Superconducting Fault Current Limiter in DC Systems with MLI Fed to IM

Size: px
Start display at page:

Download "Superconducting Fault Current Limiter in DC Systems with MLI Fed to IM"

Transcription

1 Superconducting Fault Current Limiter in DC Systems with MLI Fed to IM 1 Rama Rao P.V.V., 2 M.Swathi 1,2 Shri Vishnu Engineering for Women, Bhimavaram, India Abstract: In this paper, an application of superconducting fault current limiter (SFCL) is proposed to limit the fault current that occurs in power system, SFCL is a device that uses superconductors to instantaneously limit or reduce unanticipated electrical surges that may occur on utility distribution and transmission networks. Due to the difficulty in power network reinforcement and the interconnection of more distributed generations, fault current level has become a serious problem in transmission and distribution system operations. The utilization of fault current limiters (FCLs) in power system provides an effective way to suppress fault currents and result in considerable saving in the investment of high capacity circuit breakers is felt. In this work, a resistive type SFCL model was implemented by integrating Simulink and Sim Power System blocks in Matlab. The designed SFCL model could be easily utilized for determining an impedance level of SFCL according to the fault-current-limitation requirements of various kinds of the DC system. In this paper SFCL in dc systems implemented, and it is used in motor drive to reduce the fault current. I. INTRODUCTION The utilization of SFCL in power system provide them most effective way to limit the fault current and results inconsiderable saving from not having to utilize high capacity circuit breakers. With Superconducting fault current limiters (SFCLs) utilize superconducting materials to limit the current directly or to supply a DC bias current that affects the level of magnetization of a saturable iron core. Being many SFCL design concepts are being evaluated for commercial expectations, improvements in superconducting materials over the last 2 years have driven the technology [4]. Case in point, the discovery of high-temperature superconductivity (HTS) in 1986 drastically improved the potential for economic operation of many superconducting devices. Based on the previous works, this paper presents feasibility analysis results of positioning of the SFCL and its effects on reducing fault current in DC system. Superconducting fault current limiter is ones of the most ideal current device to protect the system and electrical equipments. DC power systems are widely adopted because flexible position arrangement, low maintenance cost and fast transient capability. High power DC system has been utilized as isolated power system in many applications [1-2]. Due to high power capacity, reliable and safety performance, fault protection and tolerance are usually required. In DC grids, the fault current has no zero crossing point as ac current does. So it s difficult open the over current fault transmission line. So use sfcl to reduce the fault current. In recent years HVDC transmission constantly developed china. Multiple transmission lines have been built in china [7-9] increase of power system capacity and the development of transmission technique, the short circuit current will reach the peak current which ranges between kilo amperes and tens of kilo amperes within several milliseconds at present using circuit breakers to cut off the fault current is applied in the dc system to ensure the whole system safety. In recently the dc breaker developed by ABB can cut off a16 ka fault current within 2 ms [5]. While rated voltage is 32 kv SFCL could bring a solution to interruption of the fault current in dc net works. Most of the SFCL prototypes up to now have been designed for ac systems. This paper introduces a DC SFCL prototype. These resistive types SFCL designed and constructed by shanghai Jiao Tong University. the prototype will be applied in an isolated dc network as an Ingrid demonstrations to prove the current limiting ability of SFCL in dc systems [4].In real grid demonstration, the utilities require the SFCL to provide good current limiting performance. So the hts tapes chosen based on their characteristics. Then simulations are carried out to optimize the limiting effect and determine the SFCL parameters. So the series of experiments conduct to prove the SFCL has good current limiting ability. This paper focuses on a factor for resistive type SFCL, which is useful to improve the reliability of the system, with the transient stability study based on the equal area criterion, the performances of the proposed SFCL to reduce the level of fault currents. In this SFCL used in induction machine get good results. This paper proposed a new configuration of SFCL in Multilevel Inverter fed to motor drive and Simulation results given and explained. The simulation results to SFCL have good current limiting ability in dc systems ISSN (Print): , Volume-4 Issue-5,

2 II. HIGH TEMPERATURE SUPERCONDUCTOR TAPES TESTS A high power dc short circuit test platform is built to verify the limiting effect of the second generation (2G) high temperature superconductor (HTS) tapes in dc power systems. The platform is composed of a stepdown transformer, an uncontrolled rectifier bridge and a short-circuit control circuit, as shown in Fig. 1. The system voltage is provided by an isolated transformer. The low voltage level is good for the safety of the test system, so the test is conducted when the voltage is 2 VAC. So the dc voltage behind the rectifier bridge is about 28 V. Without the superconducting limiting module, the normal and short circuit current respectively 6.7 A and 175A.when the transformer provides 2VAC Fig 1.Over all test platform Superconducting limiting module of two types of HTS tapes, respectively produced by the Physics Department of Shanghai Jiao Tong University (SJTU) and American Superconductor Corporation (AMSC), are applied to the dc system to prove the current limiting ability of superconducting materials. Short circuit test with the limiting module are conducted when the transformer supplies 2 VAC. The circuit current is obtained by testing the voltage of the line resistor. Short circuit current and the resistance of the superconducting limiting module in 2 VAC systems are simulated. III. BASICS OF SFCL Superconducting fault current limiter is a promising technique to limit fault current in power system. Normally non-linear characteristic of superconductor is used in SFCL to limit fault current. In a normal operating condition SFCL has no influence on the system due to the virtually zero resistance below its critical current in superconductors. But when system goes to abnormal condition due to the occurrence of a fault, current exceeds the critical value of superconductors resulting in the SFCL to go resistive state. This capability of SFCL to go off a finite resistive value state from zero resistance can be used to limit fault current. Different types of SFCLs have been developed until now [1]. Many models for SFCL have been designed as resistor-type, reactor-type, and transformertype etc. In this paper a resistive-type SFCL is modeled using Simulink. Quench and recovery characteristics are designed on the basis of [9]. Where R m is the maximum resistance of the SFCL in the quenching state, T sc is the time constant of the SFCL during transition from the superconducting state to the normal state. Furthermore, t is the time to start the quenching. Finally, t1and t2 are the first and second recovery times, respectively. Upper conductors are widely adopted in FCL topologies, mostly because they offer superior performance by presenting negligible normal operation impedance, when the temperature and magnetic field on them are below critical values (Tc and Hc). Besides, superconductors can also provide inherent fast current limiting characteristics and repetitive operation with autorecovery. 3.1 Characteristics of SCFCL Superconductivity When refrigerated below the critical temperature Tc, the superconductors have very low resistivity (almost zero to DC current), which means low conduction copper losses. Quenching: The resistance of the superconductor will increase rapidly when large current flows through it and drives the material beyond its critical temperature. In this case, the superconductor coil will quench the current with substantial amount of impedance presented in the circuit. Many SCFCL technologies take advantage of one or both of the above characteristics. For example, the resistive type and magnetic assisted resistive type SCFCL s utilize the superconductivity in normal operations, while the quenching characteristic is used to limit the fault current in these FCL types. On the other hand, in some topologies, such as in saturated-core FCL s and bridge-type FCL s, superconductors are sometimes used only as zero-loss conductors when carrying high current is necessary. 3.2 Types of SCFCL a. Resistive type Resistive superconductor FCLs use the quenching effect of superconducting materials. It is the simplest form of SCFCL. Figure 2 demonstrates the principle topology of a resistive type SCFCL device. Fig.2. Resistive type superconductor FCL The main current carrier SC is a low inductance superconductor. Shunt resistor R is necessary to suppress hot-spot and overvoltage on the superconductor during quenching transients. Figure 3 illustrates an example configuration of the resistive type SCFCL ISSN (Print): , Volume-4 Issue-5,

3 elements. Because of the low resistance of the silver substrate of TYPE-I superconductors, large number of elements are required to achieve the desired current limitation goal. This increases both the material costs and the operation AC losses, in that more superconducting materials are subject to carrying AC current. Hence, this configuration is suitable for the TYPE-II conductors, which have highly resistive substrates. Their feasibility is being studied and tested in many different countries. b. Magnetic assisted resistive type As implied by its name, the magnetic assisted resistive SCFCL works similar in principle to the resistive SCFCL described above. A copper coil is connected in parallel with the superconductor elements. Also, this shunt coil is physically wrapped around elements. During normal operation, the superconductor carries all the normal operation current and presents little impedance to the power network. Under fault, the resistance of the shunt coil has the same function as the shunt resistor in the resistive type SCFCL, bypassing the fault current and preventing hot-spots caused by inhomogeneous quenching of the superconductor. electronics and control systems have matured to allow these components to be used for motor control in place of mechanical gears. These electronics not only control the motor s speed, but can improve the motor s dynamic and steady state characteristics. Adjustable speed ac machine system is equipped with an adjustable frequency drive that is a power electronic device for speed control of an electric machine. It controls the speed of the electric machine by converting the fixed voltage and frequency to adjustable values on the machine side. High power induction motor drives using classical three phase converters have the disadvantages of poor voltage and current qualities. To improve these values, the switching frequency has to be raised which causes additional switching losses. Another possibility is to put a motor input filter between the converter and motor, which causes additional weight. This modified configuration of multilevel inverter method can be applied to higher level converters. As the number of level increases, the synthesized output waveform adds more steps, producing a staircase waveform V. MAT LAB SIMULATION RESULTS Fig.3. Schematic of magnetic assisted resistive type SCFCL Other than this, a voltage drop caused by the initial quench is seen by the shunt copper coil, and builds up a magnetic field inside the coil. This magnetic field effectively accelerates the quenching process of the superconductor, since the superconductors critical temperature reduces substantially when exposed to external magnetic fields (as shown in Figure 2.4). This type of SCFCL applies to the TYPE-I superconductor enabling it with performance improvements such as faster and more homogeneous quenching process. IV. MULTILEVEL INVERTER FED TO MOTOR DRIVE Fig.4: Simulation circuit of proposed system without SFCL 4.1. SIMULATION MODEL OF SFCL IN DC SYSTEM DC motors have been used during the last century in industries for variable speed control applications, because its flux and torque can be controlled easily changing the field and armature currents respectively. Furthermore, four quadrant operation of induction motor was also achieved. An induction motor being rugged, reliable, and relatively inexpensive makes it more preferable in most of the industrial drives. They are mainly used for constant speed applications because of unavailability of the variable-frequency supply voltage. But many applications are in need of variable speed operations. In early times, mechanical gear systems were Fig.5 SFCL in DC system used to obtain variable speed. Recently, power ISSN (Print): , Volume-4 Issue-5,

4 torque speed voltage(v) current Voltage(v) voltage(v) voltage International Journal of Advance Electrical and Electronics Engineering (IJAEEE) Fig 6: Resistive SFCL 4.6. MODELING AND SIMULATION The SFCL model is used in the system to simulate its impact on the dc network. Considering the limiting effect and the co operation with other electrical equipments, the shunt resistor in parallel t with the superconductors to adjust the limited current and to avoid the over voltages. The DC is stable at t =.7s. Simulations are carried out with the short fault happened at t =.8s (t = s at the beginning of the simulation), and the fault will be cleared at t = 1.s. The total simulation time is 2ms. Short circuit currents with and without SFCL is shown in fig Fig.9. Short circuit current, voltage level proposed system Fig.1. Raising edge of short circuit current proposed system SIMULTION DIGRAM OF SFCL WITH MOTOR DRIVE Fig.7 Short circuit current, voltage without SFCL Fig.11. Simulink diagram of SFCL with motor drive Fig.8. Raising edge of Short circuit current without SFCL Fig.12. Simulation result for current, speed, torque with MLI fed to IM ISSN (Print): , Volume-4 Issue-5,

5 The short circuit current in fig.1 are damped oscillation curves because of the large inductance and large capacitor behind the rectifier bridge used to stabilize the dc current and voltage from fig to observed that the short circuit current significantly limited by SFCL. Response time of sfcl is about 1.5ms.the peak value of the fault current is limited about 5% of the fault current without SFCL in 2ms.the simulation results show SFCL has the current limiting ability in the real isolated dc net work and will provide important reference for field test in Ingrid demonstrations. VI. CONCLUSION Super conducting fault current limiter is one of the most ideal current limiting device to the system and electrical equipments. A dc SFCL has been introduced in this paper. This paper presented feasibility analysis results of positioning of the SFCL and its effects on reducing fault current in DC systems. AC and DC SFCL models were designed to perform for the worst case faults with the different SFCL arrangements. From the simulation results, the optimal strategic installation placement of SFCLs in power systems simulation are performed to research impact of SFCL on a real dc systems, and determine the SFCL parameters suitable for this network. It is application of HVDC in future. In this paper SFCL used in induction asynchronous (induction) machine. It does also reduce the fault current. REFERENCES [1] Y. Chen, S. Li, J. Sheg, Z. Jin, Z. Hong, and J. Gu Experimental and numerical study of coordination of resistive type superconducting fault current limiter and relay protection J. superconductivity, Novel magazine, Vol. l26, no.11, page no , Nov [2] G. F.Tang Multiple terminal DC power grid technology presented at the fragrant hill science.meeting, Beijing, china, Sep-27-29, 212. [3] L. Ye and L. Lin, Study of superconducting fault current limiter for system integration of wind farms, IEEE Transactions on Applied Superconductivity, Vol. 15, page No June 215. [4] L. Martini, M. Bocchi, M. Ascade, A.Valzasina, V. Rossi, C. Ravetta and G. Angel Live grid installation and field testing of the first Italian superconducting fault current limiter, IEEE Transactions on Applied Superconductivity, Vol. 23, no.3, p.56254, June 213. [5] L. Xiao, s. Dai, L. Lin, Z. Zhang, and J. Zhang HTS power technology for future DC power grid IEEE Transactions on Applied Superconductivity, Vol. 23. No.3, p.54156, June [6] Y. Huang and Z. Xu study on the pure dc transmission from the west to east in proc. IEEE power Engineering Society General meeting, 24, Page no [7] H. Haung, Xu, W. Wang, and C. Wang Transient stability analysis of shanghai power grid with multiple HVDC links in proc. lnt. POWERCON system Technology, Page No [8] O. B. Hyun, H. R. Kim, J. Sim, Y. H. Chun, K. B. Park,B. W.Lee and I.S.Oh, 6.6 Resistive superconducting fault current limiter based on YBCO films IEEE Transactions on Applied Superconductivity, Vol. 2, No. 3, Page no , June.21. [9] E.Thuriesetal Toward the superconducting fault current limiter, IEEE Transactions on Power delivery, Vol. 6, Page no , April [1] L. Ye, L. Lin, and K. P. Juengst, Application studies of superconducting fault current limiter in electric power systems IEEE Transactions on Applied Superconductivity, Vol.12, No.1, March 22. ISSN (Print): , Volume-4 Issue-5,

Railway Research. Study of Superconducting Fault Current Limiter Device in a AC Railway System. 1. Introduction. International Journal of

Railway Research. Study of Superconducting Fault Current Limiter Device in a AC Railway System. 1. Introduction. International Journal of International Journal of Railway Research, (2015), Vol.2, No1, pp 10-14 ISSN: 236153768187 International Journal of Railway Research Study of Superconducting Fault Current Limiter Device in a AC Railway

More information

Superconducting Fault Current Limiters

Superconducting Fault Current Limiters Superconducting Fault Current Limiters Prof. Dr.-Ing. Mathias Noe, Karlsruhe Institute of Technology Institute for Technical Physics EASITrain Summer School,, September 3rd-7th 2018, Vienna KIT-ENERGY

More information

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Performance of a 3.3kV Resistive type Superconducting Fault Current Limiter S.Vasudevamurthy 1, Ashwini.V 2 1 Department of Electrical

More information

Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch

Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch The MIT Faculty has made this article openly available. Please share how

More information

Superconducting Fault Current Limiters

Superconducting Fault Current Limiters Superconducting Fault Current Limiters First Friday Club 1 st April 2011 Gerhard Novak UK Technical Manager Joachim Bock Managing Director, Nexans Superconductors 1 Smart Grid Solutions 2 Fault current

More information

Fault Current Limiters

Fault Current Limiters Fault Current Limiters Superconductivity in Energy Technology Applications 2010 4. 5.11.2010, Tampere, Finland Prof. Dr. Ing. Mathias Noe, Karlsruhe Institute of Technology, Germany Topics Motivation Different

More information

Superconductivity for Electric Systems DOE 2006 Wire Development Workshop

Superconductivity for Electric Systems DOE 2006 Wire Development Workshop Superconductivity for Electric Systems DOE 2006 Wire Development Workshop St. Petersburg, FL Jan. 31- Feb. 1, 2006 HTS Solutions for a New Dimension in Power 2G HTS Conductors for Fault Current Limiter

More information

Conductor Requirements for Superconducting Fault Current Limiters

Conductor Requirements for Superconducting Fault Current Limiters superior performance. powerful technology. Conductor Requirements for Superconducting Current Limiters Chuck Weber, Director HTS Applications Coated Conductors in Applications 2008 Houston, Texas - December

More information

Design and Application of Superconducting Fault Current Limiter in A Multi-terminal HVDC System

Design and Application of Superconducting Fault Current Limiter in A Multi-terminal HVDC System > ASC2016-3LPo1F-03 < 1 Design and Application of Superconducting Fault Current Limiter in A Multi-terminal HVDC System Qingqing Yang, Simon Le Blond, Fei Liang, Min Zhang, Weijia Yuan, Jianwei Li Abstract

More information

KIT-ENERGY CENTRE. KIT The research University in the Helmholtz Association

KIT-ENERGY CENTRE.  KIT The research University in the Helmholtz Association Superconducting Fault Current Limiters Prof. Dr.-Ing. Mathias Noe, Karlsruhe Institute of Technology Institute for Technical Physics EUCAS Short Course Power Applications,, September 17th 2017, Geneva

More information

Simulation study on operating chara. Author(s) Shirai, Y; Taguchi, M; Shiotsu, M; IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (2003), 13(2): 18

Simulation study on operating chara. Author(s) Shirai, Y; Taguchi, M; Shiotsu, M; IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (2003), 13(2): 18 Simulation study on operating chara Titlesuperconducting fault current limit bus power system Author(s) Shirai, Y; Taguchi, M; Shiotsu, M; Citation IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (2003),

More information

Status and outlook on superconducting fault current limiter development in Europe

Status and outlook on superconducting fault current limiter development in Europe Status and outlook on superconducting fault current limiter development in Europe Mathias Noe 1, Christian Schacherer 1 1. Institute for Technical Physics, Forschungszentrum Karlsruhe, Germany Abstract:

More information

2 nd Generation High-Temperature Superconducting Wires for Fault Current Limiter Applications

2 nd Generation High-Temperature Superconducting Wires for Fault Current Limiter Applications 2LX04 1 2 nd Generation High-Temperature Superconducting Wires for Fault Current Limiter Applications Y.Y. Xie, K. Tekletsadik, D. Hazelton and V. Selvamanickam Abstract In this paper, we report the results

More information

SSC-JE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL

SSC-JE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL 1 SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL Power Systems: Generation, Transmission and Distribution Power Systems: Generation, Transmission and Distribution Power Systems:

More information

Analysis of DC Power Transmission Using High T c Superconducting Cables

Analysis of DC Power Transmission Using High T c Superconducting Cables JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA, VOL. 6, NO., JUNE 8 9 Analysis of DC Power Transmission Using High T c Superconducting Cables Jun-Lian Zhang and Jian-Xun Jin Abstract A conceptual

More information

Nonlinear dynamic simulation model of switched reluctance linear machine

Nonlinear dynamic simulation model of switched reluctance linear machine Procedia Earth and Planetary Science 1 (2009) 1320 1324 Procedia Earth and Planetary Science www.elsevier.com/locate/procedia The 6 th International Conference on Mining Science & Technology Nonlinear

More information

EPRI Technology Watch 2010 Superconducting Cables Fault Current Limiters

EPRI Technology Watch 2010 Superconducting Cables Fault Current Limiters EPRI Technology Watch 2010 Superconducting Cables Fault Current Limiters W. Hassenzahl and M. Young EPRI Task Force Meeting 7/1/2010 Arlington, Virginia EPRI Program Structure Application based Generation

More information

Fault Current Limiter Based on Coated Conductor

Fault Current Limiter Based on Coated Conductor superior performance. powerful technology. Fault Current Limiter Based on Coated Conductor Juan-Carlos H. Llambes, Ph.D. SFCL Program Manager / Senior High Voltage Engineer University of Houston: V. Selvamanickam,

More information

High-temperature superconducting magnet for use in Saturated core FCL

High-temperature superconducting magnet for use in Saturated core FCL High-temperature superconducting magnet for use in Saturated core FCL Z Bar-Haim 1, A Friedman 1,, Y Wolfus, V Rozenshtein 1, F Kopansky, Z Ron 1, E Harel 1, N Pundak 1 and Y Yeshurun 1Ricor-Cryogenic

More information

RESULTS OF ON-GRID OPERATION OF SUPERCONDUCTOR DYNAMIC SYNCHRONOUS CONDENSER

RESULTS OF ON-GRID OPERATION OF SUPERCONDUCTOR DYNAMIC SYNCHRONOUS CONDENSER 1 RESULTS OF ON-GRID OPERATION OF SUPERCONDUCTOR DYNAMIC SYNCHRONOUS CONDENSER Dr. Swarn S. Kalsi, David Madura, and Michael Ross American Superconductor Corporation (USA) Abstract: A high-temperature

More information

IEEE Transactions on Applied Superconductivity. Copyright IEEE.

IEEE Transactions on Applied Superconductivity. Copyright IEEE. Title Loss analysis of permanent magnet hybrid brushless machines with and without HTS field windings Author(s) Liu, C; Chau, KT; Li, W Citation The 21st International Conference on Magnet Technology,

More information

Transient Stability Improvement of a Multi- Machine Power System by Using Superconducting Fault Current Limiters

Transient Stability Improvement of a Multi- Machine Power System by Using Superconducting Fault Current Limiters www.ijep.org International Journal of Energy and Power, Volume 5, 06 doi: 0.4355/ijep.06.05.006 Transient Stability Improvement of a Multi- Machine Power System by Using Superconducting Fault Current Limiters

More information

Inductance and Current Distribution Analysis of a Prototype HTS Cable

Inductance and Current Distribution Analysis of a Prototype HTS Cable Journal of Physics: Conference Series OPEN ACCESS Inductance and Current Distribution Analysis of a Prototype HTS Cable To cite this article: Jiahui Zhu et al J. Phys.: Conf. Ser. 7 7 Recent citations

More information

EE Branch GATE Paper 2010

EE Branch GATE Paper 2010 Q.1 Q.25 carry one mark each 1. The value of the quantity P, where, is equal to 0 1 e 1/e 2. Divergence of the three-dimensional radial vector field is 3 1/r 3. The period of the signal x(t) = 8 is 0.4

More information

Development of 2 MVA Class Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated Conductors

Development of 2 MVA Class Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated Conductors Development of MVA Class Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated Conductors M Kotari, H Kojima, N Hayakawa, F Endo, H Okubo Department of Electrical Engineering and

More information

Mitigation of Distributed Generation Impact on Protective Devices in a Distribution Network by Superconducting Fault Current Limiter *

Mitigation of Distributed Generation Impact on Protective Devices in a Distribution Network by Superconducting Fault Current Limiter * Energy and Power Engineering, 2013, 5, 258-263 doi:10.4236/epe.2013.54b050 Published Online July 2013 (http://www.scirp.org/journal/epe) Mitigation of Distributed Generation Impact on Protective Devices

More information

A Linear Motor Driver with HTS Levitation Techniques

A Linear Motor Driver with HTS Levitation Techniques Volume 1, Number 1, June 2007 Journal of Science, Technology and Engineering 34 A Linear Motor Driver with HTS Levitation Techniques Jian-Xun Jin a, You-Guang Guo b, and Jian-Guo Zhu b a Centre of Applied

More information

Fault Calculation Methods

Fault Calculation Methods ELEC9713 Industrial and Commercial Power Systems Fault Calculation Methods There are two major problems that can occur in electrical systems: these are open circuits and short circuits. Of the two, the

More information

Development of axial flux HTS induction motors

Development of axial flux HTS induction motors Available online at www.sciencedirect.com Procedia Engineering 35 (01 ) 4 13 International Meeting of Electrical Engineering Research ENIINVIE-01 Development of axial flux HTS induction motors A. González-Parada

More information

Grid Issues and Challenges Addressed by High Temperature Superconductor (HTS) Technology

Grid Issues and Challenges Addressed by High Temperature Superconductor (HTS) Technology CIGRÉ US National Committee 21, rue d Artois, F-75008 PARIS Grid of the Future Symposium http : //www.cigre.org Kansas City, October 28-30, 2012 Grid Issues and Challenges Addressed by High Temperature

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 9 Transmission Line Steady State Operation Welcome to lesson 9, in Power

More information

Transient Behavior of

Transient Behavior of Transient Behavior of Static Fault Current Limiter in Distribution System by Shahram Najafi, Vijay K. Sood University of Ontario Institute of Technology, Oshawa, Ontario Electrical Power and Energy Conference

More information

PERFORMANCE ANALYSIS OF SMART GRID WITH SUPER CONDUCTING FAULT CURRENT LIMITER IN A SOLAR AND WIND BASED MICROGRID

PERFORMANCE ANALYSIS OF SMART GRID WITH SUPER CONDUCTING FAULT CURRENT LIMITER IN A SOLAR AND WIND BASED MICROGRID PERFORMANCE ANALYSIS OF SMART GRID WITH SUPER CONDUCTING FAULT CURRENT LIMITER IN A SOLAR AND WIND BASED MICROGRID Avinash Chougule 1, Dr. S. G. Kanade 2 1 ME Student, 2 Professor Department of Electrical

More information

Field-Circuit Coupling Applied to Inductive Fault Current Limiters

Field-Circuit Coupling Applied to Inductive Fault Current Limiters Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Field-Circuit Coupling Applied to Inductive Fault Current Limiters D. Lahaye,1, D. Cvoric 2, S. W. H. de Haan 2 and J. A. Ferreira 2

More information

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015 ECE 325 Electric Energy System Components 7- Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 16-17) Synchronous Generators Synchronous Motors 2 Synchronous Generators

More information

A 2-Dimensional Finite-Element Method for Transient Magnetic Field Computation Taking Into Account Parasitic Capacitive Effects W. N. Fu and S. L.

A 2-Dimensional Finite-Element Method for Transient Magnetic Field Computation Taking Into Account Parasitic Capacitive Effects W. N. Fu and S. L. This article has been accepted for inclusion in a future issue of this journal Content is final as presented, with the exception of pagination IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 1 A 2-Dimensional

More information

Analysis and Design of High-Current Arc-Triggering Hybrid Current-limiting Fuse

Analysis and Design of High-Current Arc-Triggering Hybrid Current-limiting Fuse 21 3rd International Conference on Computer and Electrical Engineering (ICCEE 21) IPCSIT vol. 53 (212) (212) IACSIT Press, Singapore DOI: 1.7763/IPCSIT.212.V53.No.1.14 Analysis and Design of High-Current

More information

Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women, India

Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women, India MODELING AND ANALYSIS OF 6/4 SWITCHED RELUCTANCE MOTOR WITH TORQUE RIPPLE REDUCTION Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women,

More information

Analysis on Current Limiting Characteristics of Transformer Type SFCL with Additionally Coupled Circuit

Analysis on Current Limiting Characteristics of Transformer Type SFCL with Additionally Coupled Circuit J Electr Eng Technol.018; 13(): 533-539 http://doi.org/10.5370/jeet.018.13..533 ISSN(Print) 1975-010 ISSN(Online) 093-743 Analysis on urrent Limiting haracteristics of Transformer Type with Additionally

More information

Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance

Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance 1. What is Faraday s Law? Magnitude of voltage induced in a turn of wire is proportional to the rate of change of flux passing through that

More information

Research of double claw-pole structure generator

Research of double claw-pole structure generator Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):1184-1190 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Research of double claw-pole structure generator

More information

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 5-6, 24, 138 143 PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Martin Lipták This paper

More information

Cahier Technique N 13 Principe de réduction des courants d enclenchement des transformateurs

Cahier Technique N 13 Principe de réduction des courants d enclenchement des transformateurs Cahier Technique N 13 Principe de réduction des courants d enclenchement des transformateurs Numerical transformer inrush current minimizer Principle of the operation Rev 1.0 Document version information

More information

Harmonic Modeling of Networks

Harmonic Modeling of Networks Harmonic Modeling of Networks Thomas H. Ortmeyer ECE Dept. Clarkson University Potsdam, NY 13699-5720 M. Fayyaz Akram Dept. of Elec. Eng. Univ. of Engineering and Technology Lahore, Pakistan Takashi Hiyama

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

Feasibility of HTS DC Cables on Board a Ship

Feasibility of HTS DC Cables on Board a Ship Feasibility of HTS DC Cables on Board a Ship K. Allweins, E. Marzahn Nexans Deutschland GmbH 10 th EPRI Superconductivity Conference Feasibility of HTS DC Cables on Board a Ship 1. Can superconducting

More information

New Generation of DC Power Transmission Technology Using HTS Cables

New Generation of DC Power Transmission Technology Using HTS Cables New Generation of DC Power Transmission Technology Using HTS Cables Jian Xun Jin 1, Jun Lian Zhang 1, You Guang Guo 2, Yue Dong Zhan 2, and Jian Guo Zhu 2 1. Center of Applied Superconductivity and Electrical

More information

Research of Hybrid Three-phase equilibrium Technology

Research of Hybrid Three-phase equilibrium Technology IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Research of Hybrid Three-phase equilibrium Technology To cite this article: K Xu et al 2016 IOP Conf. Ser.: Earth Environ. Sci.

More information

Implementation of Twelve-Sector based Direct Torque Control for Induction motor

Implementation of Twelve-Sector based Direct Torque Control for Induction motor International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 4 ǁ April. 2013 ǁ PP.32-37 Implementation of Twelve-Sector based Direct Torque Control

More information

Development of a Simulink Model of a Saturated Cores Superconducting Fault Current Limiter

Development of a Simulink Model of a Saturated Cores Superconducting Fault Current Limiter Development of a Simulink Model of a Saturated Cores Superconducting Fault Current Limiter Nuno Vilhena 1( ), Pedro Arsénio 1, João Murta-Pina 1, Anabela Gonçalves Pronto 1, and Alfredo Álvarez 2 1 CTS,

More information

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach Adeeb Ahmed Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC, USA aahmed4@ncsu.edu

More information

Design and analysis of a HTS vernier PM machine. IEEE Transactions on Applied Superconductivity. Copyright IEEE.

Design and analysis of a HTS vernier PM machine. IEEE Transactions on Applied Superconductivity. Copyright IEEE. Title Design and analysis of a HTS vernier PM machine Author(s) Li, J; Chau, KT Citation Ieee Transactions On Applied Superconductivity, 2010, v. 20 n. 3, p. 1055-1059 Issued Date 2010 URL http://hdl.handle.net/10722/129194

More information

Study on recovery performance of high T c superconducting tapes for resistive type superconducting fault current limiter applications

Study on recovery performance of high T c superconducting tapes for resistive type superconducting fault current limiter applications Available online at www.sciencedirect.com Physics Procedia 36 (212 ) 1231 1235 Superconductivity Centennial Conference Study on recovery performance of high T c superconducting tapes for resistive type

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract

More information

Analysis on the Operating Characteristic of UHVDC New Hierarchical Connection Mode to AC System

Analysis on the Operating Characteristic of UHVDC New Hierarchical Connection Mode to AC System Open Access Journal Journal of Power Technologies 96 (4) (216) 229 237 journal homepage:papers.itc.pw.edu.pl Analysis on the Operating Characteristic of UHVDC New Hierarchical Connection Mode to AC System

More information

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System Nonlinear Electrical FEA Simulation of 1MW High Power Synchronous Generator System Jie Chen Jay G Vaidya Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 Shaohua Lin Thomas Wu ABSTRACT

More information

ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER

ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER G.V.RAJASEKHAR, 2 GVSSNS SARMA,2 Department of Electrical Engineering, Aurora Engineering College, Hyderabad,

More information

A New Novel of transverse differential protection Scheme

A New Novel of transverse differential protection Scheme A New Novel of transverse differential protection Scheme Li Xiaohua, Yin Xianggen, Zhang Zhe, Chen Deshu Dept of Electrical Engineering, Huazhong University of science and technology, Wuhan Hubei, 430074,

More information

New Transmission Options Case Study Superconductor Cables. Transmission Policy Institute Sheraton Downtown Denver, Colorado April 20-21, 2011

New Transmission Options Case Study Superconductor Cables. Transmission Policy Institute Sheraton Downtown Denver, Colorado April 20-21, 2011 New Transmission Options Case Study Superconductor Cables Transmission Policy Institute Sheraton Downtown Denver, Colorado April 20-21, 2011 1 What is a Superconductor? Superconductors 100/25 Superconductors

More information

Opus: University of Bath Online Publication Store

Opus: University of Bath Online Publication Store Zhu, J., Zhang, Z., Zhang, H., Zhang, M., Qiu, M. and Yuan, W. (2014) Electric measurement of the critical current, AC loss, and current distribution of a prototype HTS cable. IEEE Transactions on Applied

More information

CHAPTER 2 OVERVOLTAGE DUE TO SELF-EXCITATION AND INRUSH CURRENT DUE TO CAPACITOR SWITCHING

CHAPTER 2 OVERVOLTAGE DUE TO SELF-EXCITATION AND INRUSH CURRENT DUE TO CAPACITOR SWITCHING 20 CHAPTER 2 OVERVOLTAGE DUE TO SELF-EXCITATION AND INRUSH CURRENT DUE TO CAPACITOR SWITCHING 2.1 INTRODUCTION It is becoming more common to find use of shunt capacitors for the application of powerfactor

More information

GATE 2010 Electrical Engineering

GATE 2010 Electrical Engineering GATE 2010 Electrical Engineering Q.1 Q.25 carry one mark each 1. The value of the quantity P, where P = xe dx, is equal to (A) 0 (B) 1 (C) e (D) 1/e 2. Divergence of the three-dimensional radial vector

More information

POWER SEMICONDUCTOR BASED ELECTRIC DRIVES

POWER SEMICONDUCTOR BASED ELECTRIC DRIVES POWER SEMICONDUCT BASED ELECTRIC DRIVES [Time: 3 Hrs] [Max. Marks: 80] Instructions: Solve any six questions from Q.No (1 or 2), Q.No (3 or 4), Q.No (5 or 6), Q.No (7 or 8), Q.No (9 or 10), Q.No (11 or

More information

Applications Using SuperPower 2G HTS Conductor

Applications Using SuperPower 2G HTS Conductor superior performance. powerful technology. Applications Using SuperPower 2G HTS Conductor Drew W. Hazelton Principal Engineer, SuperPower Inc. 2011 CEC/ICMC Conference June 16, 2011 Spokane, WA SuperPower

More information

2G HTS Wire Status in the USA

2G HTS Wire Status in the USA 2G HTS Wire Status in the USA Traute F. Lehner Sr. Director of Marketing & Government Affairs, SuperPower Inc. CCAS Secretary International Superconductivity Industry Summit October 31, 2011 November 1,

More information

Study of the Pulsed Field Magnetization Strategy for the Superconducting Rotor

Study of the Pulsed Field Magnetization Strategy for the Superconducting Rotor Study of the Pulsed Field Magnetization Strategy for the Superconducting Rotor Zhen Huang, H. S. Ruiz, Jianzhao Geng, Boyang Shen, and T. A. Coombs 1 Abstract High magnetic field can be trapped in a bulk

More information

Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation

Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation James Ranjith Kumar. R, Member, IEEE, Amit Jain, Member, IEEE, Power Systems Division,

More information

3D Finite Element Simulations of Strip Lines in a YBCO/Au Fault Current Limiter

3D Finite Element Simulations of Strip Lines in a YBCO/Au Fault Current Limiter 1 3D Finite Element Simulations of Strip Lines in a YBCO/Au Fault Current Limiter J. Duron, L. Antognazza, M. Decroux, F. Grilli, S. Stavrev, B. Dutoit and Ø. Fischer Abstract Geometrical aspects of the

More information

Electrical Drives I. Week 3: SPEED-TORQUE characteristics of Electric motors

Electrical Drives I. Week 3: SPEED-TORQUE characteristics of Electric motors Electrical Drives I Week 3: SPEED-TORQUE characteristics of Electric motors b- Shunt DC motor: I f Series and shunt field resistances are connected in shunt (parallel) Exhibits identical characteristics

More information

Lecture #2 Design Guide to Superconducting Magnet

Lecture #2 Design Guide to Superconducting Magnet Lecture #2 Design Guide to Superconducting Magnet Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 CEA Saclay June

More information

A High Performance DTC Strategy for Torque Ripple Minimization Using duty ratio control for SRM Drive

A High Performance DTC Strategy for Torque Ripple Minimization Using duty ratio control for SRM Drive A High Performance DTC Strategy for Torque Ripple Minimization Using duty ratio control for SRM Drive Veena P & Jeyabharath R 1, Rajaram M 2, S.N.Sivanandam 3 K.S.Rangasamy College of Technology, Tiruchengode-637

More information

Study of Transient Behaviour of the Capacitor Voltage Transformer

Study of Transient Behaviour of the Capacitor Voltage Transformer Study of Transient Behaviour of the Capacitor Voltage Transformer Amit Kumar 1, Dr. A. G. Thosar 2, Vivek Moroney 3 PG Student [EPS], Dept. of EE, Government College of Engineering, Aurangabad, Maharashtra,

More information

MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194

MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194 MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194 Question 1 (a) List three sources of heat in soldering (b) state the functions of flux in soldering (c) briefly describe with aid of diagram

More information

Conventional Paper-I-2011 PART-A

Conventional Paper-I-2011 PART-A Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

More information

Design and preliminary results of a prototype HTS SMES device

Design and preliminary results of a prototype HTS SMES device University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2005 Design and preliminary results of a prototype HTS SMES device Christopher

More information

LAB REPORT: THREE-PHASE INDUCTION MACHINE

LAB REPORT: THREE-PHASE INDUCTION MACHINE LAB REPORT: THREE-PHASE INDUCTION MACHINE ANDY BENNETT 1. Summary This report details the operation, modelling and characteristics of a three-phase induction machine. It attempts to provide a concise overview

More information

Shanming Wang, Ziguo Huang, Shujun Mu, and Xiangheng Wang. 1. Introduction

Shanming Wang, Ziguo Huang, Shujun Mu, and Xiangheng Wang. 1. Introduction Mathematical Problems in Engineering Volume 215, Article ID 467856, 6 pages http://dx.doi.org/1.1155/215/467856 Research Article A Straightforward Convergence Method for ICCG Simulation of Multiloop and

More information

Module 3 : Sequence Components and Fault Analysis

Module 3 : Sequence Components and Fault Analysis Module 3 : Sequence Components and Fault Analysis Lecture 12 : Sequence Modeling of Power Apparatus Objectives In this lecture we will discuss Per unit calculation and its advantages. Modeling aspects

More information

The Present Status and Prospective of the power transmission by Superconductors in China

The Present Status and Prospective of the power transmission by Superconductors in China The Present Status and Prospective of the power transmission by Superconductors in China Liye Xiao Institute of Electrical Engineering Chinese Academy of Sciences IASS, Germany, May 12-13, 13, 2011 2011/5/25

More information

Proceedings of the 13th WSEAS International Conference on CIRCUITS

Proceedings of the 13th WSEAS International Conference on CIRCUITS About some FACTS devices from the power systems MARICEL ADAM, ADRIAN BARABOI, CATALIN PANCU Power Systems Department, Faculty of Electrical Engineering Gh. Asachi Technical University 51-53, D. Mangeron,

More information

Alternating Current. Symbol for A.C. source. A.C.

Alternating Current. Symbol for A.C. source. A.C. Alternating Current Kirchoff s rules for loops and junctions may be used to analyze complicated circuits such as the one below, powered by an alternating current (A.C.) source. But the analysis can quickly

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Loss analysis of a 1 MW class HTS synchronous motor

Loss analysis of a 1 MW class HTS synchronous motor Journal of Physics: Conference Series Loss analysis of a 1 MW class HTS synchronous motor To cite this article: S K Baik et al 2009 J. Phys.: Conf. Ser. 153 012003 View the article online for updates and

More information

Analysis of smart grid with superconducting fault current limiters

Analysis of smart grid with superconducting fault current limiters PRATIBHA: INTERNATIONAL JOURNAL OF SCIENCE, SPIRITUALITY, BUSINESS AND TECHNOLOGY (IJSSBT), Vol. 3, No. 2, June 215 Analysis of smart grid with superconducting fault current limiters Priyanka Mahajan 1,

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the

More information

High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply

High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply superior performance. powerful technology. High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply Drew W. Hazelton Principal Engineer, SuperPower Inc. 2010 IEEE Conf Innovative Technology

More information

Modeling of Power System Components During Electromagnetic Transients

Modeling of Power System Components During Electromagnetic Transients Modeling of Power System Components During Electromagnetic Transients 1 Paweł Sowa, 2 Rafał Kumala and 3 Katarzyna Łuszcz 1, 2,3 Faculty of Electrical Engineering, Silesian University of Technology/ Institute

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator 628 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator A. Kishore,

More information

Modeling of Permanent Magnet Synchronous Generator for Wind Energy Conversion System

Modeling of Permanent Magnet Synchronous Generator for Wind Energy Conversion System Modeling of Permanent Magnet Synchronous Generator for Wind Energy Conversion System T.SANTHANA KRISHNAN Assistant Professor (SG), Dept of Electrical & Electronics, Rajalakshmi Engineering College, Tamilnadu,

More information

Progress in Scale-up of 2G HTS Wire at SuperPower Part III

Progress in Scale-up of 2G HTS Wire at SuperPower Part III superior performance. powerful technology. Progress in Scale-up of 2G HTS Wire at SuperPower Part III V. Selvamanickam & Y. Xie Y. Chen, X. Xiong, M. Martchevski, Y. Qiao, A. Rar, B. Gogia, R. Schmidt,

More information

Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles

Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles Progress In Electromagnetics Research M, Vol. 6, 113 123, 16 Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles Liang Xu, Guohai Liu, Wenxiang Zhao *, and Jinghua

More information

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods International Journal of Electrical and Electronics Research ISSN 348-6988 (online) Vol., Issue 3, pp: (58-66), Month: July - September 04, Available at: www.researchpublish.com Transient Stability Analysis

More information

Short-circuit protection to a fault: Superconducting fault current limiters

Short-circuit protection to a fault: Superconducting fault current limiters Dr. Joachim Bock, Nexans Superconductors, Germany Short-circuit protection to a fault: Superconducting fault current limiters Nexans has commissioned the world s first superconducting fault current limiter

More information

Research on the winding control system in winding vacuum coater

Research on the winding control system in winding vacuum coater Acta Technica 61, No. 4A/2016, 257 268 c 2017 Institute of Thermomechanics CAS, v.v.i. Research on the winding control system in winding vacuum coater Wenbing Jin 1, Suo Zhang 1, Yinni Jin 2 Abstract.

More information

Request Ensure that this Instruction Manual is delivered to the end users and the maintenance manager.

Request Ensure that this Instruction Manual is delivered to the end users and the maintenance manager. Request Ensure that this Instruction Manual is delivered to the end users and the maintenance manager. 1 -A - Introduction - Thank for your purchasing MITSUBISHI ELECTRIC MELPRO TM D Series Digital Protection

More information

Transient Analysis of a 150 kv Fault Current Limiting High Temperature Superconducting Cable

Transient Analysis of a 150 kv Fault Current Limiting High Temperature Superconducting Cable Transient Analysis of a kv Fault Current Limiting High Temperature Superconducting Cable Vandana S. Mehairjan 1, Marjan Popov 2, Alex Geschiere 1, Will L. Kling 3 Abstract The interconnection of electrical

More information