The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger

Size: px
Start display at page:

Download "The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger"

Transcription

1 High Magnetic Fields The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS R.Grössinger Coworker: M. Küpferling, H.Sassik, R.Sato, E.Wagner, O.Mayerhofer, M.Taraba ƒ1

2 Content CONTENT Generation of static magnetic fields Pulsed field systems Quasistatic systems Short pulse systems High field magnets Magnetisation measurements Pick-up systems Methods to increase the sensitivity Vibrating sample technique Surface coils Microtechnology for pulsed magnetic fields Application of pulsed high magnetic fields Magnetization measurements Anisotropy ƒ2

3 Introduction 1) Introduction High magnetic fields are important for: Semiconductor physics (and structure, fermi surface) Superconductivity (high Tc super- conductors) Magnetism (magnetic phase diagrams) Material characterisation Exchange coupling Onset of magnetism ƒ3

4 Static fields Generation of static magnetic fields Air gap of an electromagnet - fields limited by saturation magnetization up to 2.5T ƒ4

5 Static fields Hysteresograph with electromagnet from Magnet-Physik EP-2 Max. Field strength: Maximum pole diameter: Air gap: Load: Weight: 1600 ka/m (2 T, 20 kg) 92 mm 0-75 mm 3 kw 180 kg ƒ5

6 Static fields Higher static fields: superconducting coil. Fields up to 8T with Nb-Ti Fields up to 15T with Nb3Sn Fields up to 20T with hybrid. Advantage: high fields, low power comsumption Disadvantage: needs liquid helium, low dh/dt rate! ƒ6

7 Static fields Superconducting 20T coil system from cryomagnetics (USA) ƒ7

8 Static fields Superconducting coils: ƒ8

9 Hybrid magnet of NHMFL ƒ9

10 Hybrid magnet of NHMFL ƒ10

11 NHMFL at Los Alamos Pulsed field systems: Quasistatic systems 1.4 GW Generator Los Alamos ƒ11

12 NHMFL at Los Alamos High field laboratory Los Alamos ƒ12

13 AUSTROMAG AUSTROMAG - T.U.Vienna: 10 MW-1s power supply. Regulated DC current over 1s. Maximum available power is limited. Primary power: 16 MVA - transformer 10 kv to 2 840V; Can be switched: series, parallel or antiparallel. ac-current - rectified - bridges 6 thyristors I(t). Maximum dc-power: 10 MW/1 s or 5 MW/2 s or 1 MW/10s Current time profile chosale - 20 free points. Delivers field plateau s or linear dh/dt. ƒ13

14 AUSTROMAG Switching of the thyristor bridges- three types of pulses: i) Parallel switching: 2 x I max = 13600A, U max = 840V: highest current field pulse - one polarity. ii) Serial switching: I max = 6800A, 2 x U max = 1680V: highest voltage field pulse - one polarity 40T. iii) Antiparallel switching: I max = ± 6800A, U max =± 840V. Bipolar pulse - real hysteresis measurements. ƒ14

15 AUSTROMAG Electric circuit ƒ15

16 AUSTROMAG Block diagram of the Austromag high field installation. Low temperature system: max. 40 T in 25 mm bore; temperature between 1.5 K and 300K High Temperature system: maximum 35T in 40 mm; 300 K < T < 800K power transformer 16 MVA 2 x 570V/6800A parallel or seriel thyristor rectifier 12-pulses 2 antiparallel bridges 2 x 600V, 8300A/1s passive smoothing LC circuit high-temperature system 300K < T < 800K low-temperature system 1.5K < T < 300K m0h max = m0h max = 35 T 40 T 10 kv 2 x 1700 kva 50 Hz regulating electronic input H(t)! SECURITY! measuring electronics temp. controller test system modulation magnetostriction m0h max = 20 T ƒ16

17 Short pulse systems Short pulse systems Typical pulse duration 1-50 ms. Energy source: condensator battery - kj. Available power can be varied by the time constant of the system. Consist of: Energy source - C.U 2 /2 charging unit - reproducibility Pulse magnet - diameter, homogeneity measuring device pick-up coils + electronic Data storage + PC ƒ17

18 Short pulse system PULSED FIELD SYSTEM Block diagram of the condensator driven pulse field facility CHARGING UNIT CONDENSATOR BATTERY C=8mF/24mF U=2500V HIGH FIELD MAGNET PREAMPLIFIER GAIN: /4 LAYERS Pick- Up System TRANSIENT RECORDER PC ƒ18

19 Magnets High field magnets Optimized with respect to the available power, the heating of the magnet and the stresses. Heating of the magnet: j(t)...current density j 2 () t dt = T T 1 2 DcT. ( ) ρ( T) dt D...density of the conductor, c(t)...specific heat ρ(t)...specific resistivity of the conductor. ƒ19

20 Magnet Stresses in the magnet Stress in a high field magnet scales with B 2 ƒ20

21 Leuven Magnet ƒ21

22 AUSTROMAG AUSTROMAG 40T magnet Field versus time profile of a magnet driven by a maximum power of 5.5 Mw (I = 10kA); the temperature rises up to 150 K. ƒ22

23 AUSTROMAG STRESS in the AUSTROMAG magnet Axial, radial an tangential stresses at 38 T in the middle plane of the magnet. ƒ23

24 Magnetization measurements Magnetisation measurements Pick-up systems a) N N r Axial system: simple vibrational sensitive b) N/2 N N/2 r N/2-N-N/2 system: long Dipol: R 12 N 1 = R 22 N 2 c) N N 2 1 r 1 r2 u () t [ 2 N K R ] dh = µ π + dt [ 2 u t N K R ] 2() = µ π dh dt dm dt ƒ24

25 Pick-up Compensatable pick-up system used in pulsed fields up to 50T IFW Dresden. a b c 56 2k7 4k2 3k3 ƒ25

26 Pick-up Problems: Temperature dependent measurements - compensation depends sensitively on the position of the pick-up system. with respect to the high field magnet. With increasing field the noise increases due to vibrations. Metallic systems - the eddy currents also cause a measuring error. maximum achievable sensitivity aout 0.01 emu. Sensitivity depends directly coupling between sample and pick-up coil. Small samples - thin films - very difficult! ƒ26

27 Eddy currents How eddy currents are created ƒ27

28 Eddy currents Eddy Currents due to pulsed magnetic fields Cu-sample cylinder with increasing diameter. M (A/m) µ 0 H (T) Cu, cylinder, h=8mm d=2mm d=6mm d=8mm d=9,8mm d=4mm 8mF, T=9.1ms ƒ28

29 Eddy currents Cu-sample cylinder with increasing length Cu, cylinder, d=4mm h=2mm h=4mm h=6mm h=10mm h=8mm 8mF, T=9.1ms M (A/m) µ 0 H (T) ƒ29

30 Eddy currents EDDY CURRENTS ON MAGNETIC SAMPLES Ni M (A/m) Ni, cylindre, d=4mm, h=8mm ρ=8908kg/m 3 m=0,89183g annealed, 4h, 500 C 8mF, 2000V B (T) M (A/m) Ni, cylinder, 8mF eddy-current-corrected with specific resistance of 8µΩcm B (T) ƒ30

31 Measurement methods Methods to increase the sensitivity Only so-called DC-methods used. Integrating everything which comes. High noise - limits achievable sensitivity. Methods which enhance signal to noise ratio - lock-in technique + improve coupling between the sensor ( the pick-up coil) and sample. ƒ31

32 Measurement method Vibrating sample technique Static magnetometers - vibrating sample method. Lock-in technique - improves signal to noise ratio. Pick up coils - ac-signal - proportional to M. Pulsed field systems: i) Modulation method eddy current problems. ii) Piezo electrique actuator Effects of induction voltages can be suppressed. ƒ32

33 Measurement method Surface coils Thin coils are close to the sample positioned. Two coils in order to compensate the effect of H. Can be: Thin film coils - bad L/R ratio phase problems Wire wound coils The ultra-thin pick-up coils are manufactured in thin-film technique as indicated in the figure. ƒ33

34 Surface coils Thin film coils Magnetization curve taken on BaFeO-film. ƒ34

35 Surface coils Wire wound coils (Magnet Physik) Low impedance! Type PKS 5 PKS 3 Turn area, approx. 5 cm 2 3 cm 2 Coil thickness 1 mm 0,5 mm Coil width 5 mm Ø 5 mm Ø ƒ35

36 Toulouse - Cantilever Microtechnology for pulsed magnetic fields ƒ36

37 Cantilever TU-Vienna: U shaped cantilever Deflection of the cantilever is detected optically ƒ37

38 Cantilever Characteristic of the combination cantilever-optical readout. The inset shows how the displacement of the cantilever is measured. The diagram is scaled to unity. ƒ38

39 Results Application of pulsed high magnetic fields K, x = K, x = K, x = K, x = K, x = K, x = 2 M(Am 2 /kg) YCo 5-x Cu x perpendicular µ 0 H int ƒ39

40 Results Accurate hysteresis measurements on industrial magnets µ 0 M [T] 0,4 0,2 0, µ 0 H [ka/m] -0,2-0,4 PTB - Ferrite cylinder long pulse short pulse dynamic: J H C = 213 ka/m; B r = T PTB: J H C = 208 ka/m; B r = T ƒ40

41 Results Room temperature hysteresis loop of a two phase spherical and a cylindrical Nd-Fe-B sample. The curves were corrected for the demagnetizing factor. µ 0 M (T) 1,0 0,5 0, ,5-1,0 H in (MA/m) cylindre sphere corrected with demagnetizing factor ƒ41

42 Results Anisotropy of nanocrystalline mechanical alloyed Pr-Fe µ 0 H a (T) Pr 18 Fe 76 B 6 Pr 12 Fe 82 B 6 Pr 9 Fe 85 B Temperature (K) ƒ42

43 Results Magnetic viscosity dh/dt [(GA/m)/s)] 20 Cu annealed 1.5 SmCo Cu Cu annealed 5-x x Cu annealed 2.5 Cu annealed 3.0 Cu as-cast 2.0 Cu as-cast H [MA/m] c Coercive field as a function of the sweep rate dh/dt measured in as cast and annealed SmCo 5-x Cu x ƒ43

44 Results Magnetostriction Magnetostriktion [ppm] Bariumferrite HF 24/16 T=300K λ pc λ cc λ pp λ cp B [T] Magnetostriction measurements at room temperature on an anisotropic barium ferrite magnet made by Schramberg (HF24/16). ƒ44

45 Summary Summary of high magnetic fields High magetic fields are necessary for many aspects of solid state physics Pulsed fields allow also smaller laboratories access to medium up to high fields. Measuring technique still has to be improved. Many applications in the area of magnetism. Magnetization, anisotropy, magnetostriction... ƒ45

EDDY CURRENT EFFECTS IN A PULSED FIELD MAGNETOMETER

EDDY CURRENT EFFECTS IN A PULSED FIELD MAGNETOMETER EDDY CURRENT EFFECTS IN A PULSED FIELD MAGNETOMETER R.Grössinger, M.Küpferling Institut. f. Festkörperphysik; Techn. Univ. Vienna; Austria 1) Introduction Two transient effects in magnetic materials: a)

More information

A New Measuring Technique for the Characterization of Magnetic Materials in Pulsed Magnetic Fields

A New Measuring Technique for the Characterization of Magnetic Materials in Pulsed Magnetic Fields A New Measuring Technique for the Characterization of Magnetic Materials in Pulsed Magnetic Fields Authors: J. H. Espina Hernández Supervisors: Prof. Dr. R. Grössinger Prof. Dr. E. Estévez Rams Antecedents

More information

THE INFLUENCE OF THE MAGNETIC VISCOSITY ON PULSED FIELD MEASUREMENTS

THE INFLUENCE OF THE MAGNETIC VISCOSITY ON PULSED FIELD MEASUREMENTS Journal of Optoelectronics and Advanced Materials Vol. 6, No. 2, June 2004, p. 557-563 INVITED PAPER THE INFLUENCE OF THE MAGNETIC VISCOSITY ON PULSED FIELD MEASUREMENTS R. Grössinger *, R. Sato Turtelli,

More information

New sensors for measuring M and H in high magnetic fields

New sensors for measuring M and H in high magnetic fields Physica B 346 347 (004) 543 547 New sensors for measuring M and H in high magnetic fields J.H. Espina-Hern!andez a,b, *, R. Gr.ossinger a, S. Kato a,c, H. Hauser d, E. Est!evez-Rams b a Institute of Solid

More information

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types

More information

Assisted by Advanced Finite-Element Simulations

Assisted by Advanced Finite-Element Simulations Presented at the COMSOL Conference 2009 Milan COMSOL 2009, Milan, October 2009 Magnetic Fields in Hochfeld- Magnetlabor Dresden Science and Medicine Assisted by Advanced Finite-Element Simulations Hochfeld-Magnetlabor

More information

Surface Magnetic Non-Destructive Testing

Surface Magnetic Non-Destructive Testing Surface Magnetic Non-Destructive Testing Evangelos Hristoforou 1,*, Konstantinos Kosmas 1 and Eleftherios Kayafas 2 1 School of Mining and Metallurgy Engineering, National Technical University of Athens,

More information

Lecture #2 Design Guide to Superconducting Magnet

Lecture #2 Design Guide to Superconducting Magnet Lecture #2 Design Guide to Superconducting Magnet Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 CEA Saclay June

More information

Experience in manufacturing a large HTS magnet for a SMES

Experience in manufacturing a large HTS magnet for a SMES Superconducting magnets April 05-09, 2009 CEA Cadarache, France Experience in manufacturing a large HTS magnet for a SMES P. Tixador Grenoble INP / Institut Néel - G2Elab Outline Introduction: SMES SMES:

More information

Magnetic field generation. Sergey L. Bud ko

Magnetic field generation. Sergey L. Bud ko Magnetic field generation 590B F09 Sergey L. Bud ko (Сергей Леокадьевич Будько) Choice of magnets Either you need to answer the following questions: What field is needed? How homogeneous the field should

More information

Review of Basic Electrical and Magnetic Circuit Concepts EE

Review of Basic Electrical and Magnetic Circuit Concepts EE Review of Basic Electrical and Magnetic Circuit Concepts EE 442-642 Sinusoidal Linear Circuits: Instantaneous voltage, current and power, rms values Average (real) power, reactive power, apparent power,

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

Module 3 Electrical Fundamentals

Module 3 Electrical Fundamentals 3.1 Electron Theory Structure and distribution of electrical charges within: atoms, molecules, ions, compounds; Molecular structure of conductors, semiconductors and insulators. 3.2 Static Electricity

More information

Polyhelix ECR & high field magnet development at LNCMI: an emergent synergy F. Debray, CNRS, LNCMI-Grenoble

Polyhelix ECR & high field magnet development at LNCMI: an emergent synergy F. Debray, CNRS, LNCMI-Grenoble Polyhelix ECR & high field magnet development at LNCMI: an emergent synergy F. Debray, CNRS, LNCMI-Grenoble HIGH FIELD? In 2009, dc magnetic fields up to 35 T are available to the scientific community

More information

Magnetic field generation. Sergey L. Bud ko

Magnetic field generation. Sergey L. Bud ko Magnetic field generation 590B S14 Sergey L. Bud ko Choice of magnets Either you need to answer the following questions: What field is needed? How homogeneous the field should be? What is the sample size?

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Force and Displacement Measurement

Force and Displacement Measurement Force and Displacement Measurement Prof. R.G. Longoria Updated Fall 20 Simple ways to measure a force http://scienceblogs.com/dotphysics/200/02/diy_force_probe.php Example: Key Force/Deflection measure

More information

TRANSFORMERS. Pascal Tixador. Grenoble INP - Institut Néel / G2Elab. Introduction

TRANSFORMERS. Pascal Tixador. Grenoble INP - Institut Néel / G2Elab. Introduction TRANSFORMERS Pascal Tixador Grenoble INP - Institut Néel / GElab Introduction! Discovered in 188 «!secondary generator!»! The transformers: an essential link in the a.c. electric systems Adjust with very

More information

Measurements in Mechatronic design. Transducers

Measurements in Mechatronic design. Transducers Measurements in Mechatronic design Transducers Quantities Current Voltage Torque Force Magnetic flux Distance Temperature Measurement system Physical quanties Transducer Signal conditioning Measurement

More information

Conventional Paper I (a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials?

Conventional Paper I (a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials? Conventional Paper I-03.(a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials? (ii) Give one example each of a dielectric and a ferroelectric material

More information

Research of selected electric and magnetic properties of railway rail

Research of selected electric and magnetic properties of railway rail ARCHIVES OF ELECTRICAL ENGINEERING VOL. 61(3), pp. 347-357 (2012) DOI 10.2478/v10171-012-0028-9 Research of selected electric and magnetic properties of railway rail KAMIL KIRAGA, ELŻBIETA SZYCHTA Institute

More information

physics 590 ruslan prozorov magnetic measurements Nov 9,

physics 590 ruslan prozorov magnetic measurements Nov 9, physics 590 ruslan prozorov magnetic measurements Nov 9, 2009 - magnetic moment of free currents Magnetic moment of a closed loop carrying current I: Magnetic field on the axis of a loop of radius R at

More information

STATIC TORQUE MEASUREMENT USING GMI STRAIN GAUGE

STATIC TORQUE MEASUREMENT USING GMI STRAIN GAUGE Journal of Optoelectronics and Advanced Materials Vol. 6, No. 2, June 2004, p. 699-703 STATIC TORQUE MEASUREMENT USING GMI STRAIN GAUGE T. Uchiyama, F. Borza *, T. Meydan Wolfson Centre for Magnetics Technology,

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

M-H 자기이력곡선 : SQUID, VSM

M-H 자기이력곡선 : SQUID, VSM 자성특성측정방법 자기장측정 M-H 자기이력곡선 : SQUID, VSM 고주파특성 ( 투자율 ) (1) 자기장측정 자기센서기술연구동향 지구자기장 NVE InSb By Honeywell 휴대폰용 COMPASS 센서응용 SQUID Flux gate Magneto-Impedance Hall AMR 지구자기장 0.1 nt 1 nt 30 nt 0.1 nt 차세대 compass

More information

Fault Calculation Methods

Fault Calculation Methods ELEC9713 Industrial and Commercial Power Systems Fault Calculation Methods There are two major problems that can occur in electrical systems: these are open circuits and short circuits. Of the two, the

More information

Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System

Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System Emmanuele Ravaiolia,b H. Bajasa, V. I. Datskova, V. Desbiollesa, J. Feuvriera, G. Kirbya, M. Maciejewskia,c,

More information

Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J.

Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J. Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J. Eckert Magnetisation (emu/g) 3 2 1-1 -2 pulsed field static field 175

More information

Level Sensor PanCake PR 6251 and Mounting Kit PR 6051

Level Sensor PanCake PR 6251 and Mounting Kit PR 6051 Level Sensor PanCake PR 6251 and Mounting Kit PR 6051 The space-saving solution for simple applications The sensors of the PR 6251 series have been specially designed for simple weighing of silos and horizontal

More information

Module I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano

Module I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano Preparatory Course (task NA 3.6) Basics of experimental testing and theoretical background Module I Module I: traditional test instrumentation and acquisition systems Prof. Ramat, Stefano Transducers A

More information

Applications Using SuperPower 2G HTS Conductor

Applications Using SuperPower 2G HTS Conductor superior performance. powerful technology. Applications Using SuperPower 2G HTS Conductor Drew W. Hazelton Principal Engineer, SuperPower Inc. 2011 CEC/ICMC Conference June 16, 2011 Spokane, WA SuperPower

More information

l μ M Right hand Screw rule

l μ M Right hand Screw rule Magnetic materials Magnetic property The response of the materials to external magnetic field All the materials are magnetic, only the degree of response varies, which is measured in terms of their magnetization

More information

Construction of a Variable Electromagnet and Gauss Meter

Construction of a Variable Electromagnet and Gauss Meter Construction of a Variable Electromagnet and Gauss Meter Tanushree Bezbaruah, Chinmoy Bharadwas, Reinkosi Mam, Barnali Devi, Diganta Kumar Sarma # Department of Physics, B. Borooah College, Ulubari, Guwahati-781007,

More information

The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers. Dr. Julie Slaughter ETREMA Products, Inc Ames, IA

The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers. Dr. Julie Slaughter ETREMA Products, Inc Ames, IA The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers Dr. Julie Slaughter ETREMA Products, Inc Ames, IA 1 ETREMA Products, Inc. Designer and manufacturer of technology

More information

PHYSICS 2B FINAL EXAM ANSWERS WINTER QUARTER 2010 PROF. HIRSCH MARCH 18, 2010 Problems 1, 2 P 1 P 2

PHYSICS 2B FINAL EXAM ANSWERS WINTER QUARTER 2010 PROF. HIRSCH MARCH 18, 2010 Problems 1, 2 P 1 P 2 Problems 1, 2 P 1 P 1 P 2 The figure shows a non-conducting spherical shell of inner radius and outer radius 2 (i.e. radial thickness ) with charge uniformly distributed throughout its volume. Prob 1:

More information

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Presented at the COMSOL Conference 2009 Milan University of Brescia Department of Electronics for Automation Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Marco Baù, VF V.

More information

Basics of Permanent Magnet - Machines

Basics of Permanent Magnet - Machines Basics of Permanent Magnet - Machines 1.1 Principles of energy conversion, force & torque 1.2 Basic design elements 1.3 Selection of PM-Machine topologies 1.4 Evaluation and Comparison Permanent Magnet

More information

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially MAGNETIC CIRCUITS The study of magnetic circuits is important in the study of energy systems since the operation of key components such as transformers and rotating machines (DC machines, induction machines,

More information

Chapter 14: Inductor design

Chapter 14: Inductor design Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points

More information

ME 515 Mechatronics. Overview of Computer based Control System

ME 515 Mechatronics. Overview of Computer based Control System ME 515 Mechatronics Introduction to Sensors I Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 081239 (3627) Email: asangar@pdn.ac.lk Overview of Computer based Control

More information

Conventional Paper-I-2011 PART-A

Conventional Paper-I-2011 PART-A Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

More information

Elements of magnetism and magnetic measurements

Elements of magnetism and magnetic measurements Elements of magnetism and magnetic measurements Ruslan Prozorov Oct 2009, Feb 2014, Oct 2018 Physics 590B magnetic moment of free currents Magnetic moment of a closed loop carrying current I: Magnetic

More information

Conventional Paper I-2010

Conventional Paper I-2010 Conventional Paper I-010 1. (a) Sketch the covalent bonding of Si atoms in a intrinsic Si crystal Illustrate with sketches the formation of bonding in presence of donor and acceptor atoms. Sketch the energy

More information

Generators for wind power conversion

Generators for wind power conversion Generators for wind power conversion B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Email : bgf@ee.iitb.ac.in Outline of The Talk Introduction Constant speed

More information

EM Simulations using the PEEC Method - Case Studies in Power Electronics

EM Simulations using the PEEC Method - Case Studies in Power Electronics EM Simulations using the PEEC Method - Case Studies in Power Electronics Andreas Müsing Swiss Federal Institute of Technology (ETH) Zürich Power Electronic Systems www.pes.ee.ethz.ch 1 Outline Motivation:

More information

Loss analysis of a 1 MW class HTS synchronous motor

Loss analysis of a 1 MW class HTS synchronous motor Journal of Physics: Conference Series Loss analysis of a 1 MW class HTS synchronous motor To cite this article: S K Baik et al 2009 J. Phys.: Conf. Ser. 153 012003 View the article online for updates and

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

VORTEX LEVITATION. Toshiharu Kagawa 1 and Xin Li 2

VORTEX LEVITATION. Toshiharu Kagawa 1 and Xin Li 2 VORTEX LEVITATION Toshiharu Kagawa 1 and Xin Li ABSTRACT In this paper, a new pneumatic levitation method, called vortex levitation, is introduced. Vortex levitation can achieve non-contact handling by

More information

Chapter 15 Magnetic Circuits and Transformers

Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers 1. Understand magnetic fields and their interactio with moving charges. 2. Use the right-hand rule to determine

More information

Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe. Useful Information. Your name sticker. with exam code

Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe. Useful Information. Your name sticker. with exam code Your name sticker with exam code Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe SIGNATURE: 1. The exam will last from 4:00 p.m. to 7:00 p.m. Use a #2 pencil to make entries on the

More information

NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD. Sample Examination EA605

NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD. Sample Examination EA605 Name: NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD Sample Examination EA605 EDDY CURRENT TESTING AS3998 LEVEL 2 GENERAL EXAMINATION 6161C * * * * * * * Time allowed

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

SCTP20 Programmable 2-Wire Temperature Transmitter, Head Mount

SCTP20 Programmable 2-Wire Temperature Transmitter, Head Mount 20 Programmable 2-Wire Temperature Transmitter, Head Mount Configurable Transmitters Description Each 20 2-wire transmitter is designed for measuring temperature using thermocouples or RTDs. The input

More information

Reactor Characteristic Evaluation and Analysis Technologies of JFE Steel

Reactor Characteristic Evaluation and Analysis Technologies of JFE Steel JFE TECHNICAL REPORT No. 21 (Mar. 2016) Reactor Characteristic Evaluation and Analysis Technologies of HIRATANI Tatsuhiko *1 NAMIKAWA Misao *2 NISHINA Yoshiaki *3 Abstract: Reactor characteristic evaluation

More information

Using a Mercury itc with thermocouples

Using a Mercury itc with thermocouples Technical Note Mercury Support Using a Mercury itc with thermocouples Abstract and content description This technical note describes how to make accurate and reliable temperature measurements using an

More information

Antiproton Decelerator at CERN, another advanced CCC for the FAIR project at GSI is under construction and will be installed in CRYRING. This

Antiproton Decelerator at CERN, another advanced CCC for the FAIR project at GSI is under construction and will be installed in CRYRING. This Proc. 12th Int. Conf. Low Energy Antiproton Physics (LEAP2016) https://doi.org/10.7566/jpscp.18.011042 Superconducting Beam Charge Monitors for Antiproton Storage Rings Volker TYMPEL*, Ralf NEUBERT 1,

More information

EN Power Electronics and Machines

EN Power Electronics and Machines 1/19 - Power Electronics and Machines Transformers Suryanarayana Doolla Department of Energy Science and Engineering Indian Institute of Technology, Bombay suryad@iitb.ac.in Lecture Organization - Modules

More information

Transformer Fundamentals

Transformer Fundamentals Transformer Fundamentals 1 Introduction The physical basis of the transformer is mutual induction between two circuits linked by a common magnetic field. Transformer is required to pass electrical energy

More information

Tutorial 1 (EMD) Rotary field winding

Tutorial 1 (EMD) Rotary field winding Tutorial 1 (EMD) Rotary field winding The unchorded two-layer three-phase winding of a small synchronous fan drive for a computer has the following parameters: number of slots per pole and phase q = 1,

More information

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively Chapter 3 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively In the LC circuit the charge, current, and potential difference vary sinusoidally (with period T and angular

More information

---------------------------------------------------------------------------------------------------------- PHYS 2326 University Physics II Class number ---------------------------------------------------------------------------------------------------------------------

More information

How an Induction Motor Works by Equations (and Physics)

How an Induction Motor Works by Equations (and Physics) How an Induction Motor Works by Equations (and Physics) The magnetic field in the air gap from the voltage applied to the stator: The stator has three sets of windings that are aligned at 10 degrees to

More information

Wir schaffen Wissen heute für morgen

Wir schaffen Wissen heute für morgen Wir schaffen Wissen heute für morgen Paul Scherrer Institut René Künzi Thermal Design of Power Electronic Circuits CERN Accelerator School 2014, Baden, Switzerland 12.5.2014 Motivation Statement in a meeting:

More information

Magnetism of materials

Magnetism of materials Magnetism of materials 1. Introduction Magnetism and quantum mechanics In the previous experiment, you witnessed a very special case of a diamagnetic material with magnetic susceptibility χχ = 1 (usually

More information

ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION ELECTROMAGNETIC INDUCTION 1. Magnetic Flux 2. Faraday s Experiments 3. Faraday s Laws of Electromagnetic Induction 4. Lenz s Law and Law of Conservation of Energy 5. Expression for Induced emf based on

More information

HTS Magnets for Accelerator Applications

HTS Magnets for Accelerator Applications 8 th International Particle Accelerator Conference Bella Center, Copenhagen, Denmark May 17, 2017 HTS Magnets for Accelerator Applications K. Hatanaka hatanaka@rcnp.osaka-u.ac.jp Research Center for Nuclear

More information

Request Ensure that this Instruction Manual is delivered to the end users and the maintenance manager.

Request Ensure that this Instruction Manual is delivered to the end users and the maintenance manager. Request Ensure that this Instruction Manual is delivered to the end users and the maintenance manager. 1 -A - Introduction - Thank for your purchasing MITSUBISHI ELECTRIC MELPRO TM D Series Digital Protection

More information

Commissioning testing of a 1 MVA Superconducting transformer featuring 2G HTS Roebel cable

Commissioning testing of a 1 MVA Superconducting transformer featuring 2G HTS Roebel cable Commissioning testing of a 1 MVA Superconducting transformer featuring 2G HTS Roebel cable Glasson N, Staines M, Allpress N, Badcock R 10:45 2M-LS-O2 OUTLINE Introduction Electrical Design Specifications

More information

Simple Calibration Free Method to Measure AC Magnetic Moment and Losses

Simple Calibration Free Method to Measure AC Magnetic Moment and Losses Simple Calibration Free Method to Measure AC Magnetic Moment and Losses Leonid M. Fisher, Alexey V. Kalinov and Igor F. Voloshin All-Russian Electrical Engineering Institute, 12 Krasnokazarmennaya street,

More information

ECEN 460 Exam 1 Fall 2018

ECEN 460 Exam 1 Fall 2018 ECEN 460 Exam 1 Fall 2018 Name: KEY UIN: Section: Score: Part 1 / 40 Part 2 / 0 Part / 0 Total / 100 This exam is 75 minutes, closed-book, closed-notes. A standard calculator and one 8.5 x11 note sheet

More information

NMR Instrumentation BCMB/CHEM Biomolecular NMR

NMR Instrumentation BCMB/CHEM Biomolecular NMR NMR Instrumentation BCMB/CHEM 8190 Biomolecular NMR Instrumental Considerations - Block Diagram of an NMR Spectrometer Magnet Sample B 0 Lock Probe Receiver Computer Transmit Superconducting Magnet systems

More information

Lecture 33. PHYC 161 Fall 2016

Lecture 33. PHYC 161 Fall 2016 Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall

More information

a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system.

a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system. 1-The steady-state error of a feedback control system with an acceleration input becomes finite in a a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system. 2-A good control system has

More information

Transducer. A device to which change or converts physical quantity in a more easily measurable quantity. Transducer. (Input) Sensor.

Transducer. A device to which change or converts physical quantity in a more easily measurable quantity. Transducer. (Input) Sensor. Transducer A device to which change or converts physical quantity in a more easily measurable quantity Transducer (Input) Sensor (Output) Actuator Sensor A device which senses and detects the physical

More information

Get Discount Coupons for your Coaching institute and FREE Study Material at ELECTROMAGNETIC INDUCTION

Get Discount Coupons for your Coaching institute and FREE Study Material at  ELECTROMAGNETIC INDUCTION ELECTROMAGNETIC INDUCTION 1. Magnetic Flux 2. Faraday s Experiments 3. Faraday s Laws of Electromagnetic Induction 4. Lenz s Law and Law of Conservation of Energy 5. Expression for Induced emf based on

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations 1 CAPACITANCE AND INDUCTANCE Introduces two passive, energy storing devices: Capacitors

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

2G HTS Wire and High Field Magnet Demonstration

2G HTS Wire and High Field Magnet Demonstration 2G HTS Wire and High Field Magnet Demonstration Presented by: Drew W. Hazelton SuperPower, Inc. Low Temperature Superconductivity Workshop S. Lake Tahoe, CA October 29, 2007 Providing HTS Solutions for

More information

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy 1 Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy Mariana Cavique, Student, DEEC/AC Energia, João F.P. Fernandes, LAETA/IDMEC,

More information

Magnetic field generation. Sergey L. Bud ko

Magnetic field generation. Sergey L. Bud ko Magnetic field generation 590B F18 Sergey L. Bud ko Note: we do not endorse any specific product, they are shown for illustration only Magnetic fields around us Brief history of high field generation Choice

More information

08/072 PKZ2 Motor-Protective Circuit-Breakers Tripping Characteristics

08/072 PKZ2 Motor-Protective Circuit-Breakers Tripping Characteristics 0/07 PKZ Tripping Characteristics Moeller HPL0-00/00 S-PKZ high-capacity contact module, SEA-PKZ contact module Normal switching duty AC-/00V kw A Rated output of three-phase motors 0...0 Hz. 7..... 0.7

More information

Transient Finite Element Analysis of a Spice-Coupled Transformer with COMSOL-Multiphysics

Transient Finite Element Analysis of a Spice-Coupled Transformer with COMSOL-Multiphysics Presented at the COMSOL Conference 2010 Paris Thomas Bödrich 1, Holger Neubert 1, Rolf Disselnkötter 2 Transient Finite Element Analysis of a Spice-Coupled Transformer with COMSOL-Multiphysics 2010-11-17

More information

TEMPERATURE EFFECTS ON MOTOR PERFORMANCE

TEMPERATURE EFFECTS ON MOTOR PERFORMANCE TEMPERATURE EFFECTS ON MOTOR PERFORMANCE Authored By: Dan Montone Haydon Kerk Motion Solutions / Pittman Motors hen applying DC motors to any type of application, temperature effects need to be considered

More information

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such

More information

Ch. 3. Pulsed and Water Cooled Magnets. T. J. Dolan. Magnetic field calculations

Ch. 3. Pulsed and Water Cooled Magnets. T. J. Dolan. Magnetic field calculations Ch. 3. Pulsed and Water Cooled Magnets T. J. Dolan Magnetic field calculations Coil forces RLC circuit equations Distribution of J and B Energy storage Switching and transmission Magnetic flux compression

More information

magneticsp17 September 14, of 17

magneticsp17 September 14, of 17 EXPERIMENT Magnetics Faraday s Law in Coils with Permanent Magnet, DC and AC Excitation OBJECTIVE The knowledge and understanding of the behavior of magnetic materials is of prime importance for the design

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

EC Objective Paper I (Set - D)

EC Objective Paper I (Set - D) EC-Objective Paper-I ESE-5 www.gateforum.com EC Objective Paper I (Set - D). If a system produces frequencies in the output are not present in the input, then the system cannot be Minimum phase system

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Induction Heating: fundamentals

Induction Heating: fundamentals LEP ELECTROMAGNETIC PROCESSING OF MATERIALS TECNOLGIE DEI PROCESSI ELETTROTERMICI Induction Heating: fundamentals Fabrizio Dughiero 2017-2018 Induction heating fundamentals May 28-30, 2014 1 Summary 1.

More information

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE INSTRUMENTATION ECE Fourth Semester Presented By:- Sumit Grover Lect., Deptt. of ECE Detailed Contents Objectives Sensors and transducer Classification of transducers Temperature transducers Resistance

More information

A) I B) II C) III D) IV E) V

A) I B) II C) III D) IV E) V 1. A square loop of wire moves with a constant speed v from a field-free region into a region of uniform B field, as shown. Which of the five graphs correctly shows the induced current i in the loop as

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

Magnetic Property Measurement System

Magnetic Property Measurement System Magnetic Property Measurement System Product Description Quantum Design's MPMS 3 represents the culmination of more than 3 years of development and design in the world of SQUID Magnetometry. Providing

More information

Voltage generation induced by mechanical straining in magnetic shape memory materials

Voltage generation induced by mechanical straining in magnetic shape memory materials JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 12 15 JUNE 2004 Voltage generation induced by mechanical straining in magnetic shape memory materials I. Suorsa, J. Tellinen, K. Ullakko, and E. Pagounis a)

More information

MAGNETIC PROBLEMS. (d) Sketch B as a function of d clearly showing the value for maximum value of B.

MAGNETIC PROBLEMS. (d) Sketch B as a function of d clearly showing the value for maximum value of B. PHYS2012/2912 MAGNETC PROBLEMS M014 You can investigate the behaviour of a toroidal (dough nut shape) electromagnet by changing the core material (magnetic susceptibility m ) and the length d of the air

More information

Measurements and Errors

Measurements and Errors 1 Measurements and Errors If you are asked to measure the same object two different times, there is always a possibility that the two measurements may not be exactly the same. Then the difference between

More information

Energy of the magnetic field, permanent magnets, forces, losses

Energy of the magnetic field, permanent magnets, forces, losses Energy of the magnetic field Let use model of a single coil as a concentrated resistance and an inductance in series Switching the coil onto a constant voltage source by the voltage equation () U = u ()

More information

SYLLABUS(EE-205-F) SECTION-B

SYLLABUS(EE-205-F) SECTION-B SYLLABUS(EE-205-F) SECTION-A MAGNETIC CIRCUITS AND INDUCTION: Magnetic Circuits, Magnetic Materials and their properties, static and dynamic emfs and dforce on current carrying conductor, AC operation

More information