous and fast regulation of the generated power and/or loads is required for controlling the frequency and stability of the grid. Technology for grid energy management Improved controllability of conventional generation Responsive load Supergrid(multi-terminal DC links ) Energy storage 34

35 Energy storage T&D system only allows to move energy in space Total power produced must instantaneouslybalance the total load (including the losses). Energy storage system allows to shift electric energy in time so as to decouple production and consumption 35

36 Performance of Storage Technologies Energy intensive storage Power intensive storage

37 1 MWh = 3600 MJ

38 1 MW 6h NAS module 1 MW 10 s SMES 38

39 6 MWh NAS system 6 MWh SMES system

40 Efficiency of an Energy Storage System P, deliverable power t, duration of delivery t cycle, duration of the cycle t idle, duration of idling phase η s, intrinsic efficiency of the storage device η c, efficiency of the converters P aux, power required for auxiliary services P idle, power loss (if any) during idling η = P t η = t P t η = t + P + PP t idle tidle + idle P t ηs ηc ηs ηc η η s c aux idle t energy idle power cycle cycle 40

41 By summarizing Energy capacity of SMES is ridiculous compared to batteries Idling losses in power converters do not allow long term storage Cooling losses further complicate losses Is the SMES useless and hopeless? 41

42 Parameters of the energy storage Power that can be absorbed or supplied, P Duration of the power delivery, t Number of cycles, N Response time, t r 4

43 Grid and Customer Applications of Energy Storage Bulk energy management market / less need for inefficient (low load) operation of power plants MW 1 h, 1 cycle per day Transient Stability Increased transmission limit MW 1-10 s, occasional grid Frequency regulation less need inefficient (low load) operation of power plant 1-50 MW 1-15 min, cycles per day Other applications with more limited cost/benefit trade-off damping of sub-synchronous resonance black start deferral of new transmission and distribution 43

44 Customer Power quality and UPS compensation of voltage sag + Power Quality services to the customer 1-10 MW s, occasional deep cycle + continuous minor cycles Leveling of impulsive power constant power absorption from grid 1-10 MW s, continuous cycles 44

45 Parmeters of Storage for Grid and CustomerApplications lev. imp. power Voltage quality UPS Trans. stability Freq. regulation Bulk en. man. lev. imp. power Voltage quality UPS Trans. stability Freq. regulation Bulk en. man. lev. imp. power Freq. regulation Voltage quality Bulk en. man. UPS Trans. stability

46 1. Power intensive systems Cost of battery scales with power and is roughly independent on the energy Example: battery system made of 1 MW 1 h module, 1M cost each Case 1 Rated power 30 MW Duration of delivery 1 h Rated energy 30 MWh Num. of modules 30 Total Cost 30 M Specific cost 1 M / MWh Case Rated power 30 MW Duration of delivery 6 min Rated energy 3 MWh Total Cost 30 M Specific cost 10 M / MWh 46

47 Cost of SMES scales with energy and is roughly independent on the power For example SMES is competitive in case if the cost of 3 MWh storage is lower than 10 M Case 1 Rated power 30 MW Duration of delivery 1 h Rated energy 30 MWh Num. of modules 30 Total Cost 30 M Specific cost 1 M / MWh Case Rated power 30 MW Duration of delivery 6 min Rated energy 3 MWh Total Cost 30 M Specific cost 10 M / MWh If a large power is required for a more limited time SMES can represent a cost effective storage technology 47

48 . Hybrid SMES - Battery systems load battery Lowpass control PCS High pass control SMES SMES can be conveniently used in combination with battery due to the complementary characteristics Battery provides long term base power hence energy SMES provides peak power and fast cycling 48

49 Power vs time total Advantages: Reduced power rating of batteries Reduced wear and tear of batteries (no minor cycling) Reduced energy rating of SMES battery SMES 49

50 3. Increasy peak power of industry scale batteries 1 MW 6h NaSbattery system with double peak power capacity The power rating of the system is to be doubled for short times ( < 10 s ) due to power quality requirement No impact is obtained on the total storage requirement due to the increased peak power capacity Solution 1 the battery pack is doubled Cost is doubled Energy capacity is also doubled but the system is greatly underexploited 50

51 Solution SMES is added to the battery to provide short term peak power To scale (roughly) 1 MW 6 h + 1 MW 10 s Size and cost of the system can be greatly reduced!! 51

52 4. Protection of sensitive equipment Sensitive customer Voltage sags may occur in power grid due to faults Sensitive customers can only tolerate a voltage reduction f 30 &% for 00 ms

53 1 MW 5 s SMES system

54 The KameyamaSMES 10 MW 1 s SMES system 54

55 5. Leveling of impulsive loads by SMES Pgrid Pload Ismes Pload Pgrid Pload Iload Igrid No battery can be used for this application due to the prohibitive number of cycles Advantages brought by SMES can be significant also for moderate size systems 55

56 Auxiliary network services by SMES I load I grid Ifilter ISMES Harmonic compensation Power factor correction 56

57 6. Hybrid SMES - Liquid Hydrogen system Liquid Hydrogen is used as energy intensive storage Free cooling power is available for SMES due to the presence of LH at 0 K SMES is used as power intensive storage 57

58 Shintomi et al. 58

59 Outline SMES technology SC material and Conductor Coil Power conditioning system A case study - 1 MW / 5 s SMES Applications Energy storage SMES applications Grid Customer / Industry SMES actvities at the University of Bologna 59

60 1. A 00 kj Nb-TiµSMES ( ) Cold test in 014 (and 013) 60

61 . Conduction cooled MgB SMES demonstrator ( ) 3 kj MgB Magnet 40 KW Mosfet Based PCS Cold test in porgress Full test at 1-10 kw to come shortly 61

62 3. Conduction cooled MgB SMES Prototype ( ) MISE - Italian Ministry of Economic Development Competitive call: research project for electric power grid Project funded Budget:.7 M Duration: kj 100 kw prototype full system

63 To resume on SMES.. SMES is feasible, but AC loss need to be investigated SMES is an option if Continuous deep charge/discharge cycling is required (leveling of impulsive loads) Short term increase of peak power of energy intensive systems is required Fast delivery of large power is required for short time 63

64 Thank you for your kind attention

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

Experience in manufacturing a large HTS magnet for a SMES

Experience in manufacturing a large HTS magnet for a SMES Superconducting magnets April 05-09, 2009 CEA Cadarache, France Experience in manufacturing a large HTS magnet for a SMES P. Tixador Grenoble INP / Institut Néel - G2Elab Outline Introduction: SMES SMES:

More information

Applications Using SuperPower 2G HTS Conductor

Applications Using SuperPower 2G HTS Conductor superior performance. powerful technology. Applications Using SuperPower 2G HTS Conductor Drew W. Hazelton Principal Engineer, SuperPower Inc. 2011 CEC/ICMC Conference June 16, 2011 Spokane, WA SuperPower

More information

Feasibility of HTS DC Cables on Board a Ship

Feasibility of HTS DC Cables on Board a Ship Feasibility of HTS DC Cables on Board a Ship K. Allweins, E. Marzahn Nexans Deutschland GmbH 10 th EPRI Superconductivity Conference Feasibility of HTS DC Cables on Board a Ship 1. Can superconducting

More information

Superconducting Fault Current Limiters

Superconducting Fault Current Limiters Superconducting Fault Current Limiters First Friday Club 1 st April 2011 Gerhard Novak UK Technical Manager Joachim Bock Managing Director, Nexans Superconductors 1 Smart Grid Solutions 2 Fault current

More information

Application of SuperPower 2G HTS Wire to High Field Devices

Application of SuperPower 2G HTS Wire to High Field Devices superior performance. powerful technology. Application of SuperPower 2G HTS Wire to High Field Devices Drew W. Hazelton Principal Engineer, SuperPower, Inc. 2011 MT22 Conference Marseille, France Sept.

More information

Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor

Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor N. Yanagi, A. Sagara and FFHR-Team S. Ito 1, H. Hashizume 1 National Institute for Fusion Science 1 Tohoku University

More information

Superconducting Fault Current Limiters

Superconducting Fault Current Limiters Superconducting Fault Current Limiters Prof. Dr.-Ing. Mathias Noe, Karlsruhe Institute of Technology Institute for Technical Physics EASITrain Summer School,, September 3rd-7th 2018, Vienna KIT-ENERGY

More information

Hydra Fault Current Limiting HTS Cable to be Installed in the Consolidated Edison Grid

Hydra Fault Current Limiting HTS Cable to be Installed in the Consolidated Edison Grid Hydra Fault Current Limiting HTS Cable to be Installed in the Consolidated Edison Grid J. McCall, J. Yuan, D. Folts, N. Henderson, American Superconductor D. Knoll, Southwire M. Gouge, R. Duckworth, J.

More information

High Field HTS SMES Coil

High Field HTS SMES Coil High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer Brookhaven National Laboratory, NY, USA December 1, 2014 High Field HTS SMES Coil

More information

Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements

Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements superior performance. powerful technology. Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements Traute F. Lehner, Sr. Director of Marketing 7 th MEM Workshop (Mechanical

More information

Lecture #2 Design Guide to Superconducting Magnet

Lecture #2 Design Guide to Superconducting Magnet Lecture #2 Design Guide to Superconducting Magnet Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 CEA Saclay June

More information

High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply

High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply superior performance. powerful technology. High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply Drew W. Hazelton Principal Engineer, SuperPower Inc. 2010 IEEE Conf Innovative Technology

More information

Using MRI devices for the energy storage purposes

Using MRI devices for the energy storage purposes Using MRI devices for the energy storage purposes Štefan Molokáč 1, Ladislav Grega 2 and Pavol Rybár 3 Využitie MRI zariadení pre účely úschovy elektrickej energie It is well known, that the electrical

More information

RESULTS OF ON-GRID OPERATION OF SUPERCONDUCTOR DYNAMIC SYNCHRONOUS CONDENSER

RESULTS OF ON-GRID OPERATION OF SUPERCONDUCTOR DYNAMIC SYNCHRONOUS CONDENSER 1 RESULTS OF ON-GRID OPERATION OF SUPERCONDUCTOR DYNAMIC SYNCHRONOUS CONDENSER Dr. Swarn S. Kalsi, David Madura, and Michael Ross American Superconductor Corporation (USA) Abstract: A high-temperature

More information

Commissioning testing of a 1 MVA Superconducting transformer featuring 2G HTS Roebel cable

Commissioning testing of a 1 MVA Superconducting transformer featuring 2G HTS Roebel cable Commissioning testing of a 1 MVA Superconducting transformer featuring 2G HTS Roebel cable Glasson N, Staines M, Allpress N, Badcock R 10:45 2M-LS-O2 OUTLINE Introduction Electrical Design Specifications

More information

The development of a Roebel cable based 1 MVA HTS transformer

The development of a Roebel cable based 1 MVA HTS transformer The development of a Roebel cable based 1 MVA HTS transformer Neil Glasson 11 October 2011 Mike Staines 1, Mohinder Pannu 2, N. J. Long 1, Rod Badcock 1, Nathan Allpress 1, Logan Ward 1 1 Industrial Research

More information

HTS Roebel cables. N.J. Long, Industrial Research Ltd and General Cable Superconductors Ltd. HTS4Fusion Workshop, 26 May 2011

HTS Roebel cables. N.J. Long, Industrial Research Ltd and General Cable Superconductors Ltd. HTS4Fusion Workshop, 26 May 2011 HTS Roebel cables N.J. Long, Industrial Research Ltd and General Cable Superconductors Ltd HTS4Fusion Workshop, 26 May 2011 Contents Cable dimensions Wire qualification Manufacturing Punching Retained

More information

Superconducting cables Development status at Ultera

Superconducting cables Development status at Ultera 1 Superconducting cables Development status at Ultera "Superconductors and their Industrial Applications Pori, 15-16 Nov 2006 Chresten Træholt (D. Willén) Senior Development Engineer, Ultera A Southwire

More information

High Temperature Superconductor. Cable Concepts for Fusion Magnets. Christian Barth. \iyit Scientific. ^VI I Publishing

High Temperature Superconductor. Cable Concepts for Fusion Magnets. Christian Barth. \iyit Scientific. ^VI I Publishing High Temperature Superconductor Cable Concepts for Fusion Magnets by Christian Barth \iyit Scientific ^VI I Publishing Contents 1 Introduction and motivation 1 2 Superconductors 5 21 Superconductivity

More information

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Current Transducer LDSR 0.3-TP/SP1 I P R N = 300 ma For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Features Closed

More information

Homework 6 Solar PV Energy MAE 119 W2017 Professor G.R. Tynan

Homework 6 Solar PV Energy MAE 119 W2017 Professor G.R. Tynan Homework 6 Solar PV Energy MAE 119 W2017 Professor G.R. Tynan 1. What is the most likely wavelength and frequency of light emitted from the sun which has a black body temperature of about 6600 deg K? What

More information

Design Principles of Superconducting Magnets

Design Principles of Superconducting Magnets 1 Design Principles of Superconducting Magnets Aki Korpela Tampere University of Technology DESIGN PRINCIPLES OF SUPERCONDUCTING MAGNETS 2 Content of the presentation Background Short-sample measurement

More information

KIT-ENERGY CENTRE. KIT The research University in the Helmholtz Association

KIT-ENERGY CENTRE.  KIT The research University in the Helmholtz Association Superconducting Fault Current Limiters Prof. Dr.-Ing. Mathias Noe, Karlsruhe Institute of Technology Institute for Technical Physics EUCAS Short Course Power Applications,, September 17th 2017, Geneva

More information

Status and Progress of a Fault Current Limiting HTS Cable To Be Installed In The Consolidated Edison Grid

Status and Progress of a Fault Current Limiting HTS Cable To Be Installed In The Consolidated Edison Grid Status and Progress of a Fault Current Limiting HTS Cable To Be Installed In The Consolidated Edison Grid J. Yuan, J. Maguire, D. Folts, N. Henderson, American Superconductor D. Knoll, Southwire M. Gouge,

More information

Design of a laminated-steel magnetic core for use in a HT-SMES

Design of a laminated-steel magnetic core for use in a HT-SMES Journal of Materials Processing Technology 161 (25) 28 32 Design of a laminated-steel magnetic core for use in a HT-SMES A. Friedman, M. Zarudi, N. Shaked, M. Sinvani, Y. Wolfus, Y. Yeshurun Institute

More information

TRANSFORMERS. Pascal Tixador. Grenoble INP - Institut Néel / G2Elab. Introduction

TRANSFORMERS. Pascal Tixador. Grenoble INP - Institut Néel / G2Elab. Introduction TRANSFORMERS Pascal Tixador Grenoble INP - Institut Néel / GElab Introduction! Discovered in 188 «!secondary generator!»! The transformers: an essential link in the a.c. electric systems Adjust with very

More information

Central Solenoid Winding Pack Design

Central Solenoid Winding Pack Design EUROFUSION WPMAG-CP(16) 15681 R Wesche et al. Central Solenoid Winding Pack Design Preprint of Paper to be submitted for publication in Proceedings of 29th Symposium on Fusion Technology (SOFT 2016) This

More information

Ch. 3. Pulsed and Water Cooled Magnets. T. J. Dolan. Magnetic field calculations

Ch. 3. Pulsed and Water Cooled Magnets. T. J. Dolan. Magnetic field calculations Ch. 3. Pulsed and Water Cooled Magnets T. J. Dolan Magnetic field calculations Coil forces RLC circuit equations Distribution of J and B Energy storage Switching and transmission Magnetic flux compression

More information

Some socio-economic aspects of long-distance energy transport by superconducting power lines with a focus on MgB 2

Some socio-economic aspects of long-distance energy transport by superconducting power lines with a focus on MgB 2 Some socio-economic aspects of long-distance energy transport by superconducting power lines with a focus on MgB 2 Heiko Thomas, Alexander Chervyakov and Adela Marian Institute for Advanced Sustainability

More information

Design and preliminary results of a prototype HTS SMES device

Design and preliminary results of a prototype HTS SMES device University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2005 Design and preliminary results of a prototype HTS SMES device Christopher

More information

Fault Current Limiter Based on Coated Conductor

Fault Current Limiter Based on Coated Conductor superior performance. powerful technology. Fault Current Limiter Based on Coated Conductor Juan-Carlos H. Llambes, Ph.D. SFCL Program Manager / Senior High Voltage Engineer University of Houston: V. Selvamanickam,

More information

The Design and Fabrication of a 6 Tesla EBIT Solenoid

The Design and Fabrication of a 6 Tesla EBIT Solenoid LBNL-40462 SCMAG-593 The Design and Fabrication of a 6 Tesla EBIT Solenoid 1. Introduction M. A. Green a, S. M. Dardin a, R. E. Marrs b, E. Magee b, S. K. Mukhergee a a Lawrence Berkeley National Laboratory,

More information

An Optimised High Current Impulse Source

An Optimised High Current Impulse Source An Optimised High Current Impulse Source S. Kempen, D. Peier Institute of High Voltage Engineering, University of Dortmund, Germany Abstract Starting from a predefined 8/0 µs impulse current, the design

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

RE-Ba 2 Cu 3 O 7-d coated conductor helical cables for electric power transmission and SMES

RE-Ba 2 Cu 3 O 7-d coated conductor helical cables for electric power transmission and SMES RE-Ba 2 Cu 3 O 7-d coated conductor helical cables for electric power transmission and SMES D.C. van der Laan and X.F. Lu University of Colorado & National Institute of Standards and Technology, Boulder,

More information

Practical considerations on the use of J c (B,θ) in numerical models of the electromagnetic behavior of HTS INSTITUTE OF TECHNICAL PHYS

Practical considerations on the use of J c (B,θ) in numerical models of the electromagnetic behavior of HTS INSTITUTE OF TECHNICAL PHYS Practical considerations on the use of J c (B,θ) in numerical models of the electromagnetic behavior of HTS INSTITUTE OF TECHNICAL PHYS Francesco Grilli and Víctor M. R. Zermeño Karlsruhe Institute of

More information

Use of High Temperature Superconductors for Future Fusion Magnet Systems

Use of High Temperature Superconductors for Future Fusion Magnet Systems Use of High Temperature Superconductors for Future Fusion Magnet Systems W.H. Fietz 1), G. Celentano 2), A. della Corte 2), W. Goldacker 1), R. Heller 1), P. Komarek 1), G. Kotzyba 1), R. Nast 1), B. Obst

More information

of a Large Aperture High Field HTS SMES Coil

of a Large Aperture High Field HTS SMES Coil Design, Construction and Testing of a Large Aperture High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer High Field HTS SMES Coil R.

More information

Impact of High-Temperature Superconductors on the Superconducting Maglev

Impact of High-Temperature Superconductors on the Superconducting Maglev Impact of High-Temperature Superconductors on the Superconducting Maglev No. 92 H. Ohsaki The University of Tokyo, Graduate School of Frontier Sciences, Kashiwa 277-8561, Japan ABSTRACT: This paper reviews

More information

2G HTS Wire Status in the USA

2G HTS Wire Status in the USA 2G HTS Wire Status in the USA Traute F. Lehner Sr. Director of Marketing & Government Affairs, SuperPower Inc. CCAS Secretary International Superconductivity Industry Summit October 31, 2011 November 1,

More information

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Performance of a 3.3kV Resistive type Superconducting Fault Current Limiter S.Vasudevamurthy 1, Ashwini.V 2 1 Department of Electrical

More information

Superconducting Fault Current Limiter in DC Systems with MLI Fed to IM

Superconducting Fault Current Limiter in DC Systems with MLI Fed to IM Superconducting Fault Current Limiter in DC Systems with MLI Fed to IM 1 Rama Rao P.V.V., 2 M.Swathi 1,2 Shri Vishnu Engineering for Women, Bhimavaram, India Abstract: In this paper, an application of

More information

Update on the Developments of Coated Conductor High Field Magnets in Japan

Update on the Developments of Coated Conductor High Field Magnets in Japan Coated Conductors for Applications 2016 September 11-14, 2016, Aspen, Colorado, USA Update on the Developments of Coated Conductor High Field Magnets in Japan S. Awaji HFLSM, IMR, Tohoku University 1 Recent

More information

Resistivity and Temperature Coefficients (at 20 C)

Resistivity and Temperature Coefficients (at 20 C) Homework # 4 Resistivity and Temperature Coefficients (at 0 C) Substance Resistivity, Temperature ( m) Coefficient, (C ) - Conductors Silver.59 x 0-0.006 Copper.6 x 0-0.006 Aluminum.65 x 0-0.0049 Tungsten

More information

Material, Design, and Cost Modeling for High Performance Coils. L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting

Material, Design, and Cost Modeling for High Performance Coils. L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting Material, Design, and Cost Modeling for High Performance Coils L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting Tokamak Concept Improvement Cost minimization Decrease cost of final

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Milestone Report. Cryogenic Scenarios for the Cold Powering System

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Milestone Report. Cryogenic Scenarios for the Cold Powering System CERN-ACC-2014-0065 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Milestone Report Cryogenic Scenarios for the Cold Powering System Ballarino, A (CERN) et al 27 May 2014 The HiLumi LHC

More information

Superconductivity project at IASS

Superconductivity project at IASS Superconductivity project at IASS Heiko Thomas EPRI 11 th Superconductivity Conference, 30 th October 2013 EPRI 11 th Superconductivity Conference Heiko Thomas Superconductivity Project at IASS 1 Content

More information

Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen

Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen To cite this article:

More information

Latest Status of High Temperature Superconducting Cable Projects

Latest Status of High Temperature Superconducting Cable Projects Latest Status of High Temperature Superconducting Cable Projects Y.Ashibe, H.Yumura, M.Watanabe, H.Takigawa, H.Ito, M.Ohya, T.Masuda and M.Hirose Sumitomo Electric Industries, Ltd.Osaka,554-0024 Japan

More information

HTS Magnets for Accelerator Applications

HTS Magnets for Accelerator Applications 8 th International Particle Accelerator Conference Bella Center, Copenhagen, Denmark May 17, 2017 HTS Magnets for Accelerator Applications K. Hatanaka hatanaka@rcnp.osaka-u.ac.jp Research Center for Nuclear

More information

Loss analysis of a 1 MW class HTS synchronous motor

Loss analysis of a 1 MW class HTS synchronous motor Journal of Physics: Conference Series Loss analysis of a 1 MW class HTS synchronous motor To cite this article: S K Baik et al 2009 J. Phys.: Conf. Ser. 153 012003 View the article online for updates and

More information

Development of 2 MVA Class Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated Conductors

Development of 2 MVA Class Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated Conductors Development of MVA Class Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated Conductors M Kotari, H Kojima, N Hayakawa, F Endo, H Okubo Department of Electrical Engineering and

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 9 Transmission Line Steady State Operation Welcome to lesson 9, in Power

More information

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger High Magnetic Fields The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS R.Grössinger Coworker: M. Küpferling, H.Sassik, R.Sato, E.Wagner, O.Mayerhofer, M.Taraba ƒ1 Content CONTENT Generation

More information

From 2G to Practical Conductors What Needs to be Improved?

From 2G to Practical Conductors What Needs to be Improved? 3G? From 2G to Practical Conductors What Needs to be Improved? Mathias Noe, Wilfried Goldacker,, KIT, Germany Bernhard Holzapfel, IFW Dresden, Germany EUCAS 2013, Genova, Italy National Research Center

More information

Conductor Requirements for Superconducting Fault Current Limiters

Conductor Requirements for Superconducting Fault Current Limiters superior performance. powerful technology. Conductor Requirements for Superconducting Current Limiters Chuck Weber, Director HTS Applications Coated Conductors in Applications 2008 Houston, Texas - December

More information

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP I DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP K. Myznikov, A. Ageyev, V. Sytnik, I. Bogdanov, S. Kozub, E. Kashtanov, A. Orlov, V. Sytchev,

More information

Al-Ti-MgB 2 conductor for superconducting space magnets

Al-Ti-MgB 2 conductor for superconducting space magnets Al-Ti-MgB 2 conductor for superconducting space magnets Riccardo Musenich, Valerio Calvelli (INFN Genoa) Davide Nardelli, Silvia Brisigotti, Davide Pietranera, Matteo Tropeano, Andrea Tumino, Valeria Cubeda,

More information

New Transmission Options Case Study Superconductor Cables. Transmission Policy Institute Sheraton Downtown Denver, Colorado April 20-21, 2011

New Transmission Options Case Study Superconductor Cables. Transmission Policy Institute Sheraton Downtown Denver, Colorado April 20-21, 2011 New Transmission Options Case Study Superconductor Cables Transmission Policy Institute Sheraton Downtown Denver, Colorado April 20-21, 2011 1 What is a Superconductor? Superconductors 100/25 Superconductors

More information

MgB 2 and BSCCO. S.I. SCHLACHTER, W. GOLDACKER KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR TECHNICAL PHYSICS

MgB 2 and BSCCO.   S.I. SCHLACHTER, W. GOLDACKER KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR TECHNICAL PHYSICS MgB 2 and BSCCO S.I. SCHLACHTER, W. GOLDACKER KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR TECHNICAL PHYSICS KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title The Mechanical and Thermal Design for the MICE Focusing Solenoid Magnet System Permalink https://escholarship.org/uc/item/7652n8md

More information

To be published in the Proceedings of ICEC-22, Seoul Korea, July 2008 MICE Note 232 1

To be published in the Proceedings of ICEC-22, Seoul Korea, July 2008 MICE Note 232 1 To be published in the Proceedings of ICEC-22, Seoul Korea, 21-25 July 2008 MICE Note 232 1 AC Loss Analysis on the Superconducting Coupling in MICE H. Wu, L. Wang, M. A. Green*, L. K. Li, F. Y. Xu, X.

More information

All-Chemical-Solution Coated Conductors at Deutsche Nanoschicht GmbH

All-Chemical-Solution Coated Conductors at Deutsche Nanoschicht GmbH chemistry meets energy All-Chemical-Solution Coated Conductors at Deutsche Nanoschicht GmbH Michael Baecker; Martina Falter; Ron Feenstra; Brygida Wojtyniak; Jan Bennewitz; Jan Kunert; Mark O. Rikel Deutsche

More information

Inductance and Current Distribution Analysis of a Prototype HTS Cable

Inductance and Current Distribution Analysis of a Prototype HTS Cable Journal of Physics: Conference Series OPEN ACCESS Inductance and Current Distribution Analysis of a Prototype HTS Cable To cite this article: Jiahui Zhu et al J. Phys.: Conf. Ser. 7 7 Recent citations

More information

The Present Status and Prospective of the power transmission by Superconductors in China

The Present Status and Prospective of the power transmission by Superconductors in China The Present Status and Prospective of the power transmission by Superconductors in China Liye Xiao Institute of Electrical Engineering Chinese Academy of Sciences IASS, Germany, May 12-13, 13, 2011 2011/5/25

More information

5SJ4...-.HG Circuit Breakers to IEC and UL 489

5SJ4...-.HG Circuit Breakers to IEC and UL 489 Siemens AG 009 5SJ...-.HG Circuit Breakers to IEC and UL 89 BETA Low-Voltage Circuit Protection Compliance with industry standards is a must in today's manufacturing environment. Worldwide acceptance is

More information

Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System

Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System Emmanuele Ravaiolia,b H. Bajasa, V. I. Datskova, V. Desbiollesa, J. Feuvriera, G. Kirbya, M. Maciejewskia,c,

More information

HTS Roebel and Rutherford Cables for High-Current Applications

HTS Roebel and Rutherford Cables for High-Current Applications HTS Roebel and Rutherford Cables for High-Current Applications S.I. Schlachter, W. Goldacker, F. Grilli, R. Heller, A. Kudymow, R. Nast, S.Terzieva KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR TECHNICAL

More information

JT-60 SA Toroidal Field coil structural analysis

JT-60 SA Toroidal Field coil structural analysis JT-60 SA Toroidal Field coil structural analysis Christophe Portafaix Introduction TF coil description TF coil design and electromagnetic loads Material and Criteria 2D structural analysis 3D structural

More information

Why are particle accelerators so inefficient?

Why are particle accelerators so inefficient? Why are particle accelerators so inefficient? Philippe Lebrun CERN, Geneva, Switzerland Workshop on Compact and Low-Consumption Magnet Design for Future Linear and Circular Colliders CERN, 9-12 October

More information

08/072 PKZ2 Motor-Protective Circuit-Breakers Tripping Characteristics

08/072 PKZ2 Motor-Protective Circuit-Breakers Tripping Characteristics 0/07 PKZ Tripping Characteristics Moeller HPL0-00/00 S-PKZ high-capacity contact module, SEA-PKZ contact module Normal switching duty AC-/00V kw A Rated output of three-phase motors 0...0 Hz. 7..... 0.7

More information

15 - Development of HTS High Current Cables and Joints for DC Power and High Field Magnet Applications

15 - Development of HTS High Current Cables and Joints for DC Power and High Field Magnet Applications 15 - Development of HTS High Current Cables and Joints for DC Power and High Field Magnet Applications Joseph V. Minervini, Makoto Takayasu, Franco Mangioarotti, Leslie Bromberg, Phillip Michael, Michael

More information

The Steady Magnetic Fields

The Steady Magnetic Fields The Steady Magnetic Fields Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 1/8/017 1 Agenda Intended Learning Outcomes Why Study Magnetic Field Biot-Savart

More information

HIMARC Simulations Divergent Thinking, Convergent Engineering

HIMARC Simulations Divergent Thinking, Convergent Engineering HIMARC Simulations Divergent Thinking, Convergent Engineering 8117 W. Manchester Avenue, Suite 504 Los Angeles, CA 90293 Ph: (310) 657-7992 Horizontal Superconducting Magnet, ID 1.6m 1 1 Design definition

More information

THE DIMENSIONING OF ELECTRICAL CONDUCTORS FOR USE IN "PANEL BOARDS" ADDRESSED TO HAZARDOUS AREAS - PART THREE

THE DIMENSIONING OF ELECTRICAL CONDUCTORS FOR USE IN PANEL BOARDS ADDRESSED TO HAZARDOUS AREAS - PART THREE July 04 THE DIMENSIONING OF ELECTRICAL CONDUCTORS FOR USE IN "PANEL BOARDS" ADDRESSED TO HAZARDOUS AREAS - PART THREE In this third part. we want to speak about how important is the correct sizing of the

More information

2G HTS Coil Winding Technology Development at SuperPower

2G HTS Coil Winding Technology Development at SuperPower superior performance. powerful technology. 2G HTS Coil Winding Technology Development at SuperPower D.W. Hazelton, P. Brownsey, H. Song, Y. Zhang Tuesday, June 18, 2013 2013 CEC-ICMC Anchorage Alaska Paper

More information

R&D ON FUTURE CIRCULAR COLLIDERS

R&D ON FUTURE CIRCULAR COLLIDERS R&D ON FUTURE CIRCULAR COLLIDERS Double Chooz ALICE Edelweiss HESS Herschel CMS Detecting radiations from the Universe. Conseil Scientifique de l Institut 2015 Antoine Chance and Maria Durante MOTIVATIONS

More information

Energy saving in electromechanical equipment with power coefficient correction. Dimitris Al. Katsaprakakis Aeolian Land S.A.

Energy saving in electromechanical equipment with power coefficient correction. Dimitris Al. Katsaprakakis Aeolian Land S.A. Energy saving in electromechanical equipment with power coefficient correction Dimitris Al. Katsaprakakis Aeolian Land S.A. www.aiolikigi.gr Introduction Electricity production companies (utilities) provide

More information

Grid Issues and Challenges Addressed by High Temperature Superconductor (HTS) Technology

Grid Issues and Challenges Addressed by High Temperature Superconductor (HTS) Technology CIGRÉ US National Committee 21, rue d Artois, F-75008 PARIS Grid of the Future Symposium http : //www.cigre.org Kansas City, October 28-30, 2012 Grid Issues and Challenges Addressed by High Temperature

More information

Experimental Investigation of High-Temperature Superconducting Magnet for Maglev

Experimental Investigation of High-Temperature Superconducting Magnet for Maglev Experimental Investigation of High-Temperature Superconducting Magnet for Maglev Ken Nagashima, Masafumi Ogata, Katsutoshi Mizuno, Yuuki Arai, Hitoshi Hasegawa, Takashi Sasakawa Railway Technical Research

More information

Development, Manufacturing and Applications of 2G HTS Wire at SuperPower

Development, Manufacturing and Applications of 2G HTS Wire at SuperPower superior performance. powerful technology. Development, Manufacturing and Applications of 2G HTS Wire at SuperPower Traute Lehner - Senior Director of Marketing & Govt. Affairs Yifei Zhang, Ph.D. - Senior

More information

Retraining of the 1232 Main Dipole Magnets in the LHC

Retraining of the 1232 Main Dipole Magnets in the LHC Retraining of the 1232 Main Dipole Magnets in the LHC A. Verweij, B. Auchmann, M. Bednarek, L. Bottura, Z. Charifoulline, S. Feher, P. Hagen, M. Modena, S. Le Naour, I. Romera, A. Siemko, J. Steckert,

More information

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2)

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2) Journal of Mechanics Engineering and Automation 5 (2015) 401-406 doi: 10.17265/2159-5275/2015.07.003 D DAVID PUBLISHING Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration

More information

C60N circuit breakers0 B, C and D curves IEC 60898: 6000 A, IEC : 10 ka

C60N circuit breakers0 B, C and D curves IEC 60898: 6000 A, IEC : 10 ka C0N circuit breakers0 B, C and s IEC 0898: 000 A, IEC 097-: 0 ka Function b The circuit-breakers combine the following functions: v protection of circuits against short-circuit currents v protection of

More information

Concept Design and Performance Analysis of HTS Synchronous Motor for Ship Propulsion. Jin Zou, Di Hu, Mark Ainslie

Concept Design and Performance Analysis of HTS Synchronous Motor for Ship Propulsion. Jin Zou, Di Hu, Mark Ainslie Concept Design and Performance Analysis of HTS Synchronous Motor for Ship Propulsion Jin Zou, Di Hu, Mark Ainslie Bulk Superconductivity Group, Engineering Department, University of Cambridge, CB2 1PZ,

More information

Future long distance electricity transmission using HTS HVDC cables

Future long distance electricity transmission using HTS HVDC cables Future long distance electricity transmission using HTS HVDC cables O. A. Chevtchenko, R. Bakker and J. J. Smit HTS-powercables.nl B.V., Koperweg 45, 7335 DS Apeldoorn, The Netherlands Corresponding author:

More information

EuCARD-2 Enhanced European Coordination for Accelerator Research & Development. Journal Publication

EuCARD-2 Enhanced European Coordination for Accelerator Research & Development. Journal Publication CERN-ACC-2016-0039 EuCARD-2 Enhanced European Coordination for Accelerator Research & Development Journal Publication HTS Dipole Magnet for a Particle Accelerator using a Twisted Stacked Cable Himbele,

More information

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS UNIT 2: ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS MODULE 1: ELECTRICITY AND MAGNETISM GENERAL OBJECTIVES On completion of this Module, students should: 1. understand

More information

Flux Motion and Screening Current in High-temperature Superconducting Magnets

Flux Motion and Screening Current in High-temperature Superconducting Magnets Flux Motion and Screening Current in High-temperature Superconducting Magnets Yi Li, Chen Gu, Timing Qu, Zhenghe Han ASRC, Tsinghua University ICFA Mini-workshop on High Field Magnets for pp Colliders

More information

ENERGY STORAGE SYSTEMS Vol. II Superconducting Inductive Coils - M. Sezai Dincer and M. Timur Aydemir

ENERGY STORAGE SYSTEMS Vol. II Superconducting Inductive Coils - M. Sezai Dincer and M. Timur Aydemir SUPERCONDUCTING INDUCTIVE COILS M. Sezai Dincer and M. Timur Aydemir Department of Electrical and Electronics Eng., Gazi University, Maltepe- Ankara, TURKEY Keywords: Superconducting Magnetic Energy Storage

More information

DC MAGNETIC FIELD GENERATOR WITH SPATIAL COILS ARRANGEMENT

DC MAGNETIC FIELD GENERATOR WITH SPATIAL COILS ARRANGEMENT Please cite this article as: Adam Kozlowski, Stan Zurek, DC magnetic field generator with spatial coils arrangement, Scientific Research of the Institute of Mathematics and Computer Science, 01, Volume

More information

Simultaneous measurement of critical current, stress, strain and lattice distortions in high temperature superconductors

Simultaneous measurement of critical current, stress, strain and lattice distortions in high temperature superconductors Simultaneous measurement of critical current, stress, strain and lattice distortions in high temperature superconductors C. Scheuerlein 1, R. Bjoerstad 1, A. Grether 1, M. Rikel 2, J. Hudspeth 3, M. Sugano

More information

Model M3484 Industrial Line Noise Filter Module Customer Reference Manual

Model M3484 Industrial Line Noise Filter Module Customer Reference Manual Model M3484 Industrial Line Noise Filter Module Customer Reference Manual Web: www.bonitron.com Tel: 615-244-2825 Email: info@bonitron.com Bonitron, Inc. Bonitron, Inc. Nashville, TN An industry leader

More information

Challenges on demountable / segmented coil concept for high-temperature superconducting magnet

Challenges on demountable / segmented coil concept for high-temperature superconducting magnet Challenges on demountable / segmented coil concept for high-temperature superconducting magnet N. Yanagi 1, S. Ito 2, H. Hashizume 2, A. Sagara 1 1 National Institute for Fusion Science 2 Tohoku University

More information

HT-7U* Superconducting Tokamak: Physics design, engineering progress and. schedule

HT-7U* Superconducting Tokamak: Physics design, engineering progress and. schedule 1 FT/P2-03 HT-7U* Superconducting Tokamak: Physics design, engineering progress and schedule Y.X. Wan 1), P.D. Weng 1), J.G. Li 1), Q.Q. Yu 1), D.M. Gao 1), HT-7U Team 1) Institute of Plasma Physics, Chinese

More information

Basics of Electric Circuits

Basics of Electric Circuits António Dente Célia de Jesus February 2014 1 Alternating Current Circuits 1.1 Using Phasors There are practical and economic reasons justifying that electrical generators produce emf with alternating and

More information

Impedance relay and protection assemblies

Impedance relay and protection assemblies RXZK 21H, 22H, 23H 509 006-BEN Page 1 Issued June 1999 Changed since July 1998 Data subject to change without notice (SE970175) (SE970184) Features Micro-processor based impedance relay with R and X settings

More information

High Temperature Superconductors for Future Fusion Magnet Systems Status, Prospects and Challenges

High Temperature Superconductors for Future Fusion Magnet Systems Status, Prospects and Challenges 1 IT/2-2 High Temperature Superconductors for Future Fusion Magnet Systems Status, Prospects and Challenges G. Janeschitz, R. Heller, W.H. Fietz, W. Goldacker, G. Kotzyba, R. Lietzow, R. Nast, B. Obst,

More information

Progress in Scale-up of 2G HTS Wire at SuperPower Part III

Progress in Scale-up of 2G HTS Wire at SuperPower Part III superior performance. powerful technology. Progress in Scale-up of 2G HTS Wire at SuperPower Part III V. Selvamanickam & Y. Xie Y. Chen, X. Xiong, M. Martchevski, Y. Qiao, A. Rar, B. Gogia, R. Schmidt,

More information