EDDY CURRENT EFFECTS IN A PULSED FIELD MAGNETOMETER

Size: px
Start display at page:

Download "EDDY CURRENT EFFECTS IN A PULSED FIELD MAGNETOMETER"

Transcription

1 EDDY CURRENT EFFECTS IN A PULSED FIELD MAGNETOMETER R.Grössinger, M.Küpferling Institut. f. Festkörperphysik; Techn. Univ. Vienna; Austria

2 1) Introduction Two transient effects in magnetic materials: a) eddy currents in a conductor b) magnetic viscosity dh/dt [(GA/m)/s)] 20 Cu annealed 1.5 SmCo Cu Cu annealed 5-x x Cu 2.5 annealed Cu 3.0 annealed Cu 2.0 as-cast Cu 2.5 as-cast H [MA/m]

3 Eddy currents: Positive applications: Flux concentration Cnare effect achieves fields up to MG.

4 Eddy currents: Positive applications: Production of special metallic shapes. Sensoric metal Eddy currents

5 Eddy currents: Origin of eddy currents: Maxwell equations: Induction-law Electromagnetic wave Eddy currents

6 Eddy currents: a) eddy currents in the conductor b) eddy currents in the sample Origin of eddy currents:

7 a) Eddy current effects in the conductor: B [T] Field versus current through the thin foil magnet I [A] 200 V 500 V 750 V 1000 V 1200 V 1500 V 1750 V 2150 V

8 Field versus current through the thin foil magnet Note: field and current are not in phase! This changes also homogeneity of magnet! Changes zero-signal

9 a) Eddy current effects (?) at the beginning of the field pulse 0,6 M 0,4 0,2 dm/dt 0,0-0,2-0,4-0,6 0, , , , ,00020 t(s) Signal (V) of a N/N pick-up at the beginning of the field pulse (U C = 600V, C = 8 mf)

10 Reduction is achieved using inside of the pulse magnet a thin copper cylinder reduces this peak with a factor of about 30. 0,025 M 0,020 0,015 dm/dt 0,010 0,005 0,000-0,005 0, , , , ,00020 t(s) Signal (V) of N/N pick-up at beginning of field pulse (U C = 600V, C = 8 mf) - 50 Ohm resistance at end of measuring cables +Cu cylinder inside of pulse magnet.

11 b) Eddy current effects in the sample: M (A/m) Ni, cylindre, d=4mm, h=8mm ρ=8908kg/m 3 m=0,89183g annealed, 4h, 500 C 8mF, 2000V B (T)

12 2) Eddy current studies. Aim: Understanding of eddy currents correction of these effects. Comparison between experiment and modelling. Samples: spheres + cylinders and cuboids of Cu and Al Dimensions: Spheres: 4-10 mm Cylinders: length: 8mm, diameter 4mm After heat treatment (T = 500 C, t = 4h) Material specific resistivity Cu annealed µωm Al annealed µωm

13 Resistivity measurements at room temperature on same sample with same heat treatment! Eddy current measurements performed with different time constants. T.U.: T = 9.1 ms (8mF); T = 15.7 ms (24 mf) PFM: 40 ms and 57 ms (H max = 5T) Different time constants. Effect of sample geometry. Comparison of different materials

14 Comparison Cu - Al; annealed T = 9.1ms; units: A/m Cu-cylinder; Al-cylinder l = 8mm, O = 4mm annealed (T = 400 C, t = 2h) t = 9.1ms (C = 8mF) Cu Al A/m µ H (TESLA)

15 Cu - annealed; two different time constants: T = 9.1ms, T = 15.7 ms Cu-cylinder; l = 8mm, O = 4mm annealed (T = 400 C, t = 2h) T = 9.1 ms and T = 15.7 ms ms 9.1 ms A/m µ H (TESLA)

16 Cu-cylinder; T = 9.1 ms Cu, cylindre l=8mm, d=4mm heattreated 4h, 500 C m=0,90926g C=8mF, U=2000V magnetization (A/m) field (T)

17 Eddy current magnetization of annealed Cu and Al versus dh/dt Cu cylinder annealed T = 9.1 ms M versus dh/dt M(A/m) Al-cylinder; l =8mm; O = 4mm annealed (T = 400 C, t = 2h) T = 9.1ms ,00E+009-2,50E+009 0,00E+000 2,50E+009 5,00E dh/dt (A/ms)

18 Why scales M(eddy current) with dh/dt? Consequence of Maxwell equations: v r j = σ E. r r B = curla 1 r curl( curla ) = µ r curle r E r A = curl t r A = t. r r A 1 r j = σ = curl B t µ v j σ B = µ t

19 Experimetal proof of scaling of eddy current with dh/dt: µ H j = 0 ρ t M cylinder = j max. S µ 0 4 r = H ρ t r S 4 M M cylinder cylinder ( Cu) ( Al) = ρ ρ AL Cu M M ( Cu) cylinder AL = 2. 2 cylinder ( Al) = 2.3 ρ ρ Cu Slope proportional to spec. resistivity!

20 8,00E+013 6,00E+013 Cu, 24mF Zylinder, geom. Faktor=r p 4h(π/4) Kugel, geom. Faktor=r p 5(4π/15) m/geom.faktor (A/m 3 ) 4,00E+013 2,00E+013 0,00E+000-2,00E+013-4,00E+013-6,00E+013-2,00E+009-1,00E+009 0,00E+000 1,00E+009 2,00E+009 dh/dt (A/ms) Geometry corrected magnetic moment of a Cu sphere and a cylinder; pulse duration 15.7 ms; as a function of dh/dt

21 3) FE - calculations Finite element package FE by David Meeker [ Complete set of tools for solving static and low frequency 2D or axisymmetric problems in electrodynamics. Aim: understanding of results.

22 Theoretical considerations: Induced magnetic moment Cylindrical samples (r,h) M(eddy currents): r s h 2 µ dr' dz j( r') r' π = 0 0 (1) j(eddy currents) directly proportional to the radial distance r: jr (') j max r s r' =. (2)

23 Theoretical considerations: Induced magnetic moment Cylindrical samples (r,h) M(eddy currents): r s h 2 µ dr' dz j( r') r' π = 0 0 (1) j(eddy currents) directly proportional to the radial distance r: jr (') j max r s r' =. (2)

24 Magnetic moment Magnetization s j µ = h drr π = j hπ r max 3 '' max r s r 0 3 s 4. (4) M µ/v, (5) V...volume of cylinder V = r 2 s π h (6) Eddy current magnetization in a cylinder: M j r s = max 4 (A/m) (7)

25 After a similar calculation one finds: Eddy current magnetization of a sphere: M = jmaxrs 5 (A/m) Eddy current magnetization in a cylinder: M j r s = max 4 (A/m) How looks j as a function of r?

26 Cylinder: Eddy currents as a function of r: 3.000e e+002 J_eddy, MA/m^2 Re[J_eddy], MA/m^2 Im[J_eddy], MA/m^ e e e e e Length, mm

27 Sphere: Eddy currents as a function of r: 2.000e e+002 J_eddy, MA/m^2 Re[J_eddy], MA/m^2 Im[J_eddy], MA/m^ e e e Length, mm

28 Sphere: eddy currents for large r: 2.000e e+002 J_eddy, MA/m^2 Re[J_eddy], MA/m^2 Im[J_eddy], MA/m^ e e e Length, cm

29 eddy current density (MA/m^2) ,00 0,67 1,34 2,02 2,69 3,36 4,03 4,71 radius (cm) numerical solution J_eddy MA/m^2 numerical solution Re[J_eddy] MA/m^2 numerical solution Im[J_eddy] MA/m^2 analytical solution J_eddy MA/m^2 analytical solution Re[J_eddy] MA/m^2 analytical solution Im[J_eddy] MA/m^2

30 eddy current density (MA/m^2) 0,1 0,08 0,06 0,04 0,02 0-0,02-0,04-0,06 numerical solution J_eddy MA/m^2 numerical solution Re[J_eddy] MA/m^2 numerical solution Im[J_eddy] MA/m^2 analytical solution J_eddy MA/m^2 analytical solution Re[J_eddy] MA/m^2 analytical solution Im[J_eddy] MA/m^2-0,08 0,00 0,03 0,07 0,10 0,13 0,17 0,20 0,24 0,27 0,30 0,34 0,37 radius (cm)

31 4) Results Based on this assumption several cylindrical samples of Cu were studied. M (A/m) µ 0 H (T) Cu, cylinder, h=8mm d=2mm d=6mm d=8mm d=9,8mm d=4mm 8mF, T=9.1ms

32 Figure shows comparison of hysteresis loops of Cu-cylinders of different diameters; The magnetization increases with increasing sample diameter. Measured maximum magnetization fitted with a function f=cr 2, r is the radius of the sample as shown. The quadratic dependence results from the following formula: M = m V 1 max sample c 4 M scales therefore with r 2 = j r

33 If j max is a linear function of r sample, then M is a quadratic function of the sample radius. M scales therefore with r Cu, cylinder, h=8mm 8mF, 9.1ms M max (A/m) d (mm)

34 Comparison of hysteresis loops of Cu-cylinders of different heights; The magnetization is nearly constant Cu, cylinder, d=4mm h=2mm h=4mm h=6mm h=10mm h=8mm 8mF, T=9.1ms M (A/m) µ 0 H (T)

35 The maximum magnetization as a function of the height of the cylinder; The independence from h can be explained with the same formula as before: M = m V = j r 1 max sample c 4 If j max is independent from h, then M is constant for every cylinder with the same diameter but different height.

36 Dependence of the maximum magnetization as a function of the cylinder height M max (A/m) Cu, cylinder, d=4mm 8mF, 9.1ms h (mm)

37 5) Comparison of experimental (Mexp) and FE-results (Mnum): sample frequency Bmax (T) Mexp (ka/m) Mexp/f j_eddy_max Mnum (ka/m) Mnum/f Cu ,603 0,00 228,66 114,33 1,02 Cu1 109,89 5,603 0,00 222,93 111,47 1,01 Cu , ,84 213,59 106,80 0,95 Cu1 109,89 5, ,86 209,57 104,79 0,95 Cu2 109,89 5, ,82 202,94 101,47 0,92 Cu3 109,89 5,17 245,13 2,23 368,47 403,47 3,67 Cu2 63,69 5,17 48,8 0,77 116,90 58,45 0,92 Cu3 63,69 5,17 133,2 2,09 213,79 234,10 3,68 Al ,23 43,335 0,39 70,79 35,40 0,32 Al1 109,89 5,23 43,335 0,39 69,51 34,75 0,32 Al2 109,89 5, ,34 93,53 46,77 0,43 Al3 109,89 5, ,46 116,27 87,20 0,79 Al2 63,69 5,17 20,9 0,33 54,21 27,11 0,43 Al3 63,69 5,17 28,2 0,44 67,54 50,65 0,80 Cu1,Cu2,Al1,Al2: cylinders, h = 8mm, D = 4 mm Cu3 sphere, diameter 7.3mm, Al3 sphere, diameter 5mm Cu1 ρ = µωm, Al1 ρ = µωm Cu2,Cu3 ρ = µωm Al2,Al3 ρ = µωm

38 40 30 Cu, sphere, d=7.3mm, T=15.7ms calculated with FEMM measured 20 m (10-3 Am 2 ) µ 0 H (T) Comparison of the measured and calculated hysteresis loop of a Cu-sphere.

39 6) Eddy currents in magnetic, conducting materials M (A/m) Ni, cylindre, d=4mm, h=8mm ρ=8908kg/m 3 m=0,89183g annealed, 4h, 500 C 8mF, 2000V B (T)

40 Eddy currents in magnetic, conducting materials Ni cylinder 54 emu/g External field (koe)

41 J J error J error dymanic dh 1 dt dh 2 dt = J 7) A simple eddy current correction - the f-2f method static + 1,3 1 2 J J (Tesla) 1,35 1,25 1,2 1,15 1, Frequency (Hz) eddy _ error

42 M [T] NdFeB, cylinder h=6.9mm, d=20mm B r =1.25 T f-2f corrected, H c =1.603 T long pulse, H c =1.675 T short pulse, H c =1.696 T H [T] Hysteresis loop of a sintered Nd-Fe-B magnet (Vacodym 510) as measured with a f and a 2f pulse and applying the so-called f/2f correction.

43 8) Conclusion Good agreement between FE eddy current calculations and experimental results. Understanding of scaling j(eddy current) and M(eddy current) with dh/dt - for not too large r. Only harmonic 2D solution - general 3D solution much more complex. FE description of permanent magnet - nonlinear permeability - open!

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger High Magnetic Fields The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS R.Grössinger Coworker: M. Küpferling, H.Sassik, R.Sato, E.Wagner, O.Mayerhofer, M.Taraba ƒ1 Content CONTENT Generation

More information

Calculation of eddy currents in metal samples

Calculation of eddy currents in metal samples Projektarbeit Hart- u. Weichmagnete LV-Nr. 131.019 Calculation of eddy currents in metal samples ausgeführt am Institut für Experimentalphysik der Technischen Universität Wien unter der Anleitung von Ao.Univ.Prof.

More information

A New Measuring Technique for the Characterization of Magnetic Materials in Pulsed Magnetic Fields

A New Measuring Technique for the Characterization of Magnetic Materials in Pulsed Magnetic Fields A New Measuring Technique for the Characterization of Magnetic Materials in Pulsed Magnetic Fields Authors: J. H. Espina Hernández Supervisors: Prof. Dr. R. Grössinger Prof. Dr. E. Estévez Rams Antecedents

More information

THE INFLUENCE OF THE MAGNETIC VISCOSITY ON PULSED FIELD MEASUREMENTS

THE INFLUENCE OF THE MAGNETIC VISCOSITY ON PULSED FIELD MEASUREMENTS Journal of Optoelectronics and Advanced Materials Vol. 6, No. 2, June 2004, p. 557-563 INVITED PAPER THE INFLUENCE OF THE MAGNETIC VISCOSITY ON PULSED FIELD MEASUREMENTS R. Grössinger *, R. Sato Turtelli,

More information

Magnetized Material (contd.) and Electromagnetic Induction

Magnetized Material (contd.) and Electromagnetic Induction Magnetized Material (contd.) and Electromagnetic Induction Lecture 28: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay In the first half of this lecture we will continue

More information

Industrial Heating System Creating Given Temperature Distribution

Industrial Heating System Creating Given Temperature Distribution SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 5, No. 1, May 2008, 57-66 Industrial Heating System Creating Given Temperature Distribution Ilona Iatcheva 1, Ilonka Lilianova 2, Hristophor Tahrilov 2, Rumena

More information

Chapter 2: Fundamentals of Magnetism. 8/28/2003 Electromechanical Dynamics 1

Chapter 2: Fundamentals of Magnetism. 8/28/2003 Electromechanical Dynamics 1 Chapter 2: Fundamentals of Magnetism 8/28/2003 Electromechanical Dynamics 1 Magnetic Field Intensity Whenever a magnetic flux, φ, exist in a conductor or component, it is due to the presence of a magnetic

More information

Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J.

Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J. Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J. Eckert Magnetisation (emu/g) 3 2 1-1 -2 pulsed field static field 175

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

NR/RR. Set No. 2 CODE NO: NR/RR210204

NR/RR. Set No. 2 CODE NO: NR/RR210204 Set No. 2 II B.Tech I Semester Examinations,May 2011 ELECTROMAGNETIC FIELDS Electrical And Electronics Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

EFFECTS OF NON-LINEAR MAGNETIC CHARGE ON INDUCTION FURNACE OPERATION DURING THE HEATING CYCLE Adil H. Ahmad, PhD

EFFECTS OF NON-LINEAR MAGNETIC CHARGE ON INDUCTION FURNACE OPERATION DURING THE HEATING CYCLE Adil H. Ahmad, PhD Number4 Volume13 December 26 Journal of Engineering EFFECTS OF NON-LINEAR MAGNETIC CHARGE ON INDUCTION FURNACE OPERATION DURING THE HEATING CYCLE Adil H. Ahmad, PhD Fadhil A. Abood, Akram F. Bati, PhD

More information

Reading Assignments Please see the handouts for each lesson for the reading assignments.

Reading Assignments Please see the handouts for each lesson for the reading assignments. Preparation Assignments for Homework #5 Due at the start of class. These assignments will only be accepted from students attending class. Reading Assignments Please see the handouts for each lesson for

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 217 3:PM to 5:PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted for the

More information

Magnetic Fields from Power Cables 1

Magnetic Fields from Power Cables 1 Power Electronics Notes 30H Magnetic Fields from Power Cables (Case Studies) Marc T. Thompson, Ph.D. Thompson Consulting, Inc. 9 Jacob Gates Road Harvard, MA 01451 Phone: (978) 456-7722 Fax: (240) 414-2655

More information

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine Magnetostatic Fields Dr. Talal Skaik Islamic University of Gaza Palestine 01 Introduction In chapters 4 to 6, static electric fields characterized by E or D (D=εE) were discussed. This chapter considers

More information

Azimuthal eddy currents in a wire

Azimuthal eddy currents in a wire Problem 1. Azimuthal eddy currents in a wire A longitudinal AC magnetic field B(t) = ẑb o cos(ωt) is driven through the interior of a (solid) ohmic tube with length L and radius R L, drawn rather schematically

More information

Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12

Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12 Inductance 1 Definition of Inductance When electric potentials are placed on a system of conductors, charges move to cancel the electric field parallel to the conducting surfaces of the conductors. We

More information

Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method

Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method R. Lerch a, M. Kaltenbacher a and M. Meiler b a Univ. Erlangen-Nuremberg, Dept. of Sensor Technology, Paul-Gordan-Str.

More information

Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM)

Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM) Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM) M. Cobianchi *1,Dr. M. Rousseau *1 and S. Xavier* 1 1 B&W Group Ltd, Worthing, West Sussex, England. *Corresponding

More information

Section 8: Magnetic Components

Section 8: Magnetic Components Section 8: Magnetic omponents Inductors and transformers used in power electronic converters operate at quite high frequency. The operating frequency is in khz to MHz. Magnetic transformer steel which

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material K. Z. Gomes *1, T. A. G. Tolosa 1, E. V. S. Pouzada 1 1 Mauá Institute of Technology, São Caetano do

More information

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Physics 54 Lecture March 1, 2012 OUTLINE Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic

More information

APPLICATION OF THE FINITE ELEMENT METHOD TO MODEL THE NONLINEAR VOICE COIL MOTION PRODUCED BY A LOUDSPEAKER MAGNET ASSEMBLY.

APPLICATION OF THE FINITE ELEMENT METHOD TO MODEL THE NONLINEAR VOICE COIL MOTION PRODUCED BY A LOUDSPEAKER MAGNET ASSEMBLY. APPLICATION OF THE FINITE ELEMENT METHOD TO MODEL THE NONLINEAR VOICE COIL MOTION PRODUCED BY A LOUDSPEAKER MAGNET ASSEMBLY. Mark Dodd Celestion International & KEF Audio (UK) Ltd. 1. INTRODUCTION Moving

More information

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions Second Year Electromagnetism Summer 2018 Caroline Terquem Vacation work: Problem set 0 Revisions At the start of the second year, you will receive the second part of the Electromagnetism course. This vacation

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

New sensors for measuring M and H in high magnetic fields

New sensors for measuring M and H in high magnetic fields Physica B 346 347 (004) 543 547 New sensors for measuring M and H in high magnetic fields J.H. Espina-Hern!andez a,b, *, R. Gr.ossinger a, S. Kato a,c, H. Hauser d, E. Est!evez-Rams b a Institute of Solid

More information

Lecture Notes ELEC A6

Lecture Notes ELEC A6 Lecture Notes ELEC A6 Dr. Ramadan El-Shatshat Magnetic circuit 9/27/2006 Elec-A6 - Electromagnetic Energy Conversion 1 Magnetic Field Concepts Magnetic Fields: Magnetic fields are the fundamental mechanism

More information

Candidacy Exam Department of Physics February 6, 2010 Part I

Candidacy Exam Department of Physics February 6, 2010 Part I Candidacy Exam Department of Physics February 6, 2010 Part I Instructions: ˆ The following problems are intended to probe your understanding of basic physical principles. When answering each question,

More information

CHAPTER 8 CONSERVATION LAWS

CHAPTER 8 CONSERVATION LAWS CHAPTER 8 CONSERVATION LAWS Outlines 1. Charge and Energy 2. The Poynting s Theorem 3. Momentum 4. Angular Momentum 2 Conservation of charge and energy The net amount of charges in a volume V is given

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

Eddy Current Testing using the Bode 100

Eddy Current Testing using the Bode 100 Page 1 of 12 using the Bode 100 Lukas Heinzle Abstract: (ET) is a commonly used technique surface inspections of conducting materials. An eddy current sensor, namely a probe coil that produces an alternating

More information

FEM: Domain Decomposition and Homogenization for Maxwell s Equations of Large Scale Problems

FEM: Domain Decomposition and Homogenization for Maxwell s Equations of Large Scale Problems FEM: and Homogenization for Maxwell s Equations of Large Scale Problems Karl Hollaus Vienna University of Technology, Austria Institute for Analysis and Scientific Computing February 13, 2012 Outline 1

More information

Induction Heating: fundamentals

Induction Heating: fundamentals LEP ELECTROMAGNETIC PROCESSING OF MATERIALS TECNOLGIE DEI PROCESSI ELETTROTERMICI Induction Heating: fundamentals Fabrizio Dughiero 2017-2018 Induction heating fundamentals May 28-30, 2014 1 Summary 1.

More information

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis Antennas and Propagation : Basic Electromagnetic Analysis Outline Vector Potentials, Wave Equation Far-field Radiation Duality/Reciprocity Transmission Lines Antennas and Propagation Slide 2 Antenna Theory

More information

Electromagnetic levitation coil design using gradient-based optimization

Electromagnetic levitation coil design using gradient-based optimization 11 th World Congress on Structural and Multidisciplinary Optimization 7 th - 12 th, June 215, Sydney Australia Electromagnetic levitation coil design using gradient-based optimization Suzanne Roberts 1,

More information

The Steady Magnetic Field

The Steady Magnetic Field The Steady Magnetic Field Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 1/13/016 1 Agenda Intended Learning Outcomes Why Study Magnetic Field Biot-Savart

More information

Chapter 5. Magnetostatics

Chapter 5. Magnetostatics Chapter 5. Magnetostatics 5.1 The Lorentz Force Law 5.1.1 Magnetic Fields Consider the forces between charges in motion Attraction of parallel currents and Repulsion of antiparallel ones: How do you explain

More information

Electric vs Magnetic Comparison

Electric vs Magnetic Comparison 5. MAGNETOSTATICS Electric vs Magnetic Comparison J=σE Most dielectrics µ = µo excluding ferromagnetic materials Gauss s Law E field is conservative Gauss s law (integral) Conservative E field Electric

More information

COURTESY IARE. Code No: R R09 Set No. 2

COURTESY IARE. Code No: R R09 Set No. 2 Code No: R09220404 R09 Set No. 2 II B.Tech II Semester Examinations,APRIL 2011 ELECTRO MAGNETIC THEORY AND TRANSMISSION LINES Common to Electronics And Telematics, Electronics And Communication Engineering,

More information

Pulse eddy currents using an integral-fem formulation for cracks detection

Pulse eddy currents using an integral-fem formulation for cracks detection International Journal of Applied Electromagnetics and Mechanics 33 (2010) 1225 1229 1225 DOI 10.3233/JAE-2010-1242 IOS Press Pulse eddy currents using an integral-fem formulation for cracks detection Gabriel

More information

QUALIFYING EXAMINATION, Part 1. Solutions. Problem 1: Mathematical Methods. r r r 2 r r2 = 0 r 2. d 3 r. t 0 e t dt = e t

QUALIFYING EXAMINATION, Part 1. Solutions. Problem 1: Mathematical Methods. r r r 2 r r2 = 0 r 2. d 3 r. t 0 e t dt = e t QUALIFYING EXAMINATION, Part 1 Solutions Problem 1: Mathematical Methods (a) For r > we find 2 ( 1 r ) = 1 ( ) 1 r 2 r r2 = 1 ( 1 ) r r r 2 r r2 = r 2 However for r = we get 1 because of the factor in

More information

Exam IV, Magnetism May 1 st, Exam IV, Magnetism

Exam IV, Magnetism May 1 st, Exam IV, Magnetism Exam IV, Magnetism Prof. Maurik Holtrop Department of Physics PHYS 408 University of New Hampshire March 27 th, 2003 Name: Student # NOTE: There are 4 questions. You have until 9 pm to finish. You must

More information

PHYSICS 2B FINAL EXAM ANSWERS WINTER QUARTER 2010 PROF. HIRSCH MARCH 18, 2010 Problems 1, 2 P 1 P 2

PHYSICS 2B FINAL EXAM ANSWERS WINTER QUARTER 2010 PROF. HIRSCH MARCH 18, 2010 Problems 1, 2 P 1 P 2 Problems 1, 2 P 1 P 1 P 2 The figure shows a non-conducting spherical shell of inner radius and outer radius 2 (i.e. radial thickness ) with charge uniformly distributed throughout its volume. Prob 1:

More information

Chapter 13 Principles of Electromechanics

Chapter 13 Principles of Electromechanics Chapter 13 Principles of Electromechanics Jaesung Jang Electrostatics B-H Magnetization Curves & Magnetic Hysteresis 1 Electrostatics & Magnetic Flux The force on a stationary charge q in an electric field

More information

A Review of Basic Electromagnetic Theories

A Review of Basic Electromagnetic Theories A Review of Basic Electromagnetic Theories Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820)

More information

Consider a ring of radius a lying flat in the xy plane. Take the current in the ring to be I(t) = I 0 cos(ωt).

Consider a ring of radius a lying flat in the xy plane. Take the current in the ring to be I(t) = I 0 cos(ωt). Problem 1. A rotating magnet Consider a ring of radius a lying flat in the xy plane. Take the current in the ring to be I(t) = I 0 cos(ωt). (a) Determine the electric field close z axis for z a using the

More information

Department of Physics Preliminary Exam January 2 5, 2013

Department of Physics Preliminary Exam January 2 5, 2013 Department of Physics Preliminary Exam January 2 5, 2013 Day 2: Electricity, Magnetism and Optics Thursday, January 3, 2013 9:00 a.m. 12:00 p.m. Instructions: 1. Write the answer to each question on a

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure

More information

A Finite Element Model for Numerical Analysis of Sintering

A Finite Element Model for Numerical Analysis of Sintering A Finite Element Model for Numerical Analysis of Sintering DANIELA CÂRSTEA High-School Group of Railways, Craiova ION CÂRSTEA Department of Computer Engineering and Communication University of Craiova

More information

Magnetic field generation. Sergey L. Bud ko

Magnetic field generation. Sergey L. Bud ko Magnetic field generation 590B S14 Sergey L. Bud ko Choice of magnets Either you need to answer the following questions: What field is needed? How homogeneous the field should be? What is the sample size?

More information

3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications

3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications 3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications September 14-16, 2013 Electromagnets in Synchrotron Design and Fabrication Prepared by: Farhad Saeidi, Jafar Dehghani Mechanic Group,Magnet

More information

N H I. 3.2 l When a conducting coil is placed in a magnetic field, the magnetic flux is

N H I. 3.2 l When a conducting coil is placed in a magnetic field, the magnetic flux is Experiment No : EM 8 Experiment Name: Inductance of a Solenoid Objective: Investigation of the inductance of different solenoids and their dependence on certain parameters of solenoids Theoretical Information

More information

Elements of magnetism and magnetic measurements

Elements of magnetism and magnetic measurements Elements of magnetism and magnetic measurements Ruslan Prozorov Oct 2009, Feb 2014, Oct 2018 Physics 590B magnetic moment of free currents Magnetic moment of a closed loop carrying current I: Magnetic

More information

Excerpt from the Proceedings of the COMSOL Conference 2009 Bangalore

Excerpt from the Proceedings of the COMSOL Conference 2009 Bangalore Excerpt from the Proceedings of the COMSOL Conference 2009 Bangalore Performance Prediction of Eddy Current Flowmeter for Sodium Prashant Sharma*, S.K.Dash, B.K.Nashine, S. Suresh Kumar, R. Veerasamy,

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Part III. Magnetics 13 Basic Magnetics Theory 14 Inductor Design 15 Transformer Design 1 Chapter

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Electrical to mechanical - such as motors, loudspeakers, charged particle deflection.

Electrical to mechanical - such as motors, loudspeakers, charged particle deflection. 1.0 Introduction Magnets are an important part of our daily lives, serving as essential components in everything from electric motors, loudspeakers, computers, compact disc players, microwave ovens and

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

Physics 505 Fall 2005 Homework Assignment #7 Solutions

Physics 505 Fall 2005 Homework Assignment #7 Solutions Physics 505 Fall 005 Homework Assignment #7 Solutions Textbook problems: Ch. 4: 4.10 Ch. 5: 5.3, 5.6, 5.7 4.10 Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges

More information

Lecture 13: Magnetic Sensors & Actuators

Lecture 13: Magnetic Sensors & Actuators MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 13: Magnetic Sensors & Actuators 1 Magnetic Fields Magnetic Dipoles Magnetization Hysteresis Curve

More information

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture 18 Basic Laws of Electromagnetics We saw in the earlier lecture

More information

Lab 7: EC-5, Faraday Effect Lab Worksheet

Lab 7: EC-5, Faraday Effect Lab Worksheet Lab 7: EC-5, Faraday Effect Lab Worksheet Name This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences

More information

Chapter 28 Magnetic Fields Sources

Chapter 28 Magnetic Fields Sources Chapter 28 Magnetic Fields Sources All known magnetic sources are due to magnetic dipoles and inherently macroscopic current sources or microscopic spins and magnetic moments Goals for Chapter 28 Study

More information

Electromagnetic Field Theory 1 (fundamental relations and definitions)

Electromagnetic Field Theory 1 (fundamental relations and definitions) (fundamental relations and definitions) Lukas Jelinek lukas.jelinek@fel.cvut.cz Department of Electromagnetic Field Czech Technical University in Prague Czech Republic Ver. 216/12/14 Fundamental Question

More information

Magnetic Quantities. Magnetic fields are described by drawing flux lines that represent the magnetic field.

Magnetic Quantities. Magnetic fields are described by drawing flux lines that represent the magnetic field. Chapter 7 Magnetic fields are described by drawing flux lines that represent the magnetic field. Where lines are close together, the flux density is higher. Where lines are further apart, the flux density

More information

ANALYTICAL SOLUTION TO EDDY CURRENT TESTING OF CYLINDRICAL PROBLEMS WITH VARYING PROPERTIES

ANALYTICAL SOLUTION TO EDDY CURRENT TESTING OF CYLINDRICAL PROBLEMS WITH VARYING PROPERTIES CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 2, Number 3. Summer 1994 ANALYTICAL SOLUTION TO EDDY CURRENT TESTING OF CYLINDRICAL PROBLEMS WITH VARYING PROPERTIES A.A. KOLYSHKIN AND R$MI VAILLANCOURT ABSTRACT.

More information

Magnetic Fields

Magnetic Fields Magnetic circuits introduction Becomes aware of the similarities between the analysis of magnetic circuits and electric circuits. Develop a clear understanding of the important parameters of a magnetic

More information

Linear and Nonlinear Magnetic Media (Griffiths Chapter 6: Sections 3-4) Auxiliary Field H We write the total current density flowing through matter as

Linear and Nonlinear Magnetic Media (Griffiths Chapter 6: Sections 3-4) Auxiliary Field H We write the total current density flowing through matter as Dr. Alain Brizard Electromagnetic Theory I (PY 02) Linear and Nonlinear Magnetic Media (Griffiths Chapter 6: Sections -4) Auxiliary Field H We write the total current density flowing through matter as

More information

Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets

Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets Egbert Fischer 1, Roman Kurnyshov 2 and Petr Shcherbakov 3 1 Gesellschaft fuer Schwerionenforschung mbh, Darmstadt,

More information

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMF(16EE214) Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Year

More information

Measurement And Testing. Handling And Storage. Quick Reference Specification Checklist

Measurement And Testing. Handling And Storage. Quick Reference Specification Checklist Design Guide Contents Introduction Manufacturing Methods Modern Magnet Materials Coatings Units Of Measure Design Considerations Permanent Magnet Stability Physical Characteristics And Machining Of Permanent

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Notes Set 1 Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Introduction (1) atom Electromagnetism

More information

A variational approach to the macroscopic. Electrodynamics of hard superconductors

A variational approach to the macroscopic. Electrodynamics of hard superconductors A variational approach to the macroscopic electrodynamics of hard superconductors Dept. of Mathematics, Univ. of Rome La Sapienza Torino, July 4, 2006, joint meeting U.M.I. S.M.F. Joint work with Annalisa

More information

Lecture 24. April 5 th, Magnetic Circuits & Inductance

Lecture 24. April 5 th, Magnetic Circuits & Inductance Lecture 24 April 5 th, 2005 Magnetic Circuits & Inductance Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 11.1-11.5, Pages 331-338 Chapter 12.1-12.4, Pages 341-349 Chapter 12.7-12.9,

More information

Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell

Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell 1. Review of Magnetostatics in Magnetic Materials - Currents give rise to curling magnetic fields:

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots Transition from single-domain to vortex state in soft magnetic cylindrical nanodots W. Scholz 1,2, K. Yu. Guslienko 2, V. Novosad 3, D. Suess 1, T. Schrefl 1, R. W. Chantrell 2 and J. Fidler 1 1 Vienna

More information

INGENIERÍA EN NANOTECNOLOGÍA

INGENIERÍA EN NANOTECNOLOGÍA ETAPA DISCIPLINARIA TAREAS 385 TEORÍA ELECTROMAGNÉTICA Prof. E. Efren García G. Ensenada, B.C. México 206 Tarea. Two uniform line charges of ρ l = 4 nc/m each are parallel to the z axis at x = 0, y = ±4

More information

Acceleration of magnetic dipoles by the sequence of current turns

Acceleration of magnetic dipoles by the sequence of current turns Acceleration of magnetic dipoles by the sequence of current turns S. N. Dolya Joint Institute for Nuclear Research, Joliot Curie str. 6, Dubna, Russia, 141980 Abstract Acceleration of magnetic dipoles

More information

Evaluating this approximately uniform field at the little loop s center which happens to lie on the big loop s axis we find

Evaluating this approximately uniform field at the little loop s center which happens to lie on the big loop s axis we find PHY 35 K. Solutions for problem set #1. Problem 7.: a) We assume the small loop is so much smaller than the big loop or the distance between the loops that the magnetic field of the big loop is approximately

More information

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere Cary Forest Department of Physics University of Wisconsin February 28, 2001 Planets, stars and perhaps the galaxy

More information

ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE

ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE Derek SHACKLETON, Oceaneering Multiflex UK, (Scotland), DShackleton@oceaneering.com Luciana ABIB, Marine Production Systems do Brasil, (Brazil), LAbib@oceaneering.com

More information

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially MAGNETIC CIRCUITS The study of magnetic circuits is important in the study of energy systems since the operation of key components such as transformers and rotating machines (DC machines, induction machines,

More information

Chapter 14. Optical and Magnetic Materials. 경상대학교 Ceramic Design Lab.

Chapter 14. Optical and Magnetic Materials. 경상대학교 Ceramic Design Lab. Chapter 14 Optical and Magnetic Materials Magnetic field strength = H H = Ni/l (amp-turns/m) N = # turns i = current, amps l = conductor length B = Magnetic Induction or Magnetic flux density (Wb/m 2 )

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING : Electro Magnetic fields : A00 : II B. Tech I

More information

MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX VISUAL PHYSICS ONLINE

MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX Magnetic field (-field ): a region of influence where magnetic materials and electric currents are subjected to a magnetic

More information

Modelling, Simulation and Temperature Effect Analysis of Mutual Induction based High Temperature Level Sensor using COMSOL Multiphysics

Modelling, Simulation and Temperature Effect Analysis of Mutual Induction based High Temperature Level Sensor using COMSOL Multiphysics Modelling, Simulation and Temperature Effect Analysis of Mutual Induction based High Temperature Level Sensor using COMSOL Multiphysics Rajalakshmi R. Subhasis Dutta Bhabha Atomic Research Center, Mumbai

More information

Chapter 14: Inductor design

Chapter 14: Inductor design Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points

More information

University Physics (Prof. David Flory) Chapt_31 Tuesday, July 31, 2007

University Physics (Prof. David Flory) Chapt_31 Tuesday, July 31, 2007 Name: Date: 1. Suppose you are looking into one end of a long cylindrical tube in which there is a uniform electric field, pointing away from you. If the magnitude of the field is decreasing with time

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #3 Inductors and Inductance 1. Objective The objective of Experiment #3 is to investigate the concepts of inductors and inductance. Several inductor geometries

More information

Do not fill out the information below until instructed to do so! Name: Signature: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: E-mail: Section Number: No calculators are allowed in the test. Be sure to put a box around your final answers and clearly

More information

Computation of magnetic field in an actuator

Computation of magnetic field in an actuator Computation of magnetic field in an actuator A. G. Olabi and A. Grunwald Dublin City University, School of Mechanical and Manufacturing Engineering, Glasnevin, Dublin 9, Ireland, Email: abdul.olabi@dcu.ie,

More information

Class 15 : Electromagnetic Waves

Class 15 : Electromagnetic Waves Class 15 : Electromagnetic Waves Wave equations Why do electromagnetic waves arise? What are their properties? How do they transport energy from place to place? Recap (1) In a region of space containing

More information

A half submerged metal sphere (UIC comprehensive

A half submerged metal sphere (UIC comprehensive Problem 1. exam) A half submerged metal sphere (UIC comprehensive A very light neutral hollow metal spherical shell of mass m and radius a is slightly submerged by a distance b a below the surface of a

More information

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy 1 Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy Mariana Cavique, Student, DEEC/AC Energia, João F.P. Fernandes, LAETA/IDMEC,

More information

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work Chapter 8. Conservation Laws 8.3 Magnetic Forces Do No Work 8.2 Momentum of EM fields 8.2.1 Newton's Third Law in Electrodynamics Consider two charges, q 1 and q 2, moving with speeds v 1 and v 2 magnetic

More information

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM When electric charges are in motion they exert forces on each other that can t be explained by Coulomb s law. If two parallel

More information