High Field HTS SMES Coil

Size: px
Start display at page:

Download "High Field HTS SMES Coil"

Transcription

1 High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer Brookhaven National Laboratory, NY, USA December 1, 2014 High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

2 From our sponsor: Overview ARPA-E s mission is to catalyze and accelerate the creation of transformational energy technologies by making high-risk, high-reward investments in their early stages of development This presentation summarizes an aggressive R&D where We demonstrated a higher field and a higher operating temperature energy storage coil than proposed before 12.5 T SMES coil operating at 27 K High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

3 SMES SYSTEM Proposal Magnet Energy Storage System with Direct Power Electronics Interface Project Goal: Competitive, fast response, grid-scale MWh superconducting magnet energy storage (SMES) system Team member major contributions: ABB: Power electronics, Lead BNL: SMES coil and switch SP: 2G HTS manufacture and improved production UH: Wire manufacturing process research High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

4 Focus of the Presentation Technology for High field HTS SMES coil Design, construction and test results For economic viability of a large scale energy storage system, cost of coated conductor must come down significantly (smart designs can help) The technology developed could already be applied to special purpose storage system and other applications High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

5 SMES Options with HTS High Temperature Option (~65 K): Saves on cryogenics (Field ~2.5 T) High Field (~25 T) Option: Saves on Conductor (Temperature ~4 K) Previous attempts: LTS: up to ~5 T HTS: few Tesla (high temp. to save on cryo) High Temperature SMES Ring Our analysis on HTS option: Presently conductor cost dominates the cryogenic cost by an order of magnitude High Field SMES Ring High field HTS could be game changer: Very high fields: T (E α B 2 ) Only with HTS (high risk, high reward) Also: A medium field and medium temperature option (a new record 12.5T@27K demonstrated, thanks to arpa-e) High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

6 The Basic Demo Module Aggressive parameters: Field: 25 K (more than ever) Bore: 100 mm (large) Hoop Stresses: 400 MPa (>2X) Conductor: ReBCO (evolving) High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

7 Conductor ReBCO Tape HTS tape: angular dependence Measurements at NHMFL (earlier sample) SMES specs (12 mm): >700 (at any angle) 12 mm wide ReBCO tape with high strength hastelloy substrate High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

8 Large Scale SMES Concept (1) A torus would consist of a large number of solenoid module Field becomes parallel => less amount of conductor required High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

9 IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), April Radius: 5 meter, height ~5 meter Consists of double pancakes same as in demo Large Scale SMES Concept (2) 10 rings, each consisting of ~1000 double pancakes GJ scale GRID storage system that can fit in a room! Moreover, a small B (<0.5 T) for a large B// (30 T) means a major reduction in conductor cost (~1/5 with an optimized HTS) High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

10 Design Parameters of BNL Demonstration Coil Stored Energy 1.7 MJ Currrent 700 Amperes Inductance 7 Henry Maximum Field 25 Tesla Operating Temperature 4.2 Kelvin Overall Ramp Rate 1.2 Amp/sec Number of Inner Pancakes 28 Number of Outer Pancakes 18 Total Number of Pancakes 46 Inner dia of Inner Pancake 102 mm Outer dia of Inner Pancake 194 mm Inner dia of Outer Pancake 223 mm Outer dia of Outer Pancake 303 mm Intermediate Support 13 mm Outer Support 7 mm Width of Double Pancake 26 mm High field and big radius create large stresses (~400 MPa) High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

11 Cross-section of Coil and Support Tube Conductor used (ReBCO from SP): Well over 6 km (12 mm wide tape) High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

12 Grading to Optimize Magnetic and Mechanical Design Current density J (A/mm 2 ) Intermediate end structure Number of turns per pancake (for same coil i.d. and o.d.) Current density J (A/mm 2 ) Adjusted for grading: Cu thickness in HTS tape (65 and 100 mm) SS tape thickness (65 and 100 mm) (more copper in ends; more SS in center) axial radial (Max 7.6 T) B r B r (Max 7.1T) End Result: Improved performance Better mechanical structure and reduced Bperp Initial 1.7 MJ Design Optimized 1.7 MJ Design High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

13 HTS Single Pancake High strength HTS tape, co-wound with SS tape (for insulation and added strength) Thickness of SS tape and copper on HTS adjusted to optimize the performance V-taps for QA Outer: ~210 meter 12 mm tape (258 turns) High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

14 Two Pancakes Connected with Spiral Splice Joint High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

15 Inner and Outer Coils Assembled Inner Coil (102 mm id, 194 mm od) 28 pancakes Outer Coil (223 mm id, 303 mm od) 18 pancakes Total: 46 pancakes High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

16 Coils, Test Fixtures and Support Structure Pancake coils: inner and outer Outer Support Tube for Inner Outer Assembly Tube for Outer 11 T, 760 A coil and fixture 77 K Test Fixture for outer Inner Assembly Tube for Inner Copper Discs Outer Support Tube for Outer High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

17 Inner and Outer Coils Inner (in support tube) Outer (prior to support tube) High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

18 Final Assembly Outer inserted over inner coil SMES coil in iron laminations High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

19 Test Results High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

20 77 K Test of a Series of Double Pancakes (inner) Critical current (1 µv/cm) Two single pancakes powered in series. High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

21 I c (A) based on 0.1mV/cm criterion 250 Outer double pancake coils O1-1 O1-2 O2-1 O2-2 MT23, Lakshmi, et al O K Test of a Series of Double Pancakes (outer) Two pancakes powered in series Four types to achieve grading (see slide 12) O9-2 O3-1 n-value Type A -CC(160 mm) + SS (25 mm) Measured value, Beyond range Type B -CC(160 mm) + SS (50 mm) Measured value, Beyond range Type C -CC(120 mm) + SS (25 mm) Measured value, Beyond range Type D -CC(120 mm) + SS (50 mm) Measured value, Beyond range O3-2 O4-1 O4-2 O7-1 O7-2 Single pancake coil ID High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1, O8-1 O8-2 O5-1 O5-2 O6-1 O6-2 I c (A), n-value O1-1 Single pancakes powered alone 1 mv/cm 0.1 mv/cm, Type A, Type B, Type C, Type D n- value O1-2 O2-1 O2-2 O9-1 O9-2 O3-1 O3-2 O4-1 O4-2 O8-1 O8-2 Outer single pancake coil ID Higher I c in coil at 77K, however, doesn t necessarily translate in to a higher I c at 4K (present conductor) O5-1 O5-2 O6-1 O6-2

22 2 pancakes with similar critical currents Double Pancake 77 K Test 2 pancakes with very different critical current one pancake good and other pancake defective Note: Thorough 77 K test of each pancake was an important part of a series for QA High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

23 IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), April pancakes 760 A, 4K, 11.4 T 46 pancakes 350 A, 27K, 12.5 T Peak fields higher 2 pancakes 1140 A, 4K HTS SMES Coil High Field Tests High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

24 1200 Double Pancake Coil Test Nominal design current: ~700 A I c Top Coil Bottom Coil Temperature (K) Ramp rate up to 10 A/s The option of operating over a large range (the benefit of HTS) High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

25 12 Pancake Coil Test Current (A) Charge :09:07 PM 4:14:53 PM 4:20:38 PM 4:26:24 PM 4:32:10 PM 4:37:55 PM 4:43:41 PM 4:49:26 PM Time 11.4 T in 100 mm bore Current (A) Quench Time (sec) Energy (~125 kj) extracted and dumped in the external resistor. 77 K re-test (after quench) showed that the coil remained healthy. High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

26 Preparation for the Final Test High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

27 Current (A) Amp 425 kj id:102 mm od:303 mm SMES Coil Run on 5/21/ Tesla at 27 K Coil Current Record field/energy density in a superconducting magnet at a temperature of 10 Kelvin or higher 0 14:24 15:36 16:48 18:00 19:12 20:24 21:36 Time (hh:mm) 27 K possible with liquid Neon High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

28 Status of ARPA-E SMES Coil The design goal was: 1.7 MJ at ~700 A with 25 T at 4 K. We tested the unit at several temperatures between K, including the 350 Amp (12.5 T) test at 27 K. During one such test, the system tripped due to a data entry error at ~165 A well below the earlier magnet test current. This trip resulted in damage to a few current leads in the inner coil. It appears that there was arcing, perhaps during shut-off. Since the test was not limited by the field performance, the SMES coil still has the potential to reach higher field after repair. High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

29 Quench Protection High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

30 BNL HTS Quench Protection Strategy A multi-pronged strategy developed and used at BNL in various HTS programs: Detect early and react fast with an advance quench protection system 1. Developed an advanced low-noise electronics and noise cancellation scheme to detect pre-quench voltage (phase) where HTS coils can operate safely 2. Fast energy extraction with electronics to handle high isolation voltage (>1kV) 3. Use inductively coupled copper discs for fast energy extraction Drawback: additional energy loss during charging and discharging Current (A) High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1, Voltage (mv) Twelve coil test at 4K (~12 T, ~120 KJ) Difference Voltage between Coil#2 and Coil#11 (1mV = 0.1 mv/cm for 100 m), with offset Pre-quench phase

31 800 Copper Discs for Energy Extraction Inductively coupled cooper discs between two double pancakes I 2 (Amp 2 ) 6.E+05 5.E+05 4.E+05 3.E E+05 1.E+05 Current (A) This fast extraction provides initial margin at the critical time Time (sec) High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1, I 2 (Amp 2 ) 0.E+00 6.E+05 5.E+05 4.E+05 3.E+05 2.E+05 1.E Time (sec) Most action in milliseconds 0.E Time (sec)

32 SUMMARY Even though we didn t reach the aggressive design goal of 25 T, in a big aperture (~100 mm) superconducting magnet with large hoop stresses (~400 MPa) in the first attempt, we did learn several things in the process beside creating new records. This provided a significant experience in using a large amount of coated conductor (over 6 km of 12 mm wide tape) in a demanding 4K, high field and a high stress application. Demonstration of a 12.5 T SMES coil at 27 K is a promising application of the coated conductor. The earlier most ambitious proposal was for 11 T at 20 K by Chubu Electric and Furukawa. The experience and technologies developed should also be useful in other applications, such as in NMR, ADMX, accelerators, etc. High Field HTS SMES Coil R. Gupta,..., BNL CCA2014 S. Korea Dec. 1,

of a Large Aperture High Field HTS SMES Coil

of a Large Aperture High Field HTS SMES Coil Design, Construction and Testing of a Large Aperture High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer High Field HTS SMES Coil R.

More information

Progress Towards A High-field HTS Solenoid

Progress Towards A High-field HTS Solenoid Progress Towards A High-field HTS Solenoid Ramesh Gupta For PBL/BNL Team Ramesh Gupta, BNL, Progress towards a high-field HTS solenoid, Jefferson Lab, March 3, 2011 Slide No. 1 Overview High Field HTS

More information

Application of SuperPower 2G HTS Wire to High Field Devices

Application of SuperPower 2G HTS Wire to High Field Devices superior performance. powerful technology. Application of SuperPower 2G HTS Wire to High Field Devices Drew W. Hazelton Principal Engineer, SuperPower, Inc. 2011 MT22 Conference Marseille, France Sept.

More information

Honghai Song. Yawei Wang, Kent Holland, Ken Schrock, Saravan Chandrasekaran FRIB/MSU & SJTU June 2015, SJTU Xuhui Campus

Honghai Song. Yawei Wang, Kent Holland, Ken Schrock, Saravan Chandrasekaran FRIB/MSU & SJTU June 2015, SJTU Xuhui Campus Alternative Approach to ReBCO HTS Magnet Operation and Protection: - Influence of Turn-to-turn Equivalent Resistivity and Coil Size on Fast-discharge and Ramping of Metallic Insulation HTS Coils Honghai

More information

Applications Using SuperPower 2G HTS Conductor

Applications Using SuperPower 2G HTS Conductor superior performance. powerful technology. Applications Using SuperPower 2G HTS Conductor Drew W. Hazelton Principal Engineer, SuperPower Inc. 2011 CEC/ICMC Conference June 16, 2011 Spokane, WA SuperPower

More information

2G HTS Coil Winding Technology Development at SuperPower

2G HTS Coil Winding Technology Development at SuperPower superior performance. powerful technology. 2G HTS Coil Winding Technology Development at SuperPower D.W. Hazelton, P. Brownsey, H. Song, Y. Zhang Tuesday, June 18, 2013 2013 CEC-ICMC Anchorage Alaska Paper

More information

Lecture #2 Design Guide to Superconducting Magnet

Lecture #2 Design Guide to Superconducting Magnet Lecture #2 Design Guide to Superconducting Magnet Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 CEA Saclay June

More information

2G HTS Wire and High Field Magnet Demonstration

2G HTS Wire and High Field Magnet Demonstration 2G HTS Wire and High Field Magnet Demonstration Presented by: Drew W. Hazelton SuperPower, Inc. Low Temperature Superconductivity Workshop S. Lake Tahoe, CA October 29, 2007 Providing HTS Solutions for

More information

Continued Developments in High Magnetic Fields Enabled by Second-Generation High- Temperature Superconductors

Continued Developments in High Magnetic Fields Enabled by Second-Generation High- Temperature Superconductors superior performance. powerful technology. Continued Developments in High Magnetic Fields Enabled by Second-Generation High- Temperature Superconductors Drew W. Hazelton - Principal Engineer, HTS Applications

More information

2G HTS Wire Status in the USA

2G HTS Wire Status in the USA 2G HTS Wire Status in the USA Traute F. Lehner Sr. Director of Marketing & Government Affairs, SuperPower Inc. CCAS Secretary International Superconductivity Industry Summit October 31, 2011 November 1,

More information

Retraining of the 1232 Main Dipole Magnets in the LHC

Retraining of the 1232 Main Dipole Magnets in the LHC Retraining of the 1232 Main Dipole Magnets in the LHC A. Verweij, B. Auchmann, M. Bednarek, L. Bottura, Z. Charifoulline, S. Feher, P. Hagen, M. Modena, S. Le Naour, I. Romera, A. Siemko, J. Steckert,

More information

Update on the Developments of Coated Conductor High Field Magnets in Japan

Update on the Developments of Coated Conductor High Field Magnets in Japan Coated Conductors for Applications 2016 September 11-14, 2016, Aspen, Colorado, USA Update on the Developments of Coated Conductor High Field Magnets in Japan S. Awaji HFLSM, IMR, Tohoku University 1 Recent

More information

RE-Ba 2 Cu 3 O 7-d coated conductor helical cables for electric power transmission and SMES

RE-Ba 2 Cu 3 O 7-d coated conductor helical cables for electric power transmission and SMES RE-Ba 2 Cu 3 O 7-d coated conductor helical cables for electric power transmission and SMES D.C. van der Laan and X.F. Lu University of Colorado & National Institute of Standards and Technology, Boulder,

More information

Experience in manufacturing a large HTS magnet for a SMES

Experience in manufacturing a large HTS magnet for a SMES Superconducting magnets April 05-09, 2009 CEA Cadarache, France Experience in manufacturing a large HTS magnet for a SMES P. Tixador Grenoble INP / Institut Néel - G2Elab Outline Introduction: SMES SMES:

More information

Thermal Stability of Yttrium Based Superconducting Coil for Accelerator Application

Thermal Stability of Yttrium Based Superconducting Coil for Accelerator Application Thermal Stability of Yttrium Based Superconducting Coil for Accelerator Application Xudong Wang, 1 Kiyosumi Tsuchiya, 1 Shinji Fujita, Shogo Muto, Masanori Daibo, 3 Yasuhiro Iijima and Kunihiro Naoe Yttrium(Y)-based

More information

Design Principles of Superconducting Magnets

Design Principles of Superconducting Magnets 1 Design Principles of Superconducting Magnets Aki Korpela Tampere University of Technology DESIGN PRINCIPLES OF SUPERCONDUCTING MAGNETS 2 Content of the presentation Background Short-sample measurement

More information

HIMARC Simulations Divergent Thinking, Convergent Engineering

HIMARC Simulations Divergent Thinking, Convergent Engineering HIMARC Simulations Divergent Thinking, Convergent Engineering 8117 W. Manchester Avenue, Suite 504 Los Angeles, CA 90293 Ph: (310) 657-7992 Horizontal Superconducting Magnet, ID 1.6m 1 1 Design definition

More information

Recent Developments in YBCO for High Field Magnet Applications

Recent Developments in YBCO for High Field Magnet Applications superior performance. powerful technology. Recent Developments in YBCO for High Field Magnet Applications D.W. Hazelton Principal Engineer, SuperPower, Inc. 2008 Low Temperature Superconductor Workshop

More information

The Design and Fabrication of a 6 Tesla EBIT Solenoid

The Design and Fabrication of a 6 Tesla EBIT Solenoid LBNL-40462 SCMAG-593 The Design and Fabrication of a 6 Tesla EBIT Solenoid 1. Introduction M. A. Green a, S. M. Dardin a, R. E. Marrs b, E. Magee b, S. K. Mukhergee a a Lawrence Berkeley National Laboratory,

More information

Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements

Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements superior performance. powerful technology. Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements Traute F. Lehner, Sr. Director of Marketing 7 th MEM Workshop (Mechanical

More information

Technology Development. Overview and Outlook

Technology Development. Overview and Outlook Technology Development Overview and Outlook Kirk McDonald, for Alan Bross MAP Collaboration Meeting JLAB, March 4, 2011 Outline R&D Goals Status to date FY 11 Milestones & beyond Outlook Kirk McDonald,

More information

REBCO tape performance under high magnetic field

REBCO tape performance under high magnetic field Eur. Phys. J. Appl. Phys. (2017) 79: 30601 DOI: 10.1051/epjap/2017160430 Regular Article THE EUROPEAN PHYSICAL JOURNAL APPLIED PHYSICS REBCO tape performance under high magnetic field Tara Benkel 1,2,a,

More information

Ch. 3. Pulsed and Water Cooled Magnets. T. J. Dolan. Magnetic field calculations

Ch. 3. Pulsed and Water Cooled Magnets. T. J. Dolan. Magnetic field calculations Ch. 3. Pulsed and Water Cooled Magnets T. J. Dolan Magnetic field calculations Coil forces RLC circuit equations Distribution of J and B Energy storage Switching and transmission Magnetic flux compression

More information

Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets

Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets Ronald Agustsson Josiah Hartzell, Scott Storms RadiaBeam Technologies, LLC Santa Monica, CA US DOE SBIR Phase I Contract #

More information

Accelerators. Table Quadrupole magnet

Accelerators. Table Quadrupole magnet Accelerators 2.6 Magnet System 2.6.1 Introduction According to the BEPCII double ring design scheme, a new storage ring will be added in the existing BEPC tunnel. The tasks of the magnet system can be

More information

Material, Design, and Cost Modeling for High Performance Coils. L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting

Material, Design, and Cost Modeling for High Performance Coils. L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting Material, Design, and Cost Modeling for High Performance Coils L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting Tokamak Concept Improvement Cost minimization Decrease cost of final

More information

Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System

Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System IEEE Transactions on Applied Superconductor 9, No. 3 MICE Note 34 Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System L. Wang, F. Y. Xu, H. Wu, X. K. Liu, L. K. Li, X. L. Guo, H.

More information

Development, Manufacturing and Applications of 2G HTS Wire at SuperPower

Development, Manufacturing and Applications of 2G HTS Wire at SuperPower superior performance. powerful technology. Development, Manufacturing and Applications of 2G HTS Wire at SuperPower Traute Lehner - Senior Director of Marketing & Govt. Affairs Yifei Zhang, Ph.D. - Senior

More information

2G HTS Wire for Demanding Applications and Continuous Improvement Plans

2G HTS Wire for Demanding Applications and Continuous Improvement Plans superior performance. powerful technology. 2G HTS Wire for Demanding Applications and Continuous Improvement Plans DW Hazelton Tuesday, September 17, 2013 EUCAS-2013, Genova, Italy SuperPower Inc. is a

More information

Central Solenoid Winding Pack Design

Central Solenoid Winding Pack Design EUROFUSION WPMAG-CP(16) 15681 R Wesche et al. Central Solenoid Winding Pack Design Preprint of Paper to be submitted for publication in Proceedings of 29th Symposium on Fusion Technology (SOFT 2016) This

More information

1st Performance Test of the 25 T Cryogen-free Superconducting Magnet

1st Performance Test of the 25 T Cryogen-free Superconducting Magnet 1 1st Performance Test of the 25 T Cryogen-free Superconducting Magnet Satoshi Awaji, Kazuo Watanabe, Hidetoshi Oguro, Hiroshi Miyazaki, Satoshi Hanai, Taizo Tosaka, Shigeru Ioka Abstract A 25 T cryogen-free

More information

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Performance of a 3.3kV Resistive type Superconducting Fault Current Limiter S.Vasudevamurthy 1, Ashwini.V 2 1 Department of Electrical

More information

REBCO HTS Wire Manufacturing and Continuous Development at SuperPower

REBCO HTS Wire Manufacturing and Continuous Development at SuperPower Superior performance. Powerful technology. REBCO HTS Wire Manufacturing and Continuous Development at SuperPower Yifei Zhang, Satoshi Yamano, Drew Hazelton, and Toru Fukushima 2018 IAS-HEP Mini-Workshop

More information

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J , : & HTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J , : & HTS MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J Spring Term 23 May 8, 23 Lecture 1: Protection & HTS Magnets Key magnet issues

More information

Feasibility of HTS DC Cables on Board a Ship

Feasibility of HTS DC Cables on Board a Ship Feasibility of HTS DC Cables on Board a Ship K. Allweins, E. Marzahn Nexans Deutschland GmbH 10 th EPRI Superconductivity Conference Feasibility of HTS DC Cables on Board a Ship 1. Can superconducting

More information

Testing of Single Phase Short Sample Cable Core Made with YBCO Conductors

Testing of Single Phase Short Sample Cable Core Made with YBCO Conductors Testing of Single Phase Short Sample Cable Core Made with YBCO Conductors C. S. Weber, V. Selvamanickam, Y.Y. Xie - SuperPower, Inc. T. Masuda, H. Yumura - Sumitomo Electric Industries Session # 4LW1 HTS

More information

Validation of COMSOL -Based Performance Predictions of Bi-2212 Round Wire Prototype Coils

Validation of COMSOL -Based Performance Predictions of Bi-2212 Round Wire Prototype Coils Validation of COMSOL -Based Performance Predictions of Bi-2212 Round Wire Prototype Coils Ernesto S. Bosque U.P. Trociewitz Y.Kim, D.K. Hilton, C.L. English, D.S. Davis, G. Miller, D. Larbalestier Bi-2212

More information

Which Superconducting Magnets for DEMO and Future Fusion Reactors?

Which Superconducting Magnets for DEMO and Future Fusion Reactors? Which Superconducting Magnets for DEMO and Future Fusion Reactors? Reinhard Heller Inspired by Jean Luc Duchateau (CEA) INSTITUTE FOR TECHNICAL PHYSICS, FUSION MAGNETS KIT University of the State of Baden-Wuerttemberg

More information

Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector

Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector V. I. Klyukhin Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119992, Russia

More information

UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop Bethesda, MD November 12-13, 2015 Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology, Cambridge MA Acknowledgement

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title The Mechanical and Thermal Design for the MICE Focusing Solenoid Magnet System Permalink https://escholarship.org/uc/item/7652n8md

More information

High-temperature superconducting magnet for use in Saturated core FCL

High-temperature superconducting magnet for use in Saturated core FCL High-temperature superconducting magnet for use in Saturated core FCL Z Bar-Haim 1, A Friedman 1,, Y Wolfus, V Rozenshtein 1, F Kopansky, Z Ron 1, E Harel 1, N Pundak 1 and Y Yeshurun 1Ricor-Cryogenic

More information

To be published in the Proceedings of ICEC-22, Seoul Korea, July 2008 MICE Note 232 1

To be published in the Proceedings of ICEC-22, Seoul Korea, July 2008 MICE Note 232 1 To be published in the Proceedings of ICEC-22, Seoul Korea, 21-25 July 2008 MICE Note 232 1 AC Loss Analysis on the Superconducting Coupling in MICE H. Wu, L. Wang, M. A. Green*, L. K. Li, F. Y. Xu, X.

More information

Superconducting Fault Current Limiters

Superconducting Fault Current Limiters Superconducting Fault Current Limiters First Friday Club 1 st April 2011 Gerhard Novak UK Technical Manager Joachim Bock Managing Director, Nexans Superconductors 1 Smart Grid Solutions 2 Fault current

More information

Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor

Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor N. Yanagi, A. Sagara and FFHR-Team S. Ito 1, H. Hashizume 1 National Institute for Fusion Science 1 Tohoku University

More information

Latest Status of High Temperature Superconducting Cable Projects

Latest Status of High Temperature Superconducting Cable Projects Latest Status of High Temperature Superconducting Cable Projects Y.Ashibe, H.Yumura, M.Watanabe, H.Takigawa, H.Ito, M.Ohya, T.Masuda and M.Hirose Sumitomo Electric Industries, Ltd.Osaka,554-0024 Japan

More information

EuCARD-2 Enhanced European Coordination for Accelerator Research & Development. Journal Publication

EuCARD-2 Enhanced European Coordination for Accelerator Research & Development. Journal Publication CERN-ACC-2016-0039 EuCARD-2 Enhanced European Coordination for Accelerator Research & Development Journal Publication HTS Dipole Magnet for a Particle Accelerator using a Twisted Stacked Cable Himbele,

More information

Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS

Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS Solution sets are available on the course web site. A data sheet is provided. Problems marked by "*" do not have solutions. 1. An

More information

High Magnetic Field Science and the Magnetic Resonance Industry

High Magnetic Field Science and the Magnetic Resonance Industry and the Magnetic Resonance Industry Presentation to the Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States Jim Hollenhorst Senior Director of

More information

High-Performance Y-based Superconducting Wire and Their Applications

High-Performance Y-based Superconducting Wire and Their Applications High-Performance Y-based Superconducting Wire and Their Applications Yasuhiro Iijima 1 Yttrium(Y)-based superconducting wires are expected to be applied to various superconducting apparatus. They have

More information

Second Generation HTS Wire for Electric Power Applications

Second Generation HTS Wire for Electric Power Applications superior performance. powerful technology. Second Generation HTS Wire for Electric Power Applications Yi-Yuan Xie, D. Hazelton, J.C. Llambes, Y. Chen, X. Xiong, A. Rar, K. Lenseth, Y. Qiao, A. Knoll J.

More information

Second-generation HTS Wire for Wind Energy Applications

Second-generation HTS Wire for Wind Energy Applications Second-generation HTS Wire for Wind Energy Applications Venkat Selvamanickam, Ph.D. Department of Mechanical Engineering Texas Center for Superconductivity University of Houston, Houston, TX SuperPower

More information

Magnet and Cryostat Configurations For a Multi-port Quadrupole Array*

Magnet and Cryostat Configurations For a Multi-port Quadrupole Array* Magnet and Cryostat Configurations For a Multi-port Quadrupole Array* LBNL-46587 SCMAG-728 M. A. Green, and R. O. Bangerter Lawrence Berkeley NationalLaboratory Berkeley CA 94720, USA August 2000 Presented

More information

Status of 2G HTS Wire Production at SuperOx

Status of 2G HTS Wire Production at SuperOx Status of 2G HTS Wire Production at SuperOx Sergey Samoilenkov SuperOx, Moscow, Russia 1 Outline About SuperOx 2G HTS wire characteristics New customization options for 2G HTS wire Development for applications

More information

Conductor Requirements for Superconducting Fault Current Limiters

Conductor Requirements for Superconducting Fault Current Limiters superior performance. powerful technology. Conductor Requirements for Superconducting Current Limiters Chuck Weber, Director HTS Applications Coated Conductors in Applications 2008 Houston, Texas - December

More information

Challenges in Mechanical and Electrical Design of EuCARD2 HTS Insert Magnet's.!!

Challenges in Mechanical and Electrical Design of EuCARD2 HTS Insert Magnet's.!! Challenges in Mechanical and Electrical Design of EuCARD2 HTS Insert Magnet's.!! G. Kirby, J. van Nugteren, J. Murtomaki, K. Broekens, H. Bajas, A. Ballarino, M. Bajko!L. Bottura, M.Canale,! L.Gentini,

More information

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP I DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP K. Myznikov, A. Ageyev, V. Sytnik, I. Bogdanov, S. Kozub, E. Kashtanov, A. Orlov, V. Sytchev,

More information

2G HTS Wires for High Magnetic

2G HTS Wires for High Magnetic 2G HTS Wires for High Magnetic Field Applications Venkat Selvamanickam Department of Mechanical Engineering Texas Center for Superconductivity University it of Houston, Houston, TX, USA SuperPower Inc,

More information

Second-Generation HTS Wire for Magnet Applications

Second-Generation HTS Wire for Magnet Applications superior performance. powerful technology. Second-Generation HTS Wire for Magnet Applications Yi-Yuan Xie, V. Selvamanickam, J. Dackow, D. Hazelton, Y. Chen, X. Xiong, A. Rar, Y. Qiao, K. Lenseth, and

More information

R&D ON FUTURE CIRCULAR COLLIDERS

R&D ON FUTURE CIRCULAR COLLIDERS R&D ON FUTURE CIRCULAR COLLIDERS Double Chooz ALICE Edelweiss HESS Herschel CMS Detecting radiations from the Universe. Conseil Scientifique de l Institut 2015 Antoine Chance and Maria Durante MOTIVATIONS

More information

SuperPower s path to leadership in clean, green and smart energy technology

SuperPower s path to leadership in clean, green and smart energy technology superior performance. powerful technology. SuperPower s path to leadership in clean, green and smart energy technology Traute F. Lehner Sr. Director, Marketing & Gov t Affairs Advanced Energy Conference

More information

Author(s) Atsushi; Urayama, Shinichi; Fukuyam. Citation Physics Procedia (2015), 65:

Author(s) Atsushi; Urayama, Shinichi; Fukuyam. Citation Physics Procedia (2015), 65: Title Project Overview of HTS Magnet for System Tosaka, Taizo; Miyazaki, Hiroshi; I Author(s) Yasumi; Takahashi, Masahiko; Tasaki Kurusu, Tsutomu; Ueda, Hiroshi; Nog Atsushi; Urayama, Shinichi; Fukuyam

More information

Design of a laminated-steel magnetic core for use in a HT-SMES

Design of a laminated-steel magnetic core for use in a HT-SMES Journal of Materials Processing Technology 161 (25) 28 32 Design of a laminated-steel magnetic core for use in a HT-SMES A. Friedman, M. Zarudi, N. Shaked, M. Sinvani, Y. Wolfus, Y. Yeshurun Institute

More information

Challenges on demountable / segmented coil concept for high-temperature superconducting magnet

Challenges on demountable / segmented coil concept for high-temperature superconducting magnet Challenges on demountable / segmented coil concept for high-temperature superconducting magnet N. Yanagi 1, S. Ito 2, H. Hashizume 2, A. Sagara 1 1 National Institute for Fusion Science 2 Tohoku University

More information

Laboratory 14: Ratio of Charge to Mass for the Electron

Laboratory 14: Ratio of Charge to Mass for the Electron Laboratory 14: Ratio of Charge to Mass for the Electron Introduction The discovery of the electron as a discrete particle of electricity is generally credited to the British physicist Sir J. J. Thomson

More information

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-04: FARADAY'S EXPERIMENT - EME SET - 20, 40, 80 TURN COILS K2-62: CAN SMASHER - ELECTROMAGNETIC K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-44: EDDY CURRENT PENDULUM K4-06: MAGNETOELECTRIC GENERATOR

More information

Status of 2G HTS Wire Development & Production in the US, plus an Overview of the SFCL Transformer and 2G SMES Programs

Status of 2G HTS Wire Development & Production in the US, plus an Overview of the SFCL Transformer and 2G SMES Programs superior performance. powerful technology. Status of 2G HTS Wire Development & Production in the US, plus an Overview of the SFCL Transformer and 2G SMES Programs Traute Lehner Sr. Director Marketing &

More information

Gesellschaft für Schwerionenforschung mbh (GSI), Planckstrasse 1, D Darmstadt, Germany

Gesellschaft für Schwerionenforschung mbh (GSI), Planckstrasse 1, D Darmstadt, Germany Proceedings of ICEC 22ICMC 2008, edited by HoMyung CHANG et al. c 2009 The Korea Institute of Applied Superconductivity and Cryogenics 9788995713822 Cold electrical connection for FAIR/ SIS100 Kauschke,

More information

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 2. An isolated moving point charge produces around it.

More information

Improved Current Density in 2G HTS Conductors Using Thin Hastelloy C276 Substrates

Improved Current Density in 2G HTS Conductors Using Thin Hastelloy C276 Substrates 3MPo2A-2 Improved Current Density in 2G HTS Conductors Using Thin Hastelloy C276 Substrates D.W. Hazelton, H. Fukushima*, A. Knoll, A. Sundaram, Y. Zhang SuperPower Inc. 45 Duane Ave Schenectady, NY 1234

More information

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number:

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number: Signature: Name: I.D. number: You must do ALL the problems Each problem is worth 0 points for a total of 60 points. TO GET CREDIT IN PROBLEMS AND 3 YOU MUST SHOW GOOD WORK. CHECK DISCUSSION SECTION ATTENDED:

More information

HTS Magnets for Accelerator Applications

HTS Magnets for Accelerator Applications 8 th International Particle Accelerator Conference Bella Center, Copenhagen, Denmark May 17, 2017 HTS Magnets for Accelerator Applications K. Hatanaka hatanaka@rcnp.osaka-u.ac.jp Research Center for Nuclear

More information

Magnetic field of single coils/ Biot-Savart s law with Cobra4

Magnetic field of single coils/ Biot-Savart s law with Cobra4 Magnetic field of single coils/ TEP Related topics Wire loop, Biot-Savart s law, Hall effect, magnetic field, induction, magnetic flux density. Principle The magnetic field along the axis of wire loops

More information

Communique. International Superconductivity Industry Summit (ISIS)-20 Gonjiam Resort, Korea October 2011

Communique. International Superconductivity Industry Summit (ISIS)-20 Gonjiam Resort, Korea October 2011 Communique International Superconductivity Industry Summit (ISIS)-20 Gonjiam Resort, Korea October 2011 The 20 th International Superconductivity Industrial Summit (ISIS-20) which had approximately 50

More information

Lecture 24. April 5 th, Magnetic Circuits & Inductance

Lecture 24. April 5 th, Magnetic Circuits & Inductance Lecture 24 April 5 th, 2005 Magnetic Circuits & Inductance Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 11.1-11.5, Pages 331-338 Chapter 12.1-12.4, Pages 341-349 Chapter 12.7-12.9,

More information

Russian Development Program on HTS Power Cables

Russian Development Program on HTS Power Cables Russian Development Program on HTS Power Cables Victor Sytnikov 1, Vitaly Vysotsky 2, Member IEEE 1 R&D Center for Power Engineering, 115201, Moscow, Russia 2 Russian Scientific R&D Cable Institute (VNIIKP),

More information

The development of a Roebel cable based 1 MVA HTS transformer

The development of a Roebel cable based 1 MVA HTS transformer The development of a Roebel cable based 1 MVA HTS transformer Neil Glasson 11 October 2011 Mike Staines 1, Mohinder Pannu 2, N. J. Long 1, Rod Badcock 1, Nathan Allpress 1, Logan Ward 1 1 Industrial Research

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

PUBLICATION. Thermal Design of an Nb3Sn High Field Accelerator Magnet

PUBLICATION. Thermal Design of an Nb3Sn High Field Accelerator Magnet EuCARD-CON-2011-057 European Coordination for Accelerator Research and Development PUBLICATION Thermal Design of an Nb3Sn High Field Accelerator Magnet Pietrowicz, S (CEA-irfu, on leave from Wroclaw University

More information

Hydra Fault Current Limiting HTS Cable to be Installed in the Consolidated Edison Grid

Hydra Fault Current Limiting HTS Cable to be Installed in the Consolidated Edison Grid Hydra Fault Current Limiting HTS Cable to be Installed in the Consolidated Edison Grid J. McCall, J. Yuan, D. Folts, N. Henderson, American Superconductor D. Knoll, Southwire M. Gouge, R. Duckworth, J.

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #3 Inductors and Inductance 1. Objective The objective of Experiment #3 is to investigate the concepts of inductors and inductance. Several inductor geometries

More information

HTS Roebel cables. N.J. Long, Industrial Research Ltd and General Cable Superconductors Ltd. HTS4Fusion Workshop, 26 May 2011

HTS Roebel cables. N.J. Long, Industrial Research Ltd and General Cable Superconductors Ltd. HTS4Fusion Workshop, 26 May 2011 HTS Roebel cables N.J. Long, Industrial Research Ltd and General Cable Superconductors Ltd HTS4Fusion Workshop, 26 May 2011 Contents Cable dimensions Wire qualification Manufacturing Punching Retained

More information

Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch

Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch The MIT Faculty has made this article openly available. Please share how

More information

Recent Developments in 2G HTS Coil Technology

Recent Developments in 2G HTS Coil Technology IEEE/CSC & ESAS European Superconductivity News Forum (ESNF), No. 6, October 28 (ASC Preprint 3LY1 conforming to IEEE Policy on Electronic Dissemination, Section 8.1.9) The published version of this manuscript

More information

Dipoles for High-Energy LHC

Dipoles for High-Energy LHC 4AO-1 1 Dipoles for High-Energy LHC E. Todesco, L. Bottura, G. De Rijk, L. Rossi Abstract For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 2 T operational

More information

A 5 Tesla Solenoid for SiD

A 5 Tesla Solenoid for SiD 2005 International Linear Collider Workshop Stanford, U.S.A A 5 Tesla Solenoid for SiD R. P. Smith, R. Wands FNAL, Batavia, IL 60510, USA A conceptual design study for a 5 Tesla superconducting solenoid

More information

Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets

Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets Egbert Fischer 1, Roman Kurnyshov 2 and Petr Shcherbakov 3 1 Gesellschaft fuer Schwerionenforschung mbh, Darmstadt,

More information

Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet CERN-ACC-2015-0024 glyn.kirby@cern.ch Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet G. A. Kirby, J. van Nugteren, A. Ballarino, L. Bottura,

More information

CHAPTER 3 ENERGY EFFICIENT DESIGN OF INDUCTION MOTOR USNG GA

CHAPTER 3 ENERGY EFFICIENT DESIGN OF INDUCTION MOTOR USNG GA 31 CHAPTER 3 ENERGY EFFICIENT DESIGN OF INDUCTION MOTOR USNG GA 3.1 INTRODUCTION Electric motors consume over half of the electrical energy produced by power stations, almost the three-quarters of the

More information

Application Driven Superconducting Wires Development and Future Prospects in US. Qiang Li. Advanced Energy Materials Group

Application Driven Superconducting Wires Development and Future Prospects in US. Qiang Li. Advanced Energy Materials Group Application Driven Superconducting Wires Development and Future Prospects in US Qiang Li Advanced Energy Materials Group Plenary talk at 1st Asian ICMC CSSJ50, Kanazawa, Japan, Nov 10, 2016) 1 Department

More information

Effect of CTOF, CND, and HTCC Detector Shield on the Hall-B Solenoid Magnet

Effect of CTOF, CND, and HTCC Detector Shield on the Hall-B Solenoid Magnet Effect of CTOF, CND, and HTCC Detector Shield on the Hall-B Solenoid Magnet, Engineering Division, JLAB October 14 th 2013; Revision-0 1. Introduction This document is based on the calculations done for

More information

High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply

High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply superior performance. powerful technology. High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply Drew W. Hazelton Principal Engineer, SuperPower Inc. 2010 IEEE Conf Innovative Technology

More information

JOINTS FOR SUPERCONDUCTING MAGNETS

JOINTS FOR SUPERCONDUCTING MAGNETS JOINTS FOR SUPERCONDUCTING MAGNETS Patrick DECOOL Association EURATOM-CEA, CEA/DSM/IRFM 0 Large machines for fusion deals with Cable In Conduit Conductors (CICC) ITER Each conductor is composed of 1000

More information

From 2G to Practical Conductors What Needs to be Improved?

From 2G to Practical Conductors What Needs to be Improved? 3G? From 2G to Practical Conductors What Needs to be Improved? Mathias Noe, Wilfried Goldacker,, KIT, Germany Bernhard Holzapfel, IFW Dresden, Germany EUCAS 2013, Genova, Italy National Research Center

More information

Design of structural components and radial-build for FFHR-d1

Design of structural components and radial-build for FFHR-d1 Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participations from China and Korea February 26-28, 2013 at Kyoto University in Uji, JAPAN 1 Design of structural components

More information

JT-60 SA Toroidal Field coil structural analysis

JT-60 SA Toroidal Field coil structural analysis JT-60 SA Toroidal Field coil structural analysis Christophe Portafaix Introduction TF coil description TF coil design and electromagnetic loads Material and Criteria 2D structural analysis 3D structural

More information

Al-Ti-MgB 2 conductor for superconducting space magnets

Al-Ti-MgB 2 conductor for superconducting space magnets Al-Ti-MgB 2 conductor for superconducting space magnets Riccardo Musenich, Valerio Calvelli (INFN Genoa) Davide Nardelli, Silvia Brisigotti, Davide Pietranera, Matteo Tropeano, Andrea Tumino, Valeria Cubeda,

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Estimating the Cost of Large Superconducting Thin Solenoid Magnets Permalink https://escholarship.org/uc/item/2370w22j

More information

Toward Super-High Field and Ultra- Compact Size NMR Magnets Operated Beyond 1 GHz (review) Hideaki MAEDA RIKEN, Japan

Toward Super-High Field and Ultra- Compact Size NMR Magnets Operated Beyond 1 GHz (review) Hideaki MAEDA RIKEN, Japan Workshop "Ultrahigh field NMR and MRI: Science at the cross roads @ NIH Nov. 12, 2015 8:50-9:10 Toward Super-High Field and Ultra- Compact Size NMR Magnets Operated Beyond 1 GHz (review) Hideaki MAEDA

More information