Magnetic field generation. Sergey L. Bud ko

Size: px
Start display at page:

Download "Magnetic field generation. Sergey L. Bud ko"

Transcription

1 Magnetic field generation 590B F18 Sergey L. Bud ko Note: we do not endorse any specific product, they are shown for illustration only

2 Magnetic fields around us

3 Brief history of high field generation

4 Choice of magnets You need to answer the following questions: Do you need in-house magnet? Will 2 trips per year to NHMFL be enough for your research? Can you afford buying and operating magnet? - initial investments, - space, - consumables (LHe), - power, - hands?

5 Choice of magnets Either you need to answer the following questions: What field is needed? How homogeneous the field should be? What is the sample size? What is the sample holder size? Do you need to change the value of the field? Do you need to change the direction of the field? How many axes? What temperature is needed? How fast you can sweep the field (instruments/heating/physics)? What access do you need to the sample (wires, optics, X-rays, neutrons, ) Can you sacrifice the sample? Or you live with whatever you have

6 Units Magnetomotive Force The quantity of magnetic field force, or push. Analogous to electric voltage (electromotive force). Field Flux The quantity of total field effect, or substance of the field. Analogous to electric current. Field Intensity The amount of field force (mmf) distributed over the length of the electromagnet. Sometimes referred to as Magnetizing Force. Flux Density The amount of magnetic field flux concentrated in a given area. Reluctance The opposition to magnetic field flux through a given volume of space or material. Analogous to electrical resistance. Permeability The specific measure of a material s acceptance of magnetic flux, analogous to the specific resistance of a conductive material (ρ), except inverse (greater permeability means easier passage of magnetic flux, whereas greater specific resistance means more difficult passage of electric current). 14/magnetic-units-of-measurement/ Infinite source of confusion for some (many) of us Advise from one of theorist friends: read and understand Ch.4 of v. VIII of Landau & Lifshitz

7 Permanent magnets Alnico Ferrites Neodymium-iron-boride Samarium-cobalt Rarely used as field-generation device in physics labs. Can be used in field instruments for geophysicists, agronomists, < 1 Tesla temperature and history dependent difficult to change field cheap compact can be easily shaped 4.5 koe permanent magnets

8 Permanent magnets Alnico: Al 8-12%, Ni 14-26% Co 5-38 %, Cu 3-6 %, Ti 0-8 %, balance Fe (different grades, identified in 1931 [Japan], Curie temperature o C) Ferrites: Fe 2 O 3 blended with stuff, huge family Neodymium-iron-boride: Nd 2 Fe 14 B and derivatives (Curie temperature ~320 o C) Samarium-cobalt: SmCo 5 and derivatives (Curie temperature o C)

9 Permanent magnets complex field profiles quadrupole magnet (focusing electron beam)

10 Permanent magnets Halbach cylinder Halbach arrays: used in synchrotrons and free electron lasers

11 Electromagnets Biot-Savart law Lab electromagnet

12 Electromagnets Simple and straightforward Field at room temperature Reasonable fields (<3 Tesla) No cryogens Heavy and large Small field volume High field gradients High power consumption Need (water) cooling Stability is determined by power supply Note: ask Prof. Prozorov about effect of magnetic field on chicken s brain

13 Electromagnets

14 Helmholtz coil uniform field in large volume R

15 Maxwell coil uniform field or uniform gradient ni small = 49/69 ni central

16 Solenoids

17 Superconducting solenoids Nb-Ti (T c ~ 10 K, H c2 ~ 15 T) Nb 3 Sn (T c ~ 18 K, H c2 ~ 30 T) Multifilamentary cable Copper (Cu-Ag, ) sheath Serious metallurgical task Epoxy-impregnation

18 First superconducting magnet Phys. Rev. 98 (1955) T at 4.2 K George Yntema

19 Superconducting solenoids Up to 9 T Up to 20 T Current up to ~100 A (current leads are important!) SC persistent switch Quench protection circuit (sometimes proprietary, in old days could use external shunt)

20 Superconducting solenoids Up to 22 T Nb 3 Sn + HTS insert

21 Series Connected Hybrid Magnet (NFMFL - FL) NMR first, then other measurements 11.7M$ to start with CICC = SC cable in conduit conductor cooling!

22 Split pair magnets Standard - up to 9T with 2 split access Angular dependencies, light/x-ray/neutron access (less homogeneous field, more complex magnet design)

23 Vector magnet - expensive - complex - small fields - no moving parts - precise value/direction of the field 1 Tesla 1 Tesla 7 Tesla vertical field

24 Superconducting magnets lambda plate Magnet at 2.2 K, >10% increase in max. field (think of lambda-plate as of VTI with a valve that is cooling the magnet) Can also pump on He-bath but this is too Heconsuming. Superconducting magnets Affordable and compact high magnetic fields. Workhorse in CMP laboratory. Need cryogens Flux jumps Not so trivial if T > 300 K desired

25 cryogen free measurements systems

26 cryogen free measurements systems 3 T Up to 9 T

27 Bitter resistive magnets NHMFL Tallahassee 35 T record 37.5 T Nijmegen, Netherlands less stresses and better cooling

28 NHMFL 45T hybrid magnet Strength Type 45 tesla Hybrid Bore size 32 mm (~1.25 inches) Online since December 1999 Cost Weight $14.4 million 31,752 kg (35 tons) Height 6.7 meters (22 feet) Operating temperature -271 C (-456 F) Water used per minute 15,142 liters (4,000 gallons) Power required 33 MW 33.5 T resistive T superconducting Operation cost (full field) ~ 4,000 $/h

29 NHMFL 45T hybrid magnet

30 Pulsed magnetic fields - history from

31 Pulsed magnetic fields

32 Pulsed magnetic fields Mechanical forces

33 Pulsed magnetic fields Thermal limitations

34 Pulsed field magnets ~ 1 shot every 45 min. Fast data acquisition Heating Fast processes Mechanical strength of the coil is an issue

35 Pulsed field magnets NHMFL Los Alamos Capacitor Bank-Driven Magnets Field Duration Bore 50 T Short Pulse 25 msec 24 mm 50 T Mid-Pulse 400 msec 15 mm 40 T Mid-Pulse 400 msec 24 mm 65 T Short Pulse 25 msec 15 mm 60 T Short Pulse 40 msec 9.8 mm 300 T Single Turn 6 µsec 10 mm Generator-Driven and Multiplex Magnets Field Duration Bore 60 T Controlled Waveform 100 msec 15 mm 100 T Multi-Shot (operational to 90 T) 25 msec 15 mm magneto-optics (IR through UV), magnetization and magneto-transport from 350 mk to 300K; GHz conductivity, MHz conductivity, pulse echo ultra-sound spectroscopy, magnetoconductivity and heat capacity.

36 Pulsed magnetic fields NHMFL Los Alamos

37 100 T pulse magnet NHMFL - LANL

38 Pulsed magnetic fields 100 T pulse magnet NHMFL - LANL

39 Pulsed magnetic fields - give access to very high fields - reasonable space for cryostat and experimental cell - known to be able to accommodate multiple experimental techniques - available in a number of high field labs in the world - often electronics and experimental probe are available (or you work with high field lab scientists to develop something new - need fast electronics - beware of heating (metallic sample/experimental stage) - more noise than in static measurements - suitable only for fast processes - need to go through proposal process and need to travel/send students

40 Pulsed magnetic fields single turn coils Note: semi-destructive magnet destroyed, sample + cryostat survive Herlach et al, 1971

41 Pulsed magnetic fields single turn coils Faraday rotation, T = 5K ZnCr 2 O 4

42 Pulsed magnetic fields single turn coils significantly higher magnetic fields (< 300T) sample and cryostat survive (?) magnet destroyed every experiment (it is inexpensive) limited or no availability for users (ISSP Tokyo? NHMFL-LANL?) limited temperature range limited space fast limited number of experimental techniques safety

43 Pulsed magnetic fields EM flux compression

44 Pulsed magnetic fields EM flux compression magnetic field through Faraday rotation

45 Pulsed magnetic fields EM flux compression significantly higher magnetic fields (up to ~ 1000T) magnet, cryostat and sample are destroyed every experiment no availability for users limited temperature range very limited space fast limited number of experimental techniques safety

46 Destructive pulse field magnets Explosive flux compression - ~ 2800 T Sarov (Russia) Also (past) Ancho Canyon, Los Alamos

47 Destructive pulse field magnets Explosive flux compression - ~ 2800 T Sarov (Russia)

48 Magnetic field measurements (*) Well defined geometry coil can calculate. B θ (**) Faraday s law: E = - db/dt. ns. cosθ several assumptions: constant area S, measurable θ, fast, accurate electronics. Good for pulsed fields. E (***) Hall probes linear in field. 2DEG very sensitive but at low temperatures/high fields QHE and/or SdH are observed. Other (e.g. III V) semiconductors. Semimetals (Bi, ). Either purchase (LakeShore, GMW, ) or DIY if you have even primitive thin film technology. NB: Temperature dependence, angle with magnetic field (but can serve as angle sensor), linearity. Hall arrays, multiaxes sensors. (****) Standards (susceptibility of pure Pd for MPMS)

49 Reading: Fred M. Asner High Field Superconducting Magnets NHMFL web site High Magnetic Fields Conferences and Workshops

Magnetic field generation. Sergey L. Bud ko

Magnetic field generation. Sergey L. Bud ko Magnetic field generation 590B F09 Sergey L. Bud ko (Сергей Леокадьевич Будько) Choice of magnets Either you need to answer the following questions: What field is needed? How homogeneous the field should

More information

Magnetic field generation. Sergey L. Bud ko

Magnetic field generation. Sergey L. Bud ko Magnetic field generation 590B S14 Sergey L. Bud ko Choice of magnets Either you need to answer the following questions: What field is needed? How homogeneous the field should be? What is the sample size?

More information

Polyhelix ECR & high field magnet development at LNCMI: an emergent synergy F. Debray, CNRS, LNCMI-Grenoble

Polyhelix ECR & high field magnet development at LNCMI: an emergent synergy F. Debray, CNRS, LNCMI-Grenoble Polyhelix ECR & high field magnet development at LNCMI: an emergent synergy F. Debray, CNRS, LNCMI-Grenoble HIGH FIELD? In 2009, dc magnetic fields up to 35 T are available to the scientific community

More information

Lecture #2 Design Guide to Superconducting Magnet

Lecture #2 Design Guide to Superconducting Magnet Lecture #2 Design Guide to Superconducting Magnet Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 CEA Saclay June

More information

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger High Magnetic Fields The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS R.Grössinger Coworker: M. Küpferling, H.Sassik, R.Sato, E.Wagner, O.Mayerhofer, M.Taraba ƒ1 Content CONTENT Generation

More information

Electrical to mechanical - such as motors, loudspeakers, charged particle deflection.

Electrical to mechanical - such as motors, loudspeakers, charged particle deflection. 1.0 Introduction Magnets are an important part of our daily lives, serving as essential components in everything from electric motors, loudspeakers, computers, compact disc players, microwave ovens and

More information

Ch. 3. Pulsed and Water Cooled Magnets. T. J. Dolan. Magnetic field calculations

Ch. 3. Pulsed and Water Cooled Magnets. T. J. Dolan. Magnetic field calculations Ch. 3. Pulsed and Water Cooled Magnets T. J. Dolan Magnetic field calculations Coil forces RLC circuit equations Distribution of J and B Energy storage Switching and transmission Magnetic flux compression

More information

Measurement And Testing. Handling And Storage. Quick Reference Specification Checklist

Measurement And Testing. Handling And Storage. Quick Reference Specification Checklist Design Guide Contents Introduction Manufacturing Methods Modern Magnet Materials Coatings Units Of Measure Design Considerations Permanent Magnet Stability Physical Characteristics And Machining Of Permanent

More information

Progress Towards A High-field HTS Solenoid

Progress Towards A High-field HTS Solenoid Progress Towards A High-field HTS Solenoid Ramesh Gupta For PBL/BNL Team Ramesh Gupta, BNL, Progress towards a high-field HTS solenoid, Jefferson Lab, March 3, 2011 Slide No. 1 Overview High Field HTS

More information

High Magnetic Field Facility for Neutron Scattering

High Magnetic Field Facility for Neutron Scattering High Magnetic Field Facility for Neutron Scattering Project HFM-EXED NHMFL: M. Bird, I. Dixon, J. Toth, S. Bole, S. Hannahs, J. Kynoch, H. Bai, S. Marshall, T. Adkins, G. Boebinger J. Miller, A. Bonito-Oliva

More information

Experience in manufacturing a large HTS magnet for a SMES

Experience in manufacturing a large HTS magnet for a SMES Superconducting magnets April 05-09, 2009 CEA Cadarache, France Experience in manufacturing a large HTS magnet for a SMES P. Tixador Grenoble INP / Institut Néel - G2Elab Outline Introduction: SMES SMES:

More information

MAGNETISM. Magnetism. Magnetism is a result of electrons spinning on their own axis around the nucleus (Figure 18). Basic Electrical Theory

MAGNETISM. Magnetism. Magnetism is a result of electrons spinning on their own axis around the nucleus (Figure 18). Basic Electrical Theory Basic Electrical Theory Certain metals and metallic oxides have the ability to attract other metals. This property is called magnetism, and the materials which have this property are called magnets. Some

More information

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor From Last Time Solids are large numbers of atoms arranged in a regular crystal structure. Each atom has electron quantum states, but interactions shift the energies. End result is each type atomic electron

More information

X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets

X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets H. Nojiri, IMR Tohoku Univ., Sendai Japan http:spin100.imr.tohoku.ac.jp

More information

Chapter 7. Chapter 7. Electric Circuits Fundamentals - Floyd. Copyright 2007 Prentice-Hall

Chapter 7. Chapter 7. Electric Circuits Fundamentals - Floyd. Copyright 2007 Prentice-Hall Chapter 7 Magnetic Quantities Magnetic fields are described by drawing flux lines that represent the magnetic field. Where lines are close together, the flux density is higher. Where lines are further

More information

Magnetic Property Measurement System

Magnetic Property Measurement System Magnetic Property Measurement System Product Description Quantum Design's MPMS 3 represents the culmination of more than 3 years of development and design in the world of SQUID Magnetometry. Providing

More information

Low Vibration Cryogenic Equipment

Low Vibration Cryogenic Equipment PAGE 12 PAGE 13 ATTOCUBE S CRYOSTATS ATTODRY attodry1000....................... 14 cryogen-free cryostats with/without s attodry700.........................18 cryogen-free table-top cryostats with optical

More information

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS UNIT 2: ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS MODULE 1: ELECTRICITY AND MAGNETISM GENERAL OBJECTIVES On completion of this Module, students should: 1. understand

More information

The High Field Magnet Laboratory at Radboud University Nijmegen

The High Field Magnet Laboratory at Radboud University Nijmegen J Low Temp Phys (2010) 159: 389 393 DOI 10.1007/s10909-009-0076-8 The High Field Magnet Laboratory at Radboud University Nijmegen S.A.J. Wiegers P.C.M. Christianen H. Engelkamp A. den Ouden J.A.A.J. Perenboom

More information

Electromagnetic fields Learning outcome

Electromagnetic fields Learning outcome Electromagnetic fields Learning outcome At the end of this lecture you will be able to: List the most important electromagnetic field quantities Explain what these quantities describe Calculate some of

More information

Physics by Discovery Standards (2nd Semester)

Physics by Discovery Standards (2nd Semester) Physics by Discovery Standards 2017-18 (2nd Semester) 11. Newton's Law of Universal Gravitation UG I can apply the Law of Universal Gravitation Reason about how doubling distance, masses, etc. affect the

More information

HIMARC Simulations Divergent Thinking, Convergent Engineering

HIMARC Simulations Divergent Thinking, Convergent Engineering HIMARC Simulations Divergent Thinking, Convergent Engineering 8117 W. Manchester Avenue, Suite 504 Los Angeles, CA 90293 Ph: (310) 657-7992 Horizontal Superconducting Magnet, ID 1.6m 1 1 Design definition

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

FB-DC6 Electric Circuits: Magnetism and Electromagnetism

FB-DC6 Electric Circuits: Magnetism and Electromagnetism CREST Foundation Electrical Engineering: DC Electric Circuits Kuphaldt FB-DC6 Electric Circuits: Magnetism and Electromagnetism Contents 1. Electromagnetism 2. Magnetic units of measurement 3. Permeability

More information

PHY3901 PHY3905. Hall effect and semiconductors Laboratory protocol

PHY3901 PHY3905. Hall effect and semiconductors Laboratory protocol PHY3901 PHY3905 Hall effect and semiconductors Laboratory protocol PHY3901 PHY3905 Hall effect and semiconductors Laboratory protocol Objectives Observe and qualitatively understand the phenomenon of transverse

More information

Lecture Notes ELEC A6

Lecture Notes ELEC A6 Lecture Notes ELEC A6 Dr. Ramadan El-Shatshat Magnetic circuit 9/27/2006 Elec-A6 - Electromagnetic Energy Conversion 1 Magnetic Field Concepts Magnetic Fields: Magnetic fields are the fundamental mechanism

More information

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s)

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s) PHYS 2015 -- Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS

More information

The Design and Fabrication of a 6 Tesla EBIT Solenoid

The Design and Fabrication of a 6 Tesla EBIT Solenoid LBNL-40462 SCMAG-593 The Design and Fabrication of a 6 Tesla EBIT Solenoid 1. Introduction M. A. Green a, S. M. Dardin a, R. E. Marrs b, E. Magee b, S. K. Mukhergee a a Lawrence Berkeley National Laboratory,

More information

Magnetic Quantities. Magnetic fields are described by drawing flux lines that represent the magnetic field.

Magnetic Quantities. Magnetic fields are described by drawing flux lines that represent the magnetic field. Chapter 7 Magnetic fields are described by drawing flux lines that represent the magnetic field. Where lines are close together, the flux density is higher. Where lines are further apart, the flux density

More information

Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN

Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002 1667 Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN Yu. A. Ilyin, A. Nijhuis, H. H. J. ten

More information

The LHC Collider. STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN

The LHC Collider. STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN The LHC Collider STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN Outline of Talk The LHC Stored energy and protection systems 2008 start-up 2008 accident

More information

5. ELECTRIC CURRENTS

5. ELECTRIC CURRENTS 5. ELECTRIC CURRENTS TOPIC OUTLINE Section Recommended Time Giancoli Section 5.1 Potential Difference, Current, Resistance 5.2 Electric Circuits 3h 19.1, 19.2 6.2 Electric Field and Force 6.3 Magnetic

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields and Forces Fundamentally they do not exist If we had special relativity we would find there is no such thing as a magnetic field. It is only a relativistic transformation

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

MAGNETIC CIRCUITS, MOTOR AND GENERATOR ACTION

MAGNETIC CIRCUITS, MOTOR AND GENERATOR ACTION Topic 3 MAGNETIC CIRCUITS, MOTOR AND GENERATOR ACTION Magnetic Flux SI unit, Webers (Wb) ϕ Flows from North to South Pole 1 Magnetic Flux Density Measure of Flux/Area SI units, Wb/m 2 = Tesla, B Think

More information

Demonstration Some simple theoretical models Materials How to make superconductors Some applications

Demonstration Some simple theoretical models Materials How to make superconductors Some applications Superconductivity Demonstration Some simple theoretical models Materials How to make superconductors Some applications How do we show superconductivity? Superconductors 1. have an electrical resistivity

More information

Reading Assignments Please see the handouts for each lesson for the reading assignments.

Reading Assignments Please see the handouts for each lesson for the reading assignments. Preparation Assignments for Homework #5 Due at the start of class. These assignments will only be accepted from students attending class. Reading Assignments Please see the handouts for each lesson for

More information

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

ECR ION SOURCES : A BRIEF HISTORY AND LOOK INTO THE NEXT GENERATION

ECR ION SOURCES : A BRIEF HISTORY AND LOOK INTO THE NEXT GENERATION ECR ION SOURCES : A BRIEF HISTORY AND LOOK INTO THE NEXT GENERATION T. Nakagawa, Nishina center for accelerator based science, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan Abstract In the last three

More information

Chapter 30. Inductance

Chapter 30. Inductance Chapter 30 Inductance Self Inductance When a time dependent current passes through a coil, a changing magnetic flux is produced inside the coil and this in turn induces an emf in that same coil. This induced

More information

An Introduction to the Ion-Optics of Magnet Spectrometers

An Introduction to the Ion-Optics of Magnet Spectrometers An Introduction to the Ion-Optics of Magnet Spectrometers U. Tokyo, RIKEN The 14 th RIBF Nuclear Physics Seminar Series of Three Lectures CNS, University of Tokyo February 27, 2006 Georg P. Berg University

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR ENGINEERING PHYSICS II PHS4561 5 Credit Hours Student Level: This course is open to students on the college level in the freshman

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15)

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE EE6302-ELECTROMAGNETIC THEORY UNIT 4 PART A 1. Define mutual inductance and self inductance. (A/M-15) Self inductance is the ration between the induced

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Curriculum Interpretation Electricity and Magnetism. Lee Wai Kit

Curriculum Interpretation Electricity and Magnetism. Lee Wai Kit Curriculum Interpretation Electricity and Magnetism Lee Wai Kit Electricity and Magnetism 4.1 Electrostatics 4.2 Circuits and domestic electricity 4.3 Electromagnetism 4.1 Electrostatics electric charges

More information

What s so super about superconductivity?

What s so super about superconductivity? What s so super about superconductivity? Mark Rzchowski Physics Department Electrons can flow through the wire when pushed by a battery. Electrical resistance But remember that the wire is made of atoms.

More information

MAGNETIC PROBLEMS. (d) Sketch B as a function of d clearly showing the value for maximum value of B.

MAGNETIC PROBLEMS. (d) Sketch B as a function of d clearly showing the value for maximum value of B. PHYS2012/2912 MAGNETC PROBLEMS M014 You can investigate the behaviour of a toroidal (dough nut shape) electromagnet by changing the core material (magnetic susceptibility m ) and the length d of the air

More information

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 2. An isolated moving point charge produces around it.

More information

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France 1 Building & Infrastructure 2 3 Industrial building (steel panel construction) 6 explosion proof

More information

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color. TRUE-FALSE STATEMENTS: ELECTRICITY: 1. Electric field lines originate on negative charges. 2. The flux of the electric field over a closed surface is proportional to the net charge enclosed by the surface.

More information

Magnetic Fields

Magnetic Fields Magnetic circuits introduction Becomes aware of the similarities between the analysis of magnetic circuits and electric circuits. Develop a clear understanding of the important parameters of a magnetic

More information

HT-7U* Superconducting Tokamak: Physics design, engineering progress and. schedule

HT-7U* Superconducting Tokamak: Physics design, engineering progress and. schedule 1 FT/P2-03 HT-7U* Superconducting Tokamak: Physics design, engineering progress and schedule Y.X. Wan 1), P.D. Weng 1), J.G. Li 1), Q.Q. Yu 1), D.M. Gao 1), HT-7U Team 1) Institute of Plasma Physics, Chinese

More information

Study on Trapped Field Characteristics of HTS Bulk Annuli With Iron Rings for Ferromagnetic Shimming of a Compact NMR Magnet

Study on Trapped Field Characteristics of HTS Bulk Annuli With Iron Rings for Ferromagnetic Shimming of a Compact NMR Magnet Study on Trapped Field Characteristics of HTS Bulk Annuli With Iron Rings for Ferromagnetic Shimming of a Compact NMR Magnet The MIT Faculty has made this article openly available. Please share how this

More information

Never switch on the equipment without the assistants explicit authorization!

Never switch on the equipment without the assistants explicit authorization! Biot Savart s law 1 Objective The objective of this experiment is to verify Biot-Savart s law for certain geometries. Over the course of the preparation, the actual experiment and the writing of the report

More information

Induction Heating: fundamentals

Induction Heating: fundamentals LEP ELECTROMAGNETIC PROCESSING OF MATERIALS TECNOLGIE DEI PROCESSI ELETTROTERMICI Induction Heating: fundamentals Fabrizio Dughiero 2017-2018 Induction heating fundamentals May 28-30, 2014 1 Summary 1.

More information

Physics 202, Lecture 14

Physics 202, Lecture 14 Physics 202, Lecture 14 Today s Topics Sources of the Magnetic Field (Ch. 27) Review of Biot-Savart Law Ampere s Law Magnetism in Matter Magnetic Fields (Biot-Savart): Summary Current loop, distance on

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #3 Inductors and Inductance 1. Objective The objective of Experiment #3 is to investigate the concepts of inductors and inductance. Several inductor geometries

More information

APPLICATION OF ND 2 FE 14 B MAGNET IN THE LINEAR GENERATOR DESIGN ABSTRACT INTRODUCTION

APPLICATION OF ND 2 FE 14 B MAGNET IN THE LINEAR GENERATOR DESIGN ABSTRACT INTRODUCTION 175 APPLICATION OF ND 2 FE 14 B MAGNET IN THE LINEAR GENERATOR DESIGN W. N. L. Mahadi, S. R. Adi and Wijono Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur,

More information

doi: /j.physc

doi: /j.physc doi: 10.1016/j.physc.2013.06.016 Experimental evaluation of the magnetization process in a high T c bulk superconducting magnet using magnetic resonance imaging Daiki Tamada* 1, 2, Takashi Nakamura 1,

More information

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMF(16EE214) Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Year

More information

ELECTRIC MACHINE TORQUE PRODUCTION 101

ELECTRIC MACHINE TORQUE PRODUCTION 101 ELECTRIC MACHINE TORQUE PRODUCTION 101 Best Electric Machine, 014 INTRODUCTION: The following discussion will show that the symmetrical (or true dual-ported) transformer electric machine as only provided

More information

50 years of Superconducting Magnets for Physics Research and Medicine

50 years of Superconducting Magnets for Physics Research and Medicine 50 years of Superconducting Magnets for Physics Research and Medicine Herman ten Kate Kamerlingh Onnes and magnets Understanding superconductors From materials to magnets Examples of Applications: Lab

More information

Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch

Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch The MIT Faculty has made this article openly available. Please share how

More information

Acceleration of magnetic dipoles by the sequence of current turns

Acceleration of magnetic dipoles by the sequence of current turns Acceleration of magnetic dipoles by the sequence of current turns S. N. Dolya Joint Institute for Nuclear Research, Joliot Curie str. 6, Dubna, Russia, 141980 Abstract Acceleration of magnetic dipoles

More information

Pre-Leaving Certificate Examination, 2014 Triailscrúdú na hardteistiméireachta, 2014

Pre-Leaving Certificate Examination, 2014 Triailscrúdú na hardteistiméireachta, 2014 *B16* Pre-Leaving Certificate Examination, 2014 Triailscrúdú na hardteistiméireachta, 2014 PHYSICS ORDINARY LEVEL TIME: 3 HOURS Answer three questions from Section A and five questions from Section B.

More information

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN MAGNETIC MATERIALS Fundamentals and device applications NICOLA A. SPALDIN CAMBRIDGE UNIVERSITY PRESS Acknowledgements 1 Review of basic magnetostatics 1.1 Magnetic field 1.1.1 Magnetic poles 1.1.2 Magnetic

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Lecture 24. April 5 th, Magnetic Circuits & Inductance

Lecture 24. April 5 th, Magnetic Circuits & Inductance Lecture 24 April 5 th, 2005 Magnetic Circuits & Inductance Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 11.1-11.5, Pages 331-338 Chapter 12.1-12.4, Pages 341-349 Chapter 12.7-12.9,

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

NMR Instrumentation BCMB/CHEM Biomolecular NMR

NMR Instrumentation BCMB/CHEM Biomolecular NMR NMR Instrumentation BCMB/CHEM 8190 Biomolecular NMR Instrumental Considerations - Block Diagram of an NMR Spectrometer Magnet Sample B 0 Lock Probe Receiver Computer Transmit Superconducting Magnet systems

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

Magnetism & Electromagnetism

Magnetism & Electromagnetism Magnetism & Electromagnetism By: Dr Rosemizi Abd Rahim Click here to watch the magnetism and electromagnetism animation video http://rmz4567.blogspot.my/2013/02/electrical-engineering.html 1 Learning Outcomes

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

More information

Sensitivity Estimation of Permanent Magnet Flowmeter

Sensitivity Estimation of Permanent Magnet Flowmeter Excerpt from the Proceedings of the COMSOL Conference 2009 Bangalore Sensitivity Estimation of Permanent Magnet Flowmeter Vijay Sharma, S.K.Dash, G.Vijaykumar, B.K.Nashine, B. Krishnakumar, P. Kalyanasundaram,

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

Assisted by Advanced Finite-Element Simulations

Assisted by Advanced Finite-Element Simulations Presented at the COMSOL Conference 2009 Milan COMSOL 2009, Milan, October 2009 Magnetic Fields in Hochfeld- Magnetlabor Dresden Science and Medicine Assisted by Advanced Finite-Element Simulations Hochfeld-Magnetlabor

More information

Magnetic Induction. VIII. Magnetic Induction. 1. Dynamo Rule. A. Dynamos & Generators. B. Faraday s Law. C. Inductance. A. Dynamos & Generators

Magnetic Induction. VIII. Magnetic Induction. 1. Dynamo Rule. A. Dynamos & Generators. B. Faraday s Law. C. Inductance. A. Dynamos & Generators Magnetic Induction VIII. Magnetic Induction A. Dynamos & Generators Dr. Bill Pezzaglia B. Faraday s Law C. Inductance Updated 03Aug5 Michael Faraday (79-867) 3 A. Dynamos & Generators 4 8 Creates first

More information

David Larbalestier and Mark Bird National High Magnetic Field Laboratory Florida State University, Tallahassee FL 32310

David Larbalestier and Mark Bird National High Magnetic Field Laboratory Florida State University, Tallahassee FL 32310 High Field DC Magnet Technology David Larbalestier and Mark Bird National High Magnetic Field Laboratory Florida State University, Tallahassee FL 32310 NSF Site Visit Review December 6-8, 2011 2006 MagLab

More information

Wilson Area School District Planned Course Guide

Wilson Area School District Planned Course Guide Wilson Area School District Planned Course Guide Title of planned course: AP Physics C Independent Study Subject Area: Science Grade Level: 12 Course Description: AP Physics is our advanced placement course

More information

The Hall Effect. c David-Alexander Robinson & Pádraig Ó Conbhuí. 13th December 2010

The Hall Effect. c David-Alexander Robinson & Pádraig Ó Conbhuí. 13th December 2010 The Hall Effect David-Alexander Robinson; Pádraig Ó Conbhuí; 08332461 13th December 2010 Contents 1 Abstract 2 2 Introduction & Theory 2 2.1 The Hall Effect............................... 2 2.2 Carrier

More information

Measurements in Mechatronic design. Transducers

Measurements in Mechatronic design. Transducers Measurements in Mechatronic design Transducers Quantities Current Voltage Torque Force Magnetic flux Distance Temperature Measurement system Physical quanties Transducer Signal conditioning Measurement

More information

PHYS 1444 Section 003 Lecture #18

PHYS 1444 Section 003 Lecture #18 PHYS 1444 Section 003 Lecture #18 Wednesday, Nov. 2, 2005 Magnetic Materials Ferromagnetism Magnetic Fields in Magnetic Materials; Hysteresis Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced

More information

Microscopy Cryostat System

Microscopy Cryostat System OF AMERICA, INC. Microscopy Cryostat System RC102-CFM Microscopy Cryostat offers fast cooldown, high efficiency, lowest thermal drift, excellent temperature stability and ultra low vibration Optical cryostat

More information

Resistivity and Temperature Coefficients (at 20 C)

Resistivity and Temperature Coefficients (at 20 C) Homework # 4 Resistivity and Temperature Coefficients (at 0 C) Substance Resistivity, Temperature ( m) Coefficient, (C ) - Conductors Silver.59 x 0-0.006 Copper.6 x 0-0.006 Aluminum.65 x 0-0.0049 Tungsten

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

Physics 112. Study Notes for Exam II

Physics 112. Study Notes for Exam II Chapter 20 Electric Forces and Fields Physics 112 Study Notes for Exam II 4. Electric Field Fields of + and point charges 5. Both fields and forces obey (vector) superposition Example 20.5; Figure 20.29

More information

Superconducting RF Accelerators: Why all the interest?

Superconducting RF Accelerators: Why all the interest? Superconducting RF Accelerators: Why all the interest? William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT The HEP prespective ILC PROJECT X Why do we need RF

More information

HB Magnet Quench Calculation. R. Rajput-Ghoshal P. Ghoshal R. Fair

HB Magnet Quench Calculation. R. Rajput-Ghoshal P. Ghoshal R. Fair HB Magnet Quench Calculation R. Rajput-Ghoshal P. Ghoshal R. Fair 1.14.215 Content: 1. Magnet Details Coil Construction Operating parameters DC circuit 2. MIITs calculations Assumptions Temp vs MIITS Temp

More information

DC MAGNETIC FIELD GENERATOR WITH SPATIAL COILS ARRANGEMENT

DC MAGNETIC FIELD GENERATOR WITH SPATIAL COILS ARRANGEMENT Please cite this article as: Adam Kozlowski, Stan Zurek, DC magnetic field generator with spatial coils arrangement, Scientific Research of the Institute of Mathematics and Computer Science, 01, Volume

More information

ELECTRICITY AND MAGNETISM

ELECTRICITY AND MAGNETISM THIRD EDITION ELECTRICITY AND MAGNETISM EDWARD M. PURCELL DAVID J. MORIN Harvard University, Massachusetts Щ CAMBRIDGE Ell UNIVERSITY PRESS Preface to the third edition of Volume 2 XIII CONTENTS Preface

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J , : & HTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J , : & HTS MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J Spring Term 23 May 8, 23 Lecture 1: Protection & HTS Magnets Key magnet issues

More information

High Magnetic Field Science and the Magnetic Resonance Industry

High Magnetic Field Science and the Magnetic Resonance Industry and the Magnetic Resonance Industry Presentation to the Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States Jim Hollenhorst Senior Director of

More information

EXEMPLAR NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 ( ) (X-Paper) 09:00 12:00

EXEMPLAR NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 ( ) (X-Paper) 09:00 12:00 NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 2008 (12041002) (X-Paper) 09:00 12:00 EXEMPLAR This question paper consists of 7 pages. EXEMPLAR -2- NC(V) TIME: 3 HOURS

More information

Electromagnetism Review Sheet

Electromagnetism Review Sheet Electromagnetism Review Sheet Electricity Atomic basics: Particle name Charge location protons electrons neutrons + in the nucleus - outside of the nucleus neutral in the nucleus What would happen if two

More information

Switched Mode Power Conversion

Switched Mode Power Conversion Inductors Devices for Efficient Power Conversion Switches Inductors Transformers Capacitors Inductors Inductors Store Energy Inductors Store Energy in a Magnetic Field In Power Converters Energy Storage

More information

Sensors: a) Gyroscope. Micro Electro-Mechanical (MEM) Gyroscopes: (MEM) Gyroscopes. Needs:

Sensors: a) Gyroscope. Micro Electro-Mechanical (MEM) Gyroscopes: (MEM) Gyroscopes. Needs: Sensors: Needs: Data redundancy Data for both situations: eclipse and sun Question of sampling frequency Location and size/weight Ability to resist to environment Low consumption Low price a) Gyroscope

More information

Chapter 2: Fundamentals of Magnetism. 8/28/2003 Electromechanical Dynamics 1

Chapter 2: Fundamentals of Magnetism. 8/28/2003 Electromechanical Dynamics 1 Chapter 2: Fundamentals of Magnetism 8/28/2003 Electromechanical Dynamics 1 Magnetic Field Intensity Whenever a magnetic flux, φ, exist in a conductor or component, it is due to the presence of a magnetic

More information