Design and Offline tests of Button BPM for an IR-FEL project at NSRL

Size: px
Start display at page:

Download "Design and Offline tests of Button BPM for an IR-FEL project at NSRL"

Transcription

1 Design and Offline tests of Button BPM for an IR-FEL project at NSRL

2 Contents: 1. Introduction of the IR-FEL project. Design of Button BPM 3. Offline tests 4. Conclusion and Outlook

3 1. Introduction of the IR-FEL project Machine Layout Table 1: Electron beam parameters Beam energy Bunch charge Bunch length, rms Bunch repetition rate Macro pulse length Macro pulse repetition rate 15~60MeV Q=1nC σ=~5ps 59.5,119,38,476MHz Max:10μs 0Hz Compact : Room area: 1*4m

4 . Design of Button BPM Table: Design parameters Requirements: 1. Low cost and Compact. Resolution<50μm for different repetition rates Bean pipe radius Longitudinal length Electrode deviation angle from horizontal axis Feedthrough impedance b=17.5mm 5mm ϕ=30 degrees Z=50Ω Fig.1 3-D model Fig. Cross section view

5 . Design of Button BPM Fig.3 RMS value < >input signal level Back-end electronics: Libera Single Pass E (Central frequency: 476MHz) Assuming the biggest movable range for x and y directions: -5 > +5 mm Fig.4 Calculation region(green)

6 . Design of Button BPM Follow signal from beam pipe to the Libera Single Pass E: Bunch current: Image charge on button: Image current on button: Equivalent resistance: Image voltage on button: Attenuation of coax-cable LMR-400: Voltage out of cable: I t imag Q ( ) Q πσ S e t σ button vacuum I ω a I ω C βc b βc a iω Iimag ω I ω b βc Z ω (Z iωc) 1 1 V ω I ω Z ω imag πε L 0 C r w ln r Att L 0.19 F F cable MHz MHz V ω V ω 10 cable Att. 0 Ref: Smith S R. Beam position monitor engineering. AIP Conference Proceedings. AIP, 1997, 390(1):

7 . Design of Button BPM Q ( ) imag S button vacuum I ω a I ω C βc b βc Visual beam pipe a > button radius b >beam pipe radius beam at (0,0): Sbutton π a beam at P(r,θ): for Button i (i=1,,3,4) S i πa b cos θi button ri Real beam pipe

8 . Design of Button BPM Delta over Sum Linear fitting Q Q Q Q U / Q Q Q Q Q Q Q Q V 1 3 / Q Q Q Q x K U X x / m y K V Y y / m Region: (-5,-5)~(5,5)mm Kx / mm Ky / mm Boundary element method Derived formula Error / % 0.156%.954% Ref: Shintake, Tsumoru, et al. Sensitivity calculation of beam position monitor using boundary element method. NIMPRSA: (1987):

9 . Design of Button BPM Condition : Q=1nC, bunch length=5ps, macro pulse length=5μs, cable length=80m Bunch repeat frequency 59.5 MHz 119 MHz 38 MHz 476 MHz Signal level maximum dBm dBm dBm.01dBm minimum dBm dBm dBm dBm Signal range \ db (1) Resolution induced by electronics σx1/μm σy1/μm Libera single pass E Required RMS noise

10 . Design of Button BPM () Intrinsic resolution only considering thermal noise: P b 1 signal σ,snr, P ktb int SNR P noise W noise k J / K, T 300K, B w 10MHz Bunch repetition rate 59.5 MHz 119 MHz 38 MHz 476 MHz Intrinsic resolution σx=σy/μm x x1 x y y1 y Resolution σx/μm σy/μm

11 3. Offline tests Wire Method 1. X Y moving range : -5mm~+5mm, step : 0.5mm. X-Y motor:position resolution =.5μm 1 0.6mm Tungsten Wire Labview CW 3 4 Motor Controller X axis Signal Generator Y axis D C B A Libera Single Pass E T Trigger Signal Generator 1

12 3. Offline tests Results for multiple tests with all 11 BPMs deviation within 5% search for mechanical center venier caliper

13 3. Offline tests Lambertson Method B A g g1 The mechanical center offset relative to the electrical center : C D g4 g3 X K g g g g 1 K g g g m x g g g g 1 g g g Y m x g g g g 1 g g g K y K g g g g 1 g g g y Vj g j j Gij i g i Vi V S V 50G g g i ij ij ij i j Vj V g V B j j j I G V Vi 50Gij gi g j Vj B i ij j Ref: Chung, Y., & Decker, G. Offset calibration of the beam position monitor using external means. AIP Conference Proceedings (Vol. 5, No.

14 3. Offline tests Assuming: G =G G G G ij ji G 1 34 G 13 4 G 3 14 S S G S S G S S 50g S4 G1G 3 S3 G1G13 S43 G 3G13 S S G S S G S S 50g S31 G1G 3 S14 G1G13 S43 G 3G13 S S G S S G S S G 50g S4 G1G 3 S14 G1G13 S1 G 3G13 S S G S S G S S G 50g S31 G1G 3 S3 G1G13 S1 G 3G13 G G Lambertson Method X Y m m 1 g g g K x 1 g 1 g 31 g 41 1 g g g K y 1 g 1 g 31 g 41 g g g g S S S S S S S g S S S S S S S g S S S S S S g S S S S S S g S S S S S S S g S S S S S S S Ref: Chung, Y., & Decker, G. Offset calibration of the beam position monitor using external means. AIP Conference Proceedings (Vol. 5, No.

15 3. Offline tests Lambertson method s Precondition: Each BPM has four electrodes with good Consistency TDR-test: Cable version: Tflex-40 Length: ~1m Velocity: ~0.695*c

16 3. Offline tests Fitting equation: a3= 1/(R*C) Capacitance / pf A B C D Theoretical value BPM# BPM#

17 3. Offline tests BPM Number Lambertson method f=476mhz Xm /μm Ym /μm No.1 1# # No.9 1# # Not enough tests to get a general Conclusion!

18 4. Conclusion and Outlook 1. Kx & Ky both have ~9% deviation from the theoretical value.. How to improve the precision of wire method? THANKS!

Measurements and Calibration of the stripline BPM for the ELI-NP facility with the stretched wire method

Measurements and Calibration of the stripline BPM for the ELI-NP facility with the stretched wire method ACDIV-2015-13 September, 2015 Measurements and Calibration of the stripline BPM for the ELI-NP facility with the stretched wire method A. A. Nosych, U. Iriso, A. Olmos, A. Crisol, C. Colldelram, ALBA-CELLS,

More information

Pick-up Calibration in CESR Beam Position Monitors

Pick-up Calibration in CESR Beam Position Monitors Pick-up Calibration in CESR Beam Position Monitors Beau Meredith Department of Physics, Greenville College, Greenville, IL, 62246 (Dated: August 21, 2003) The beam position algorithm presently used in

More information

Capacitive Pick-Up Type DB 040

Capacitive Pick-Up Type DB 040 Capacitive Pick-Up Type DB 040 Tel: (609) 924-3011 Fax (609) 924-3018 www.princetonscientific.com Email: info@princetonscientific.com CAPACITIVE PICK-UP PROBE TYPE DB 040 Application: The capacitive pick-up

More information

Estimates of local heating due to trapped modes in vacuum chamber

Estimates of local heating due to trapped modes in vacuum chamber Estimates of local heating due to trapped modes in vacuum chamber Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA 94025 CERN, April 29, 2016 2 Motivation The motivation for this analysis

More information

HL LHC: impedance considerations for the new triplet layout in IR1 & 5

HL LHC: impedance considerations for the new triplet layout in IR1 & 5 HL LHC: impedance considerations for the new triplet layout in IR1 & 5 N. Mounet, A. Mostacci, B. Salvant, C. Zannini and E. Métral Acknowledgements: G. Arduini, C. Boccard, G. Bregliozzi, L. Esposito,

More information

ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) Lecture topics

ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) Lecture topics ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) James E. Morris Dept of Electrical & Computer Engineering Portland State University 1 Lecture topics

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d Part 6 ATTENUATION Signal Loss Loss of signal amplitude: A1 A L[Neper] = ln or L[dB] = 0log 1 A A A 1 is the amplitude without loss A is the amplitude with loss Proportional loss of signal amplitude with

More information

Compact Wideband THz Source

Compact Wideband THz Source Compact Wideband THz Source G. A. Krafft Center for Advanced Studies of Accelerators Jefferson Lab Newport News, VA 3608 Previously, I have published a paper describing compact THz radiation sources based

More information

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se 3.2.7 Booster Injection and Extraction 3.2.7.1 Overview The Booster has two magnet systems for injection: Septum Si Kicker Ki The Booster has three magnet systems for extraction: Kicker Ke, comprising

More information

The CeB6 Electron Gun for the Soft-X-ray FEL Project at SPring-8

The CeB6 Electron Gun for the Soft-X-ray FEL Project at SPring-8 May 25, 2004 DESY, Hamburg, Germany The CeB6 Electron Gun for the Soft-X-ray FEL Project at SPring-8 K. Togawa SPring-8 / RIKEN Harima Institute T. Shintake, H. Baba, T. Inagaki, T. Tanaka SPring-8 / RIKEN

More information

EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS

EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS Proceedings of ERL9, Ithaca, New York, USA JS5 EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS N. Nakamura # Institute for Solid State Physics(ISSP), University of Tokyo 5--5 Kashiwanoha,

More information

Wakefield Effects of Collimators in LCLS-II

Wakefield Effects of Collimators in LCLS-II Wakefield Effects of Collimators in LCLS-II LCLS-II TN-15-38 10/7/2015 K. Bane SLAC, Menlo Park, CA 94025, USA October 7, 2015 LCLSII-TN-15-38 L C L S - I I T E C H N I C A L N O T E LCLS-TN-15-38 October

More information

Low alpha mode for SPEAR3 and a potential THz beamline

Low alpha mode for SPEAR3 and a potential THz beamline Low alpha mode for SPEAR3 and a potential THz beamline X. Huang For the SSRL Accelerator Team 3/4/00 Future Light Source Workshop 00 --- X. Huang Outline The low-alpha mode for SPEAR3 Potential for a THz

More information

LAYOUT AND SIMULATIONS OF THE FONT SYSTEM AT ATF2

LAYOUT AND SIMULATIONS OF THE FONT SYSTEM AT ATF2 LAYOUT AND SIMULATIONS OF THE FONT SYSTEM AT ATF J. Resta-López, P. N. Burrows, JAI, Oxford University, UK August 1, Abstract We describe the adaptation of a Feedback On Nano-second Timescales (FONT) system

More information

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

LCLS Accelerator Parameters and Tolerances for Low Charge Operations LCLS-TN-99-3 May 3, 1999 LCLS Accelerator Parameters and Tolerances for Low Charge Operations P. Emma SLAC 1 Introduction An option to control the X-ray FEL output power of the LCLS [1] by reducing the

More information

Application of Physics II for. Final Exam

Application of Physics II for. Final Exam Application of Physics II for Final Exam Question 1 Four resistors are connected as shown in Figure. (A)Find the equivalent resistance between points a and c. (B)What is the current in each resistor if

More information

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev. Compressor Ring Valeri Lebedev Fermilab Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions Muon Collider Workshop Newport News, VA Dec. 8-1, 8 Where do we go?

More information

OVERVIEW OF THE BEAM DIAGNOSTICS FOR THE DRIVER OF SPIRAL2

OVERVIEW OF THE BEAM DIAGNOSTICS FOR THE DRIVER OF SPIRAL2 OVERVIEW OF THE BEAM DIAGNOSTICS FOR THE DRIVER OF SPIRAL2 Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 11 91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr

More information

3 Cables: Electrotonic Length, Attenuation, and Filtering

3 Cables: Electrotonic Length, Attenuation, and Filtering Physics 171/271 - Note 3A - David Kleinfeld - Fall 2005 3 Cables: Electrotonic Length, Attenuation, and Filtering We consider, briefly, the behavior of the transmembrane potential across a long process.

More information

Operational Performance of LCLS Beam Instrumentation. Henrik Loos, SLAC BIW 2010, Santa Fe, NM

Operational Performance of LCLS Beam Instrumentation. Henrik Loos, SLAC BIW 2010, Santa Fe, NM Editor's Note: PDF version of slides from Beam Instrumentation Workshop 21, Santa Fe, NM Operational Performance of LCLS Beam Instrumentation Henrik Loos, SLAC BIW 21, Santa Fe, NM BIW 21 1 1 Henrik Loos

More information

XPT TM 600V IGBT GenX3 TM w/diode MMIX1X200N60B3H1 = 600V I C110 V CES. = 72A V CE(sat) 1.7V t fi(typ) = 110ns. Preliminary Technical Information

XPT TM 600V IGBT GenX3 TM w/diode MMIX1X200N60B3H1 = 600V I C110 V CES. = 72A V CE(sat) 1.7V t fi(typ) = 110ns. Preliminary Technical Information XPT TM 6V IGBT GenX3 TM w/diode (Electrically Isolated Tab) Preliminary Technical Information MMIXXN6B3H S = 6V = 7A (sat).7v t fi(typ) = ns Extreme Light Punch Through IGBT for -3kHz Switching Symbol

More information

IXFR230N20T V DSS. GigaMOS TM Power MOSFET = 200V = 156A. 8.0m t rr. 200ns. (Electrically Isolated Tab)

IXFR230N20T V DSS. GigaMOS TM Power MOSFET = 200V = 156A. 8.0m t rr. 200ns. (Electrically Isolated Tab) GigaMOS TM Power MOSFET (Electrically Isolated Tab) N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode IXFR23N2T V DSS = 2V I D25 = 156A R DS(on) 8.m t rr 2ns ISOPLUS247 E153432 Symbol Test

More information

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim S2E (Start-to-End) Simulations for PAL-FEL Aug. 25 2008 Kyungpook Nat l Univ. Eun-San Kim 1 Contents I Lattice and layout for a 10 GeV linac II Beam parameters and distributions III Pulse-to-pulse stability

More information

Advance Technical Information IXFN80N60P3 V DSS. High Power Density Easy to Mount Space Savings Symbol Test Conditions Characteristic Values (T J

Advance Technical Information IXFN80N60P3 V DSS. High Power Density Easy to Mount Space Savings Symbol Test Conditions Characteristic Values (T J Advance Technical Information Polar3 TM HiPerFET TM Power MOSFET N-Channel Enhancement Mode Fast Intrinsic Rectifier IXFN8N6P3 S = I D25 = 66A R DS(on) 7mΩ t rr 25ns minibloc E53432 G S Symbol Test Conditions

More information

Layout of the HHG seeding experiment at FLASH

Layout of the HHG seeding experiment at FLASH Layout of the HHG seeding experiment at FLASH V. Miltchev on behalf of the sflash team: A. Azima, J. Bödewadt, H. Delsim-Hashemi, M. Drescher, S. Düsterer, J. Feldhaus, R. Ischebeck, S. Khan, T. Laarmann

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 15

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 15 ECE 634 Intermediate EM Waves Fall 6 Prof. David R. Jackson Dept. of ECE Notes 5 Attenuation Formula Waveguiding system (WG or TL): S z Waveguiding system Exyz (,, ) = E( xye, ) = E( xye, ) e γz jβz αz

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

IXFN140N30P. Polar TM Power MOSFET HiPerFET TM = 300V = 110A V DSS I D ns. t rr. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

IXFN140N30P. Polar TM Power MOSFET HiPerFET TM = 300V = 110A V DSS I D ns. t rr. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode Polar TM Power MOSFET HiPerFET TM N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode S I D25 R DS(on) t rr = 3V = 11A 24mΩ ns Symbol Test Conditions Maximum Ratings S = 25 C to 15 C 3 V V

More information

Annexure-I. network acts as a buffer in matching the impedance of the plasma reactor to that of the RF

Annexure-I. network acts as a buffer in matching the impedance of the plasma reactor to that of the RF Annexure-I Impedance matching and Smith chart The output impedance of the RF generator is 50 ohms. The impedance matching network acts as a buffer in matching the impedance of the plasma reactor to that

More information

X-band Experience at FEL

X-band Experience at FEL X-band Experience at FERMI@Elettra FEL Gerardo D Auria Elettra - Sincrotrone Trieste GdA_TIARA Workshop, Ångström Laboratory, June 17-19, 2013 1 Outline The FERMI@Elettra FEL project Machine layout and

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

IXXR110N65B4H1. XPT TM 650V GenX4 TM w/ Sonic Diode V CES I C110. = 650V = 70A V CE(sat) 2.10V = 43ns. t fi(typ) (Electrically Isolated Tab)

IXXR110N65B4H1. XPT TM 650V GenX4 TM w/ Sonic Diode V CES I C110. = 650V = 70A V CE(sat) 2.10V = 43ns. t fi(typ) (Electrically Isolated Tab) XPT TM V GenX TM w/ Sonic Diode (Electrically Isolated Tab) Extreme Light Punch Through IGBT for -khz Switching IXXRNBH S = V = 7A (sat).v = ns t fi(typ) ISOPLUS7 TM Symbol Test Conditions Maximum Ratings

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

IXTT440N04T4HV V DSS

IXTT440N04T4HV V DSS Advance Technical Information TrenchT4 TM Power MOSFET IXTT44N4T4HV V DSS = 4V I D25 = 44A R DS(on).25m N-Channel Enhancement Mode Avalanche Rated TO-268HV Symbol Test Conditions Maximum Ratings V DSS

More information

Mechanical Motion Measurement System Design, Initial Results and Experiments with Orbit Feedback

Mechanical Motion Measurement System Design, Initial Results and Experiments with Orbit Feedback Mechanical Motion Measurement System Design, Initial Results and Experiments with Orbit Feedback Workshop on Ambient Ground Motion and Vibration Suppression for Low Emittance Storage Rings 12/11/2017 1

More information

Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON

Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON E.Huttel, I.Birkel, A.S.Müller, P.Wesolowski About ANKA Test by Frequency Generator Experiences in the Booster Experiences in the Storage

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

IXXH80N65B4H1 V CES. XPT TM 650V IGBT GenX4 TM w/ Sonic Diode = 650V I C110. = 80A V CE(sat) 2.1V = 52ns. t fi(typ)

IXXH80N65B4H1 V CES. XPT TM 650V IGBT GenX4 TM w/ Sonic Diode = 650V I C110. = 80A V CE(sat) 2.1V = 52ns. t fi(typ) XPT TM 5V IGBT GenX TM w/ Sonic Diode Extreme Light Punch Through IGBT for 5-3 khz Switching IXXHN5BH S = 5V = A (sat).v = 5ns t fi(typ) Symbol Test Conditions Maximum Ratings S = 5 C to 75 C 5 V V CGR

More information

IXFN56N90P. = 900V = 56A 145m 300ns. Polar TM HiPerFET TM Power MOSFET V DSS I D25. R DS(on) t rr

IXFN56N90P. = 900V = 56A 145m 300ns. Polar TM HiPerFET TM Power MOSFET V DSS I D25. R DS(on) t rr Polar TM HiPerFET TM Power MOSFET N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier S I D25 R DS(on) t rr = 9V = 56A 145m ns Symbol Test Conditions Maximum Ratings S = 25 C to 1 C 9 V

More information

RFQ Status. Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005

RFQ Status. Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 RFQ Status Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 RFQ Status & Testing of the RFQ Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 Overview TITAN Background

More information

PHYS General Physics for Engineering II FIRST MIDTERM

PHYS General Physics for Engineering II FIRST MIDTERM Çankaya University Department of Mathematics and Computer Sciences 2010-2011 Spring Semester PHYS 112 - General Physics for Engineering II FIRST MIDTERM 1) Two fixed particles of charges q 1 = 1.0µC and

More information

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory 4GLS Status Susan L Smith ASTeC Daresbury Laboratory Contents ERLP Introduction Status (Kit on site ) Plan 4GLS (Conceptual Design) Concept Beam transport Injectors SC RF FELs Combining Sources May 2006

More information

IXFR18N90P V DSS. Polar TM HiPerFET TM Power MOSFET = 900V I D25 = 10.5A. R DS(on) 300ns. t rr

IXFR18N90P V DSS. Polar TM HiPerFET TM Power MOSFET = 900V I D25 = 10.5A. R DS(on) 300ns. t rr Polar TM HiPerFET TM Power MOSFET N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode S = 9V I D5 =.5A R DS(on) mω 3ns t rr Symbol Test Conditions Maximum Ratings S = 5 C to 15 C 9 V V DGR

More information

IXYL40N250CV1 V CES. High Voltage XPT TM IGBT w/ Diode = 2500V I C110. = 40A V CE(sat) 4.0V = 134ns. t fi(typ) Advance Technical Information

IXYL40N250CV1 V CES. High Voltage XPT TM IGBT w/ Diode = 2500V I C110. = 40A V CE(sat) 4.0V = 134ns. t fi(typ) Advance Technical Information High Voltage XPT TM IGBT w/ Diode Advance Technical Information IXYLN2CV1 S = 2V 11 = A (sat).v = 13ns t fi(typ) (Electrically Isolated Tab) ISOPLUS i-pak TM Symbol Test Conditions Maximum Ratings S =

More information

Wakefield computations for the LCLS Injector (Part I) *

Wakefield computations for the LCLS Injector (Part I) * LCLS-TN-05-17 Wakefield computations for the LCLS Injector (Part I) * June 13 th 005 (reedited May 007) C.Limborg-Deprey, K.Bane Abstract In this document, we report on basic wakefield computations used

More information

Diagnostics at SARAF

Diagnostics at SARAF Diagnostics at SARAF L. Weissman on behalf SARAF Beam Diagnostics in LEBT Beam Diagnostics in MEBT Beam Diagnostics in D-Plate ( including beam halo monitor) Some ideas for diagnostics Phase II Testing

More information

Beam based measurement of beam position monitor electrode gains

Beam based measurement of beam position monitor electrode gains PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 3, 98 () Beam based measurement of beam position monitor electrode gains D. L. Rubin,* M. Billing, R. Meller, M. Palmer, M. Rendina, N. Rider, D.

More information

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations 5-1 Repeating the Example on Power Factor Correction (Given last Class) P? Q? S? Light Motor From source 1000 volts @ 60 Htz 10kW

More information

IXTN600N04T2. TrenchT2 TM GigaMOS TM Power MOSFET = 40V = 600A. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

IXTN600N04T2. TrenchT2 TM GigaMOS TM Power MOSFET = 40V = 600A. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode TrenchT2 TM GigaMOS TM Power MOSFET IXTN6N4T2 V DSS = 4V I D25 = 6A R DS(on) 1.3mΩ N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode minibloc, SOT-227 E153432 Symbol Test Conditions Maximum

More information

Metallized Polypropylene Film Capacitor Related Document: IEC

Metallized Polypropylene Film Capacitor Related Document: IEC MKP 184 Metallized Polypropylene Film Capacitor Related Document: IEC 6084-16 MAIN APPLICATIONS: High voltage, high current and high pulse operations, deflection circuits in TV sets (S-correction and fly-back

More information

IXYN80N90C3H1 V CES = 900V I C V XPT TM IGBT GenX3 TM w/ Diode. = 70A V CE(sat) 2.7V t fi(typ) = 86ns. Advance Technical Information

IXYN80N90C3H1 V CES = 900V I C V XPT TM IGBT GenX3 TM w/ Diode. = 70A V CE(sat) 2.7V t fi(typ) = 86ns. Advance Technical Information 9V XPT TM IGBT GenX3 TM w/ Diode High-Speed IGBT for - khz Switching Advance Technical Information IXYNN9C3H S = 9V 9 = 7A (sat).7v t fi(typ) = ns E Symbol Test Conditions Maximum Ratings S = C to C 9

More information

IXYN82N120C3H1 V CES

IXYN82N120C3H1 V CES V XPT TM IGBT GenX3 TM w/ Diode High-Speed IGBT for - khz Switching IXYNNC3H S = V = A (sat) 3.V t fi(typ) = 93ns SOT-B, minibloc E33 Symbol Test Conditions Maximum Ratings S = C to C V V CGR = C to C,

More information

Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam

Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam FRXGBD3 Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam 4 th, May, 2018 Akihiko Miura, J-PARC, JAEA Tomoaki Miyao, J-PARC, KEK Katsuhiro Moriya, J-PARC, JAEA

More information

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV 26/11/2014 European Synchrotron Light Source Workshop XXII 1 Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV F. Cullinan, R. Nagaoka (SOLEIL, St. Aubin, France) D. Olsson, G.

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1 11.1 Introduction Wave propagation in unbounded media is used in

More information

IXGR72N60B3H1. GenX3 TM 600V IGBT w/ Diode = 600V = 40A. 1.80V t fi(typ) = 92ns. (Electrically Isolated Tab)

IXGR72N60B3H1. GenX3 TM 600V IGBT w/ Diode = 600V = 40A. 1.80V t fi(typ) = 92ns. (Electrically Isolated Tab) GenX TM V IGBT w/ Diode (Electrically Isolated Tab) IXGRNBH S = V = A (sat).8v t fi(typ) = 9ns Medium Speed Low Vsat PT IGBT for - khz Switching ISOPLUS TM Symbol Test Conditions Maximum Ratings S = C

More information

Chapter 5 Steady-State Sinusoidal Analysis

Chapter 5 Steady-State Sinusoidal Analysis Chapter 5 Steady-State Sinusoidal Analysis Chapter 5 Steady-State Sinusoidal Analysis 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. 2. Solve steady-state

More information

Status Report: Charge Cloud Explosion

Status Report: Charge Cloud Explosion Status Report: Charge Cloud Explosion J. Becker, D. Eckstein, R. Klanner, G. Steinbrück University of Hamburg Detector laboratory 1. Introduction and Motivation. Set-up available for measurement 3. Measurements

More information

MMIX1F520N075T2 = 75V = 500A. 1.6m. TrenchT2 TM GigaMOS TM HiperFET TM Power MOSFET. (Electrically Isolated Tab)

MMIX1F520N075T2 = 75V = 500A. 1.6m. TrenchT2 TM GigaMOS TM HiperFET TM Power MOSFET. (Electrically Isolated Tab) TrenchT2 TM GigaMOS TM HiperFET TM Power MOSFET MMIXF52N75T2 V DSS = 75V I D25 = 5A R DS(on).6m (Electrically Isolated Tab) D N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode G S Symbol

More information

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1 Introduction: bunch length measurements Reminder of optics Non- linear dynamics Low- alpha operation On the user side: THz and X- ray short bunch science CSR measurement and modeling Future Light Sources

More information

Development of Stripline Kicker for APS

Development of Stripline Kicker for APS Development of Stripline Kicker for APS Yifan Su Department of Applied and Engineering Physics, Cornell University Zachary Conway Physics Division, Argonne National Laboratory This projects aims toward

More information

ILC Laser-wires. G A Blair, RHUL Snowmass 17 th August 2005

ILC Laser-wires. G A Blair, RHUL Snowmass 17 th August 2005 ILC Laser-wires G A Blair, RHUL 17 th August 2005 Introduction Energy regimes Signal Extraction Scanning techniques Laser requirements Light delivery Summary Laser-wire Few microns GA Blair Laser-wire

More information

Beam monitors in J-PARC

Beam monitors in J-PARC Beam monitors in J-PARC KEK, Accelerator division H. Kuboki Introduction: Beam Monitors in J-PARC BPM system in J-PARC Main Ring BPM gain calibration (Beam Based Gain Calibration (BBGC)) T. Toyama, S.

More information

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90 Advance Technical Information High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor (Electrically Isolated Tab) C G EC3 Symbol Test Conditions Maximum Ratings G3 C2 G2 E2C V CES = 25 C

More information

2.1 The electric field outside a charged sphere is the same as for a point source, E(r) =

2.1 The electric field outside a charged sphere is the same as for a point source, E(r) = Chapter Exercises. The electric field outside a charged sphere is the same as for a point source, E(r) Q 4πɛ 0 r, where Q is the charge on the inner surface of radius a. The potential drop is the integral

More information

ILC Beam Dynamics Studies Using PLACET

ILC Beam Dynamics Studies Using PLACET ILC Beam Dynamics Studies Using PLACET Andrea Latina (CERN) July 11, 2007 John Adams Institute for Accelerator Science - Oxford (UK) Introduction Simulations Results Conclusions and Outlook PLACET Physical

More information

Topic 5: Transmission Lines

Topic 5: Transmission Lines Topic 5: Transmission Lines Profs. Javier Ramos & Eduardo Morgado Academic year.13-.14 Concepts in this Chapter Mathematical Propagation Model for a guided transmission line Primary Parameters Secondary

More information

H. Maesaka*, H. Ego, T. Hara, A. Higashiya, S. Inoue, S. Matsubara, T. Ohshima, K. Tamasaku, H. Tanaka, T. Tanikawa, T. Togashi, K. Togawa, H.

H. Maesaka*, H. Ego, T. Hara, A. Higashiya, S. Inoue, S. Matsubara, T. Ohshima, K. Tamasaku, H. Tanaka, T. Tanikawa, T. Togashi, K. Togawa, H. H. Maesaka*, H. Ego, T. Hara, A. Higashiya, S. Inoue, S. Matsubara, T. Ohshima, K. Tamasaku, H. Tanaka, T. Tanikawa, T. Togashi, K. Togawa, H. Tomizawa, M. Yabashi, K. Yanagida, T. Shintake and Y. Otake

More information

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY Longitudinal Impedance Budget and Simulations for XFEL Igor Zagorodnov 14.3.211 DESY Beam dynamics simulations for the European XFEL Full 3D simulation method (2 CPU, ~1 hours) Gun LH M 1,1 M 1,3 E1 13

More information

IXFL32N120P. Polar TM HiPerFET TM Power MOSFET V DSS I D25 = 1200V = 24A. 300ns. Preliminary Technical Information. R DS(on) t rr

IXFL32N120P. Polar TM HiPerFET TM Power MOSFET V DSS I D25 = 1200V = 24A. 300ns. Preliminary Technical Information. R DS(on) t rr Preliminary Technical Information Polar TM HiPerFET TM Power MOSFET ( Electrically Isolated Tab) V DSS I D25 R DS(on) t rr = V = 2A 3mΩ ns N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

More information

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

SCSS Prototype Accelerator -- Its outline and achieved beam performance -- SCSS Prototype Accelerator -- Its outline and achieved beam performance -- Hitoshi TANAKA RIKEN, XFEL Project Office 1 Content 1. Light Quality; SPring-8 v.s. XFEL 2. What are the critical issues? 3. Mission

More information

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0 602 CHAPTER 11 TRANSMISSION LINES 11.10 Two identical pulses each of magnitude 12 V and width 2 µs are incident at t = 0 on a lossless transmission line of length 400 m terminated with a load. If the two

More information

Commissioning of the SNS Beam Instrumentation

Commissioning of the SNS Beam Instrumentation Commissioning of the SNS Beam Instrumentation Commissioning of the SNS Beam Instrumentation Tom Shea for the SNS Diagnostics Team Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA The Spallation

More information

Chapter 6 Shielding. Electromagnetic Compatibility Engineering. by Henry W. Ott

Chapter 6 Shielding. Electromagnetic Compatibility Engineering. by Henry W. Ott Chapter 6 Shielding Electromagnetic Compatibility Engineering by Henry W. Ott 1 Forward A shield is a metallic partition placed between two regions of space. To maintain the integrity of the shielded enclosure,

More information

Silicon Capacitive Accelerometers. Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES

Silicon Capacitive Accelerometers. Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES Silicon Capacitive Accelerometers Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES 1 Measuring Acceleration The acceleration measurement is based on Newton s 2nd law: Let the acceleration

More information

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement Markus Bingesser austriamicrosystems AG Rietstrasse 4, 864 Rapperswil, Switzerland

More information

High energy gamma production: analysis of LAL 4-mirror cavity data

High energy gamma production: analysis of LAL 4-mirror cavity data High energy gamma production: analysis of LAL 4-mirror cavity data Iryna Chaikovska LAL, Orsay POSIPOL 211, August, 28 1 Experiment layout Electron energy Electron charge Revolution period Electron bunch

More information

IXXH60N65B4H1 V CES. XPT TM 650V IGBT GenX4 TM w/ Sonic Diode = 650V I C110. = 60A V CE(sat) 2.2V = 43ns. t fi(typ)

IXXH60N65B4H1 V CES. XPT TM 650V IGBT GenX4 TM w/ Sonic Diode = 650V I C110. = 60A V CE(sat) 2.2V = 43ns. t fi(typ) XPT TM 65V IGBT GenX TM w/ Sonic Diode Extreme Light Punch Through IGBT for 5-3 khz Switching IXXH6N65BH V CES = 65V = 6A V CE(sat) 2.2V = 3ns t fi(typ) TO-27 Symbol Test Conditions Maximum Ratings V CES

More information

Proposal to convert TLS Booster for hadron accelerator

Proposal to convert TLS Booster for hadron accelerator Proposal to convert TLS Booster for hadron accelerator S.Y. Lee -- Department of Physics IU, Bloomington, IN -- NSRRC Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV,

More information

Characteristic of Capacitors

Characteristic of Capacitors 3.5. The Effect of Non ideal Capacitors Characteristic of Capacitors 12 0 (db) 10 20 30 capacitor 0.001µF (1000pF) Chip monolithic 40 two-terminal ceramic capacitor 0.001µF (1000pF) 2.0 x 1.25 x 0.6 mm

More information

IXYH40N120C3D1 V CES

IXYH40N120C3D1 V CES V XPT TM IGBT GenX3 TM w/ Diode High-Speed IGBT for - khz Switching IXYHNC3D S = V 9 = A (sat).v t fi(typ) = 38ns Symbol Test Conditions Maximum Ratings S = C to C V V CGR = C to C, R GE = MΩ V V GES Continuous

More information

LCLS Beam Diagnostics

LCLS Beam Diagnostics LCLS Beam Diagnostics International Beam Instrumentation Conference 2014 Henrik Loos September 17, 2014 Outline Overview LCLS accelerator diagnostics LCLS-II Charge and beam position Beam profile measurement

More information

Demonstration of Chaos

Demonstration of Chaos revised 4/21/03 Demonstration of Chaos Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract A simple resonant inductor-resistor-diode series circuit can be used to

More information

IXYB82N120C3H1 V CES

IXYB82N120C3H1 V CES V XPT TM IGBT GenX3 TM w/ Diode High-Speed IGBT for - khz Switching IXYBNC3H S = V = A (sat) 3.V = 93ns t fi(typ) PLUS TM Symbol Test Conditions Maximum Ratings S = C to C V V CGR = C to C, R GE = M V

More information

Status of Proof-of-Principle Experiment of Coherent Electron Cooling at BNL

Status of Proof-of-Principle Experiment of Coherent Electron Cooling at BNL Status of Proof-of-Principle Experiment of Coherent Electron Cooling at BNL Outline 2 Why we doing it? What is Coherent electron Cooling System description Subsystem performance Plan for Run 18 e-n Luminosity

More information

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

TrenchT2 TM Power MOSFET

TrenchT2 TM Power MOSFET Preliminary Technical Information TrenchT2 TM Power MOSFET N-Channel Enhancement Mode Avalanche Rated IXTA3N4T2-7 V DSS = V I D = 3A 2.5mΩ R DS(on) TO-263 (7-lead) Symbol Test Conditions Maximum Ratings

More information

BINP, Novosibirsk. Sergei Nikitin EPAC 06, Edinburgh

BINP, Novosibirsk. Sergei Nikitin EPAC 06, Edinburgh Record-high Resolution Experiments on Comparison of Spin Precession Frequencies of Electron Bunches Using the Resonant Depolarization Technique in the Storage Ring O. Anchugov, V. Blinov, A. Bogomyagkov,V.

More information

Ultra-Low Emittance Storage Ring. David L. Rubin December 22, 2011

Ultra-Low Emittance Storage Ring. David L. Rubin December 22, 2011 Ultra-Low Emittance Storage Ring David L. Rubin December 22, 2011 December 22, 2011 D. L. Rubin 2 Much of our research is focused on the production and physics of ultra-low emittance beams. Emittance is

More information

BAR42FILM BAR43FILM SMALL SIGNAL SCHOTTKY DIODE. Table 1: Main Product Characteristics I F(AV) 0.1 A V RRM. 30 V T j 150 C 0.33 and 0.

BAR42FILM BAR43FILM SMALL SIGNAL SCHOTTKY DIODE. Table 1: Main Product Characteristics I F(AV) 0.1 A V RRM. 30 V T j 150 C 0.33 and 0. BR42FILM BR43FILM SMLL SIGNL SCHOTTY DIODE Table 1: Main Product Characteristics I F(V) 0.1 V RRM 30 V T j 150 C V F (max) 0.33 and 0.40 V FETURES ND BENEFITS Very small conduction losses Negligible switching

More information

Physical design of FEL injector based on performance-enhanced EC-ITC RF gun

Physical design of FEL injector based on performance-enhanced EC-ITC RF gun Accepted by Chinese Physics C Physical design of FEL injector based on performance-enhanced EC-ITC RF gun HU Tong-ning( 胡桐宁 ) 1, CHEN Qu-shan( 陈曲珊 ) 1, PEI Yuan-ji( 裴元吉 ) 2; 1), LI Ji( 李骥 ) 2, QIN Bin(

More information

IH5341, IH5352. Dual SPST, Quad SPST CMOS RF/Video Switches. Description. Features. Ordering Information. Applications. Pinouts.

IH5341, IH5352. Dual SPST, Quad SPST CMOS RF/Video Switches. Description. Features. Ordering Information. Applications. Pinouts. SEMICONDUCTOR IH, IH2 December Features Description Dual SPST, Quad SPST CMOS RF/Video Switches R DS(ON) < Ω Switch Attenuation Varies Less Than db From DC to 00MHz "OFF" Isolation > 0dB Typical at 0MHz

More information

arxiv: v1 [physics.acc-ph] 27 Mar 2014

arxiv: v1 [physics.acc-ph] 27 Mar 2014 SLAC-PUB-15932 LCLS-II-TN-13-04 March 2014 arxiv:1403.7234v1 [physics.acc-ph] 27 Mar 2014 Some wakefield effects in the superconducting RF cavities of LCLS-II K. Bane a, A. Romanenko b, and V. Yakovlev

More information

General Purpose Transistors

General Purpose Transistors General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount

More information

REVIEW OF DIAGNOSTICS FOR NEXT GENERATION LINEAR ACCELERATORS

REVIEW OF DIAGNOSTICS FOR NEXT GENERATION LINEAR ACCELERATORS REVIEW OF DIAGNOSTICS FOR NEXT GENERATION LINEAR ACCELERATORS M. Ross, Stanford Linear Accelerator Center, Stanford, CA 9439, USA Abstract New electron linac designs incorporate substantial advances in

More information

Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab Series RC Circuit Phasor Diagram Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

More information

Metallized Polypropylene Film Capacitor Related Document: IEC

Metallized Polypropylene Film Capacitor Related Document: IEC Related Document: IEC 6084-16 MKP 184 Dimensions in millimeters 40.0 ±.0 L 40.0 ±.0 Max. MAIN APPLICATIONS High voltage, high current and high pulse operations, deflection circuits in TV sets (S-correction

More information

A Proposal of Harmonictron

A Proposal of Harmonictron Memoirs of the Faculty of Engineering, Kyushu University, Vol.77, No.2, December 2017 A Proposal of Harmonictron by Yoshiharu MORI *, Yujiro YONEMURA ** and Hidehiko ARIMA *** (Received November 17, 2017)

More information

IXGT16N170A IXGH16N170A IXGT16N170AH1 IXGH16N170AH1

IXGT16N170A IXGH16N170A IXGT16N170AH1 IXGH16N170AH1 High Voltage IGBT w/ Sonic Diode IXGTN7A IXGHN7A IXGTN7AH IXGHN7AH S = 7V 9 = A (sat).v t fi(typ) = ns H Symbol Test Conditions Maximum Ratings S = C to C 7 V V CGR = C to C, R GE = M 7 V TO- (IXGT) V

More information