# Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively

Size: px
Start display at page:

## Transcription

1 Chapter 3 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively In the LC circuit the charge, current, and potential difference vary sinusoidally (with period T and angular frequency ). The resulting oscillations of the capacitor s electric field and the inductor s magnetic field are said to be electromagnetic oscillations. oscillations the energy stored in the electric field of the capacitor is q UE C L i the energy stored in the magnetic field of the inductor is U B To determine the charge q(t) on the capacitor,put in a voltmeter to measure the potential difference (or voltage) vc that exists across the capacitor C: vc q / C To measure the current, connect a small resistance in series in the circuit and measure the potential difference v across it: v i

2 In an actual LC circuit, the oscillations will not continue indefinitely because there is always some resistance present that will drain energy from the electric and magnetic fields and dissipate it as thermal energy (the circuit may become warmer).

3 The Electrical Mechanical Analogy the analogy between the oscillating LC system and an oscillating block spring system: q corresponds to x, /C correspond to k i corresponds to v, L correspond to m These correspondences suggest that in an LC oscillator, the capacitor is mathematically like the spring in a block spring system and the inductor is like the block. In a block spring system: k block spring system m The correspondences suggest that to find the angular frequency of oscillation for an ideal LC circuit, k Block Spring System LC Oscillator should be replaced by /C and m by L, Element Energy Element Energy L C LC circuit Spring Potential, k x / Block Kinetic, m v / vd x/d t Capacitor Electrical, q / C Inductor Magnetic, L i / i d q/ d t

4 LC Oscillations, Quantitatively The Block Spring Oscillator the total energy of a block spring oscillator: U U b U s m v k x Energy conservation, no friction: du d dv dx 0 m v k x m v k x m d x k x 0 x t X cos t displacement X is the amplitude of the mechanical oscillations, is the angular frequency of the oscillations, and is a phase constant. The LC Oscillator the total energy in an oscillating q LC circuit: U U B U E L i C UB is the energy stored in the magnetic field of the inductor and UE is the energy stored in the electric field of the capacitor. Energy conservation, no resistance: du d di q dq q 0 Li L i C C q t Q cos t charge d q L q 0 LC oscillation C

5 The current of the i t LC oscillator: dq Q sin t I sin t current The angular frequency of the d q I Q LC oscillator: Q cos t L Q cos t Q C cos t L d q q C 0 / LC The phase is determined by the initial conditions. The electrical energy stored in the LC circuit q Q UE cos t C C The magnetic energy stored in the Q UB sin t C UB LC circuit L i L Q sin t Note: U U Q / C E max B max U E U B Q / C constant 3 U E U E max when U B 0 ; U B U B max when U E 0 problem 3-

6 Damped Oscillations in an LC Circuit A circuit containing resistance, inductance, and capacitance is called an LC circuit. We shall here discuss only series LC circuits With a resistance present, the total EM energy of the circuit is no longer constant; it decreases with time as energy is transferred to thermal energy in the resistance. Because of this loss of energy, the oscillations of charge, current, and potential difference decrease in amplitude, and the oscillations are damped. du i The rate of energy transferred to thermal energy: d Li q di q dq d q dq L i i L q 0 LC curcuit C d t C C ' / L / L C q Q t / L The electrical energy: U e cos ' t E C C Q t / L U e C Li Q t / L the magnetic energy: U B problem 3- e sin ' t C q Q e t / L cos ' t

7 Alternating Current If the energy is supplied via oscillating emfs and currents, the current is said to be an alternating current, current or ac for short. The nonoscillating current from a battery is said to be a direct current, current or dc. dc These oscillating emfs and currents vary sinusoidally with time, reversing direction (in North America) 0 times per second and thus having frequency f 60 Hz. As the current alternates, so does the magnetic field that surrounds the conductor. This makes possible the use of The advantage of alternating current: Faraday s law of induction. In a generator: ℰ ℰ m sin d t, i I sin d t where d is called the driving angular frequency. frequency the current may not be in phase with the emf. the driving frequency f d d /

8 Forced Oscillations An undamped LC circuits or a damped LC circuits (with small enough ) without any external emf are said to be free oscillations, and the angular frequency / LC is said to be the circuit s natural angular frequency. frequency When the external alternating emf is connected to an LC circuit, the oscillations of charge, potential difference, and current are said to be driven oscillations or forced oscillations., with the driving angular frequency d : Whatever the natural angular frequency of a circuit may be, forced oscillations of charge, current, and potential difference in the circuit always occur at the driving angular frequency d. Three Simple Circuits A esistive Load By the loop rule: ℰ v 0 v ℰ m sin d t v V sin d t V ℰ m i I sin d t 0, v V i sin d t V I resistor v and i are in phase, which means that their corresponding maxima (and minima) occur at the same times.

9 problem 3-3 A Capacitive Load the potential difference across the capacitor vc V C sin d t qc C v C C V C sin d t d qc d C V C cos d t The current: ic capacitive reactance: X capacitive reactance reactance C d C the SI unit of XC is the ohm, just as for resistance. cos d t sin d t / i C I C sin d t V C IC XC capacitor VC sin d t / XC true for any capacitance in any circuit

10 Problem 3-4 An Inductive Load the potential difference across the inductance v L V L sin d t L d il d il VL sin d t L VL cos d t The current: i L d i L sin d t d t L d L capacitive reactance: reactance X L d L inductive reactance the SI unit of VL XL is the ohm, just as for XC an for. cos d t sin d t / i L I L sin d t V L I L XL inductor VL sin d t / XL true for any inductance in any circuit

11 Problem 3-5 Phase and Amplitude elations for Alternating Currents and Voltages Circuit esistance Phase of Phase Constant Amplitude or ecactance the Current or Angle elation Element Symbol esistor In phase with v 0 Capacitor C X C / d C Leads vc by / / V C I C XC Inductor L X L d L Lags v L by / / VL IL XL VI

12 The Series LC Circuit Apply a LC circuit the alternating emf ℰ ℰ m sin d t applied emf i I sin d t The Current Amplitude For the loop rule:ℰ v v C v L ℰ m V V L V C ℰ I I X L I X C where Z X L X C I ℰ X L X C impedance I ℰ Z ℰ [ L / C ] d d I depends on the difference between dl and / dc or, equivalently, the difference between XL and XC. The value of current amplitude

13 The current that we have been describing in this section is the steady state current that occurs after the alternating emf has been applied for some time. When the emf is first applied to a circuit, a brief transient current occurs. Its duration is determined by the time constants LL/ and CC as the inductive and capacitive elements turn on. The Phase Constant V L VC I XL I XC From the plot: tan V I tan X L XC phase constant

14 Three different results for the phase constant XL>XC: The circuit is said to be more inductive than capacitive. XC>XL: The circuit is said to be more capacitive than inductive. XCXL: The circuit is said to be in resonance. purely inductive circuit, where XL is nonzero and XC0, then / (the greatest value of ). In the purely capacitive circuit, where XC is nonzero and XL0, then - / (the least value of ). In the esonance For a given resistance, that amplitude is a maximum when the quantity dl-/ dc in the denominator is zero d L d C d L C maximum I the natural angular frequency of the LC circuit is also equal to / L C, the maximum value of I occurs when the driving angular frequency matches the natural angular frequency that is, at resonance. d L C resonance

15 resonance curves peak at their maximum current amplitude I (ℰm/) when d, but the maximum value of I decreases with increasing. The curves also increase in wih (measuring at half the maximum value of I) with increasing. The XL( dl) is small and XC(/ dc) is large. Thus, the circuit is mainly capacitive and the impedance is dominated by the large XC, which keeps For small d, the current low. XC remains dominant but decreases while XL increases. The decrease in XC decreases the impedance, allowing the current I to increase. When the increasing XL and the decreasing XC reach equal values, the current I is As d increases, greatest and the circuit is in resonance, with d. XL becomes more dominant over the decreasing XC. The impedance increases because of XL and the current decreases. As d continue to increase, the increasing In summary: The low-angular-frequency side of a resonance curve is dominated by the capacitor s reactance, the high-angular frequency side is dominated by the inductor s reactance, and resonance occurs in the middle. Problem 3-6

16 Power in Alternating-Current Circuits In steady-state operation the average energy stored in the capacitor and inductor together remains constant. The net transfer of energy is thus from the generator to the resistor, where EM energy is dissipated as thermal energy. The instantaneous rate at which energy is dissipated in the resistor P i [ I sin d t ] I sin d t The average rate at which energy is dissipated Pavg T 0 P d t T I T I I rms T 0 sin I d t d t I rms current Pavg I rms average power if we switch to the rms current, we can compute the average rate of energy dissipation for alternatingcurrent circuits just as for direct-current circuits. V rms V, ℰ rms ℰ rms voltage; rms emf

17 Alternating-current instruments, such as ammeters and voltmeters, are usually calibrated to read Irms, Vrms, and ℰrms. plug an alternating-current voltmeter into a electrical outlet and it reads 0 V, that is an rms voltage. The maximum value of the potential difference at the outlet is 0 V or 70 V. I rms ℰ rms Z ℰ rms X L X C Pavg Pavg ℰ rms I rms cos average power ℰ rms Z I rms ℰ rms I rms cos V ℰm Z I IZ power Z factor The equation is independent of the sign of the phase constant cos cos( ). To maximize the rate at which energy is supplied to a resistive load in an LC circuit, we should keep the power factor cos as close to as possible 0. Problem 3-7

18 Transformers Energy Transmission equirements an ac circuit with only a resistive load, the power factor cos 0, Pavg ℰ I I V A range of choices of I and of V provided only that the product IV is as required. in the transmission of electrical energy from the generating plant to the consumer, we want the lowest practical current (hence the largest practical voltage) to minimize I losses (often called ohmic losses) in the transmission line. consider a 735 kv line to transmit electrical energy for 000 km. If the current is 500 A and the power factor ~ unity. Thensupply Pavg ℰ I V 500 A 368 MW The resistance of the transmission line is about 0. /km 0 Energy is dissipated due to that resistance at a rate total Pavg I 500 A 0 55 MW ~ 5 % Psupply avg In the other case: I ' I, ℰ ' ℰ / P supply ℰ ' I ' ℰ I avg Pavg I ' 000 A 0 0 MW ~ 65 % Psupply avg the general energy transmission rule:transmit at the highest possible voltage and the lowest possible current.

19 The Ideal Transformer need a device with which we can raise (for transmission) and lower (for use) the ac voltage in a circuit, keeping the product current voltage essentially constant the transformer. The ideal transformer consists of two coils, with different numbers of turns, wound around an iron core. the primary winding, of Np turns, is connected to an AC generator whose emf is The secondary winding, of ℰ ℰ m sin t Ns turns, is connected to load resistance. magnetizing current Imag, lags the primary voltage Vp by 90 (no power is delivered). The sinusoidally changing primary current Imag the primary current, the produces a sinusoidally changing magnetic flux B in the iron core. The core strengthens the flux and to bring it through the secondary winding. Because B varies, it induces an emf ℰturn (d B/) in each turn of the secondary. the emf per turn ℰturn is the same in the primary and the secondary ℰ turn Vp Np Vs Ns V s V p Ns Np transformation of voltage

20 Ns>Np: step up transformer because Vs>Vp ; Ns<Np: step down transformer because Vs<Vp. connect the secondary to the resistive load the generator:, now energy is transferred from An AC Is appears in the secondary circuit, with corresponding energy dissipation rate Is(Vs/) in the resistive load. Is produces its own alternating magnetic flux in the iron core, and this flux induces an opposing emf in the primary windings. 3 Vp of the primary cannot change in response to this opposing emf because it must always be equal to the emf that is provided by the generator. Vp, the generator now produces (in addition to Imag) an AC Ip in the primary circuit; the emf induced by Ip in the primary will exactly cancel the emf induced there by Is. Because the phase constant of Ip is not 90 like that of Imag, this current Ip can transfer energy to the primary. 4 To maintain

21 Assume no energy is lost, conservation of energy requires that I p V p Is Vs I pis Ns Np Ns Vs Np Ns Np Vp Vp eq eq Np Ns Impedance Matching For maximum transfer of energy from an emf device to a load, the impedance of the emf device must equal the impedance of the load. We can match the impedances of the two devices by coupling them through a transformer that has a suitable turns ratio. Solar Activity and Power-Grid Systems problem 3-8 Selected problems:, 6, 36,50, 58

### Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

### RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

### Alternating Current Circuits

Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

### Chapter 33. Alternating Current Circuits

Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

### Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 32A AC Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Describe

### 12 Chapter Driven RLC Circuits

hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

### Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

### Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

### ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 10 6/12/2007 Electricity and Magnetism Induced voltages and induction Self-Inductance RL Circuits Energy in magnetic fields AC circuits and EM waves Resistors, capacitors

### AC Circuits Homework Set

Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

### AC Source and RLC Circuits

X X L C = 2π fl = 1/2π fc 2 AC Source and RLC Circuits ( ) 2 Inductive reactance Capacitive reactance Z = R + X X Total impedance L C εmax Imax = Z XL XC tanφ = R Maximum current Phase angle PHY2054: Chapter

### Driven RLC Circuits Challenge Problem Solutions

Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

### Alternating Current. Symbol for A.C. source. A.C.

Alternating Current Kirchoff s rules for loops and junctions may be used to analyze complicated circuits such as the one below, powered by an alternating current (A.C.) source. But the analysis can quickly

### Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because

### General Physics (PHY 2140)

General Physics (PHY 40) eminder: Exam this Wednesday 6/3 ecture 0-4 4 questions. Electricity and Magnetism nduced voltages and induction Self-nductance Circuits Energy in magnetic fields AC circuits and

### Chapter 21: RLC Circuits. PHY2054: Chapter 21 1

Chapter 21: RC Circuits PHY2054: Chapter 21 1 Voltage and Current in RC Circuits AC emf source: driving frequency f ε = ε sinωt ω = 2π f m If circuit contains only R + emf source, current is simple ε ε

### AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa

AC Circuits III Physics 415 Lecture 4 Michael Fowler, UVa Today s Topics LC circuits: analogy with mass on spring LCR circuits: damped oscillations LCR circuits with ac source: driven pendulum, resonance.

### Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

### Chapter 31: AC Circuits

hapter 31: A ircuits A urrents and Voltages In this chapter, we discuss the behior of circuits driven by a source of A. Recall that A means, literally, alternating current. An alternating current is a

### Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

### Solutions to these tests are available online in some places (but not all explanations are good)...

The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php

### Physics for Scientists & Engineers 2

Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

### ALTERNATING CURRENT

ATENATING UENT Important oints:. The alternating current (A) is generally expressed as ( ) I I sin ω t + φ Where i peak value of alternating current.. emf of an alternating current source is generally

### Note 11: Alternating Current (AC) Circuits

Note 11: Alternating Current (AC) Circuits V R No phase difference between the voltage difference and the current and max For alternating voltage Vmax sin t, the resistor current is ir sin t. the instantaneous

### 1 Phasors and Alternating Currents

Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

### EM Oscillations. David J. Starling Penn State Hazleton PHYS 212

I ve got an oscillating fan at my house. The fan goes back and forth. It looks like the fan is saying No. So I like to ask it questions that a fan would say no to. Do you keep my hair in place? Do you

### Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1

Lecture - Self-Inductance As current i through coil increases, magnetic flux through itself increases. This in turn induces back emf in the coil itself When current i is decreasing, emf is induced again

Alternating Currents. The power is transmitted from a power house on high voltage ac because (a) Electric current travels faster at higher volts (b) It is more economical due to less power wastage (c)

### Chapter 6. Electromagnetic Oscillations and Alternating Current

hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

### PHYSICS NOTES ALTERNATING CURRENT

LESSON 7 ALENAING CUEN Alternating current As we have seen earlier a rotating coil in a magnetic field, induces an alternating emf and hence an alternating current. Since the emf induced in the coil varies

### CLUSTER LEVEL WORK SHOP

CLUSTER LEVEL WORK SHOP SUBJECT PHYSICS QUESTION BANK (ALTERNATING CURRENT ) DATE: 0/08/06 What is the phase difference between the voltage across the inductance and capacitor in series AC circuit? Ans.

### REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

### The simplest type of alternating current is one which varies with time simple harmonically. It is represented by

ALTERNATING CURRENTS. Alternating Current and Alternating EMF An alternating current is one whose magnitude changes continuously with time between zero and a maximum value and whose direction reverses

### ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION 1. Magnetic Flux 2. Faraday s Experiments 3. Faraday s Laws of Electromagnetic Induction 4. Lenz s Law and Law of Conservation of Energy 5. Expression for Induced emf based on

### Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

### ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

### Get Discount Coupons for your Coaching institute and FREE Study Material at ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION 1. Magnetic Flux 2. Faraday s Experiments 3. Faraday s Laws of Electromagnetic Induction 4. Lenz s Law and Law of Conservation of Energy 5. Expression for Induced emf based on

### Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Circuit Analysis-II Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

### 1 2 U CV. K dq I dt J nqv d J V IR P VI

o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot

### Chapter 32. Inductance

Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

### Handout 10: Inductance. Self-Inductance and inductors

1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

### PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017

PHYS 1441 Section 1 Lecture #3 Monday, Dec. 4, 17 Chapter 3: Inductance Mutual and Self Inductance Energy Stored in Magnetic Field Alternating Current and AC Circuits AC Circuit W/ LRC Chapter 31: Maxwell

### CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

### ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

ATENATING UENT 3 3 IDENTIFY: i Icosωt and I I/ SET UP: The specified value is the root-mean-square current; I 34 A EXEUTE: (a) I 34 A (b) I I (34 A) 48 A (c) Since the current is positive half of the time

### Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

### Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1

Physics 1 ecture 1 esonance and power in A circuits Physics 1 ecture 1, Slide 1 I max X X = w I max X w e max I max X X = 1/w I max I max I max X e max = I max Z I max I max (X -X ) f X -X Physics 1 ecture

### Induction_P1. 1. [1 mark]

Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

### Lecture 39. PHYC 161 Fall 2016

Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS - response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,

### ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

### Chapter 30 Self Inductance, Inductors & DC Circuits Revisited

Chapter 30 Self Inductance, Inductors & DC Circuits Revisited Self-Inductance and Inductors Self inductance determines the magnetic flux in a circuit due to the circuit s own current. B = LI Every circuit

### Physics 1502: Lecture 25 Today s Agenda

Physics 1502: Lecture 25 Today s Agenda Announcements: Midterm 2: NOT Nov. 6 Following week Homework 07: due Friday net week AC current esonances Electromagnetic Waves Mawell s Equations - evised Energy

### Chapter 32. Inductance

Chapter 32 Inductance Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit

### TRANSFORMERS B O O K P G

TRANSFORMERS B O O K P G. 4 4 4-449 REVIEW The RMS equivalent current is defined as the dc that will provide the same power in the resistor as the ac does on average P average = I 2 RMS R = 1 2 I 0 2 R=

### Active Figure 32.3 (SLIDESHOW MODE ONLY)

RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor

### ELEC ELE TRO TR MAGNETIC INDUCTION

ELECTRO MAGNETIC INDUCTION Faraday Henry 1791-1867 1797 1878 Laws:- Faraday s Laws :- 1) When ever there is a change in magnetic flux linked with a coil, a current is generated in the coil. The current

### Book Page cgrahamphysics.com Transformers

Book Page 444-449 Transformers Review The RMS equivalent current is defined as the dc that will provide the same power in the resistor as the ac does on average P average = I 2 RMS R = 1 2 I 0 2 R= V RMS

### Yell if you have any questions

Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

### Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase)

Physics-7 ecture 0 A Power esonant ircuits Phasors (-dim vectors, amplitude and phase) What is reactance? You can think of it as a frequency-dependent resistance. 1 ω For high ω, χ ~0 - apacitor looks

### PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition) hapter 3 Electroagnetic Oscillations and Alternating urrent

### Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

### Impedance/Reactance Problems

Impedance/Reactance Problems. Consider the circuit below. An AC sinusoidal voltage of amplitude V and frequency ω is applied to the three capacitors, each of the same capacitance C. What is the total reactance

### Learning Material Ver 1.2

RLC Resonance Trainer Learning Material Ver.2 Designed & Manufactured by: 4-A, Electronic Complex, Pardesipura, Indore- 452 00 India, Tel.: 9-73-42500, Telefax: 9-73-4202959, Toll free: 800-03-5050, E-mail:

### Exam 2 Solutions. PHY2054 Spring Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014

Exam 2 Solutions Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014 1. A series circuit consists of an open switch, a 6.0 Ω resistor, an uncharged 4.0 µf capacitor and a battery with emf 15.0 V and internal

### Physics 102 Spring 2007: Final Exam Multiple-Choice Questions

Last Name: First Name: Physics 102 Spring 2007: Final Exam Multiple-Choice Questions 1. The circuit on the left in the figure below contains a battery of potential V and a variable resistor R V. The circuit

### Electromagnetic Induction (Chapters 31-32)

Electromagnetic Induction (Chapters 31-3) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits

### Handout 11: AC circuit. AC generator

Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

### 20. Alternating Currents

University of hode sland DigitalCommons@U PHY 204: Elementary Physics Physics Course Materials 2015 20. lternating Currents Gerhard Müller University of hode sland, gmuller@uri.edu Creative Commons License

### RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

### PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is

### Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526)

NCEA evel 3 Physics (91526) 2016 page 1 of 5 Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) Evidence Statement NØ N1 N 2 A 3 A 4 M 5 M 6 E 7 E 8 0 1A 2A 3A 4A or

### Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,

### Physics 4 Spring 1989 Lab 5 - AC Circuits

Physics 4 Spring 1989 Lab 5 - AC Circuits Theory Consider the series inductor-resistor-capacitor circuit shown in figure 1. When an alternating voltage is applied to this circuit, the current and voltage

### Electrical Engineering Fundamentals for Non-Electrical Engineers

Electrical Engineering Fundamentals for Non-Electrical Engineers by Brad Meyer, PE Contents Introduction... 3 Definitions... 3 Power Sources... 4 Series vs. Parallel... 9 Current Behavior at a Node...

### Alternating Current. Chapter 31. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Chapter 31 Alternating Current PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 8_8_2008 Topics for Chapter 31

### Chapter 30 Inductance

Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and self-inductance. An inductor is formed by taken

### Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

### Alternating Current Circuits. Home Work Solutions

Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

### Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Oscillations and Electromagnetic Waves March 30, 2014 Chapter 31 1 Three Polarizers! Consider the case of unpolarized light with intensity I 0 incident on three polarizers! The first polarizer has a polarizing

### RLC Circuits. 1 Introduction. 1.1 Undriven Systems. 1.2 Driven Systems

RLC Circuits Equipment: Capstone, 850 interface, RLC circuit board, 4 leads (91 cm), 3 voltage sensors, Fluke mulitmeter, and BNC connector on one end and banana plugs on the other Reading: Review AC circuits

### 1) Opposite charges and like charges. a) attract, repel b) repel, attract c) attract, attract

) Opposite charges and like charges. a) attract, repel b) repel, attract c) attract, attract ) The electric field surrounding two equal positive charges separated by a distance of 0 cm is zero ; the electric

### PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering

QUESTION PAPER INTERNAL ASSESSMENT TEST 2 Date : /10/2016 Marks: 0 Subject & Code: BASIC ELECTRICAL ENGINEERING -15ELE15 Sec : F,G,H,I,J,K Name of faculty : Dhanashree Bhate, Hema B, Prashanth V Time :

### MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194

MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194 Question 1 (a) List three sources of heat in soldering (b) state the functions of flux in soldering (c) briefly describe with aid of diagram

### 8.1 Alternating Voltage and Alternating Current ( A. C. )

8 - ALTENATING UENT Page 8. Alternating Voltage and Alternating urrent ( A.. ) The following figure shows N turns of a coil of conducting wire PQS rotating with a uniform angular speed ω with respect to

### AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from

### Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

### Name:... Section:... Physics 208 Quiz 8. April 11, 2008; due April 18, 2008

Name:... Section:... Problem 1 (6 Points) Physics 8 Quiz 8 April 11, 8; due April 18, 8 Consider the AC circuit consisting of an AC voltage in series with a coil of self-inductance,, and a capacitor of

### REVIEW EXERCISES. 2. What is the resulting action if switch (S) is opened after the capacitor (C) is fully charged? Se figure 4.27.

REVIEW EXERCISES Circle the letter of the correct answer to each question. 1. What is the current and voltage relationship immediately after the switch is closed in the circuit in figure 4-27, which shows

### Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

### Conventional Paper-I-2011 PART-A

Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

### PHYS 241 EXAM #2 November 9, 2006

1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

### Exam 3 Solutions. The induced EMF (magnitude) is given by Faraday s Law d dt dt The current is given by

PHY049 Spring 008 Prof. Darin Acosta Prof. Selman Hershfield April 9, 008. A metal rod is forced to move with constant velocity of 60 cm/s [or 90 cm/s] along two parallel metal rails, which are connected

### Electrical Circuit & Network

Electrical Circuit & Network January 1 2017 Website: www.electricaledu.com Electrical Engg.(MCQ) Question and Answer for the students of SSC(JE), PSC(JE), BSNL(JE), WBSEDCL, WBSETCL, WBPDCL, CPWD and State

### EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

### Chapter 30. Inductance

Chapter 30 Inductance Self Inductance When a time dependent current passes through a coil, a changing magnetic flux is produced inside the coil and this in turn induces an emf in that same coil. This induced

### Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric