Estimates of local heating due to trapped modes in vacuum chamber


 Antony Cole
 1 years ago
 Views:
Transcription
1 Estimates of local heating due to trapped modes in vacuum chamber Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA CERN, April 29, 2016
2 2 Motivation The motivation for this analysis is to try to estimate heating of the vacuum chamber due to possible trapped modes in the machine. The biggest danger is for the highcurrent scenario, with the current I = 1.45 A in bunches (how does the filling pattern affect the heating?). We derive how the heating scales with the parameters of the trapped mode and the beam. We model the central part of the IP region as a cylindrical beryllium pipe of radius a = 2 cm and length l = 50 cm.
3 3 Modes can be trapped in unexpected locations Trapped modes can be generated by various protrusions in the vacuum chamber (BPMs, flanges, bellows, etc). They can even be generated even by collimators! From Ref. 1 : thin iris collimator Flat collimator 1 S. Heifets et al. Review of impedance issues for Bfactory, SLACPUB (2004).
4 Power deposited by the beam 4 Power deposited by the beam into an element with the longitudinal impedance Z(ω) P = 1 T0 2 ρ(nω 0 ) 2 Re Z(nω 0 ) where n= ρ(ω) = C 0 ρ(z)e iωz/c dz ρ(z) is the charge per unit length, C is the circumference of the ring, T 0 = C/c is the revolution period, ω 0 = 2π/T 0. For FCC, with the circumference of C = 100 km, we have ω 0 = 2π 3.0 khz and the sampling in the equation for P goes every 3 khz. Assuming a mode with characteristic frequency of ω r 2π 5 GHz, and the quality factor Q = we find that the resonance width ω r /Q is much larger than ω 0. We can use P 1 πt 0 0 dω ρ(ω) 2 Re Z(ω)
5 5 Z(ω) for trapped mode For a trapped mode we take the resonant impedance in the form Z(ω) = R/Q Q 1 + i(ω r /ω ω/ω r ) where ω r is the resonant frequency, R is the shunt impedance and Q is the quality factor. The loss factor for the resonant impedance is κ = Rω r /2Q. Consider a mode in a pipe of radius a = 2 cm and length l = 50 cm. The most dangerous modes are of type TM 0n0 ; for these modes an approximate value of R/Q is given by 2 R Q Z 2 sin 2 (j 0n l/2a) 0 j 0n j 0n l/2a where j 0n is the nth root of the Bessel function J 0, Z 0 = 377 Ohm. For TM 010 ω r = j 01c a = 2π 5.74 GHz 2 D. H. Whittum, Techniques and Concepts of HighEnergy Physics, NATO Sci. Ser. C 534, 387 (1999).
6 6 Z(ω) for trapped mode For the parameters chosen above we obtain R Q 10 Ω For the quality factor due to resistive wall losses, for TM 010 there is a formula σ 1 Q = f(ghz) σ Cu 1 + a/l where σ is the wall conductivity and σ Cu = S/m is the copper conductivity at room temperature. For beryllium, σ Be = S/m and Q The width of the resonance is approximately ω ω r Q 0.4 MHz 3 D. H. Whittum, SLACPUB8026 (1998).
7 Beam resonances Assume M 1 bunches in the ring distributed with the distance between the bunches s b. Note that M can be smaller than C/s b which means that the number of bunches in the ring is smaller than the harmonic number of the machine: this means a gap in the fill of length C Ms b. Assuming short bunches (σ z 2 4 mm): M 1 ρ(z) = Ne δ(s ns b ) n=0 with N the number of particles in the bunch, gives ρ(ω) 2 = N 2 e 2 sin2 (Ms b ω/2c) sin 2 (s b ω/2c) MN 2 e 2 2πc s b n= δ (ω nω) 7 ρ(ω) 2 is periodic function with the period Ω = 2πc/s b which is equal to the RF frequency if s b is equal to the distance between the RF buckets. The width of each peak of this function is Ω/M ω 0.
8 Resonant heating In the worstcase scenario one of these delta functions hits the resonant frequency ω r. This happens when ω r = nω + ω (ω r is close to an integer of the RF frequency). We then find for the heating power P 2MN2 e 2 R s c/s b T (2Q ω/ω r ) 2 = 2NeI c s b ( ) Rs Q 1 Q 1 + (2Q ω/ω r ) 2 For similar trapped modes, this heating is about the same as in Bfactories. For the parameters calculated above Even for Q = 100 we get 6 kw. P max = 880 kw
9 9 Twobunch excitation of trapped modes in IP There are two bunches of opposite charges, N and N +, colliding at IP. Assuming that the collision occurs at the center of the pipe, we find that different longitudinal modes TM 01n j 2 01 ω r = c a 2 + π2 n 2 l 2 are excited with different amplitudes, if compared with the case of one beam 4. The amplitude A of the even modes (n = 2m) is proportional to A N + + N, and for odd modes (n = 2m + l), A N + N. Therefore, the power deposited in even modes scales as P (N + + N ) 2 ; it increases in comparison with a single beam case. 4 S. Heifets et al. Review of impedance issues for Bfactory, SLACPUB (2004).
10 0 Detuning of the trapped modes Trapped modes due to small local expansions of the vacuum chamber sit near the cutoff frequency of the pipe. For a round pipe there are dangerous radii corresponding to cutoffs of TM 01 : a = cj 01 2πnf RF where n is an integer. For f RF = 400 MHz we find the radii that should be avoided: 3.59 cm (3.2 GHz), 3.19 cm (3.6 GHz), 2.87 cm (4 GHz),... For a more complicated shape of the pipe it makes sense to calculate the cutoff frequencies of the lowest modes using an EM code. What is the cutoff frequency for this cross section?
11 11 Can nonuniform filling help with detuning? Assume q identical trains with q gaps: where P = q2 T 2 0 n= ρ(ω) = ρ(qnω 0 ) 2 Re Z(qnω 0 ) C/q 0 ρ(z)e iωz/c dz The sampling now occurs at qω 0 frequencies, but this is still a small number, khz for q = Even highq resonances will not be missed.
12 12 Randomization of bunches in the ring? Consider the case of M = bunches in buckets. Make a random distribution of bunches in the ring (should be correlated with the other ring). Calculate the beam spectrum ρ(ω) 2 and compare with the case of one train and one gap. Sample of random distribution of the bunches.
13 Randomization of bunches in the ring? Fine structure of the resonant peak in ρ(ω) 2 with ω = nω. Blue a single train with a gap, red a random distribution of the bunches over RF buckets. The area under the red peak is 4.25 times smaller than in the case of the bunch train. Hence the heating will be suppressed by this factor. ρ ω ω ω ω 13 There may be some filling patterns that make the heating smaller more work needed.
Geometrical Wake of a Smooth Taper*
SLACPUB95786 December 995 Geometrical Wake of a Smooth Taper* G. V. Stupakov Stanford Linear Accelerator Center Stanford University, Stanford, CA 9439 Abstract A transverse geometrical wake generated
More informationResonant Excitation of High Order Modes in Superconducting RF Cavities of LCLS II Linac
Resonant Excitation of High Order Modes in Superconducting RF Cavities of LCLS II Linac LCLSII TN4XX 3/2/5 Alexander Sukhanov, Alexander Vostrikov, Timergali Khabiboulline, Andrei Lunin, Nikolay Solyak,
More informationPhysics 610. Adv Particle Physics. April 7, 2014
Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic CockcroftWalton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction
More informationLinear Collider Collaboration Tech Notes
LCC0124 SLACPUB9814 September 2003 Linear Collider Collaboration Tech Notes Recent Electron Cloud Simulation Results for the NLC and for the TESLA Linear Colliders M. T. F. Pivi, T. O. Raubenheimer
More informationACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG
ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG M. Grieser, R. Bastert, K. Blaum, H. Buhr, R. von Hahn, M. B. Mendes, R. Repnow, A. Wolf MaxPlanckInstitut
More informationCERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock
CERN Accelerator School Wakefields Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock Contents The Term Wakefield and Some First Examples Basic Concept of Wakefields Basic Definitions
More informationCSR calculation by paraxial approximation
CSR calculation by paraxial approximation Tomonori Agoh (KEK) Seminar at Stanford Linear Accelerator Center, March 3, 2006 Short Bunch Introduction Colliders for high luminosity ERL for short duration
More informationHL LHC: impedance considerations for the new triplet layout in IR1 & 5
HL LHC: impedance considerations for the new triplet layout in IR1 & 5 N. Mounet, A. Mostacci, B. Salvant, C. Zannini and E. Métral Acknowledgements: G. Arduini, C. Boccard, G. Bregliozzi, L. Esposito,
More informationPhysics 598ACC Accelerators: Theory and Applications
Physics 598ACC Accelerators: Theory and Instructors: Fred Mills, Deborah Errede Lecture 6: Collective Effects 1 Summary A. Transverse space charge defocusing effects B. Longitudinal space charge effects
More informationTRAPPING OF ELECTRON CLOUD IN ILC/CESRTA QUADRUPOLE AND SEXTUPOLE MAGNETS
Proceedings of ECLOUD, Ithaca, New York, USA MOD5 TRAPPING OF ELECTRON CLOUD IN ILC/CESRTA QUADRUPOLE AND SEXTUPOLE MAGNETS L. Wang and M. Pivi, SLAC, Menlo Park, CA 95, U.S.A. Abstract The Cornell Electron
More informationF. Zimmermann and M.P. Zorzano, CERN, Geneva, Switzerland
LHC Project Note 244 11.12.2000 Touschek Scattering in HERA and LHC F. Zimmermann and M.P. Zorzano, CERN, Geneva, Switzerland Keywords: Touschek effect, beam loss, coasting beam Summary We estimate the
More informationBEAM COOLING AT NICA COLLIDER
BEAM COOLING AT NICA COLLIDER T. Katayama, GSI, Darmstadt, Germany I. Meshkov, A. Sidorin and G. Trubnikov, JINR, Dubna, Russia. Abstract At the heavy ion collider NICA presently promoted at the JINR,
More informationTransverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21
Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field
More informationSuperconducting RF Accelerators: Why all the interest?
Superconducting RF Accelerators: Why all the interest? William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT The HEP prespective ILC PROJECT X Why do we need RF
More informationSTATUS OF BEPC AND PLAN OF BEPCII
STATUS OF BEPC AND PLAN OF BEPCII C. Zhang for BEPCII Team Institute of High Energy Physics, P.O.Box 918, Beijing 139, China Abstract The status of the Beijing ElectronPositron Collider (BEPC) and plans
More informationEs#ma#ons of Collec#ve Instabili#es for JLEIC
Es#ma#ons of Collec#ve Instabili#es for JLEIC Rui Li JLEIC Collabora#on Mee#ng 432016 Collec#ve Effects in JLEIC Electron Ring Ion Rings Electron Cooler Incoherent: LasleD tune shie, emidance growth
More informationThe Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se
3.2.7 Booster Injection and Extraction 3.2.7.1 Overview The Booster has two magnet systems for injection: Septum Si Kicker Ki The Booster has three magnet systems for extraction: Kicker Ke, comprising
More informationTheory English (Official)
Q31 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron
More information6D weakstrong beambeam simulations with SixTrack: theory and simulations
6D weakstrong beambeam simulations with SixTrack: theory and simulations Javier Barranco Garcia Ackowledgements: T. Pieloni, R. De Maria, D. Banfi, R. Tomas, A. Valishev, K. Ohmi,... HSC Meeting 13/08/14
More informationBunched Beams Longitudinal Beam Dynamics
Bunched Beams Longitudinal Beam Dynamics Peter Spiller HelmholtzRosatom school for young scientists at FAIR 2011 14.2.2011 Table of Content Basic formalism of long beam dynamics and definitions Rf Capture,
More informationOverview of LHC Accelerator
Overview of LHC Accelerator Mike Syphers UTAustin 1/31/2007 Large Hadron Collider ( LHC ) Outline of Presentation Brief history... Luminosity Magnets Accelerator Layout Major Accelerator Issues U.S. Participation
More informationSimulations of single bunch collective effects using HEADTAIL
Simulations of single bunch collective effects using HEADTAIL G. Rumolo, in collaboration with E. Benedetto, O. BoineFrankenheim, G. Franchetti, E. Métral, F. Zimmermann ICAP, Chamonix, 02.10.2006 Giovanni
More informationSteady State Analysis of Shortwavelength, Highgain FELs in a Large Storage Ring. Abstract
SLAC PUB 12858 October 2007 Steady State Analysis of Shortwavelength, Highgain FELs in a Large Storage Ring Z. Huang, K. Bane, Y. Cai, A. Chao, R. Hettel Stanford Linear Accelerator Center, Menlo Park,
More informationCOMBINER RING LATTICE
CTFF3 TECHNICAL NOTE INFN  LNF, Accelerator Division Frascati, April 4, 21 Note: CTFF32 COMBINER RING LATTICE C. Biscari 1. Introduction The 3 rd CLIC test facility, CTF3, is foreseen to check the feasibility
More informationILC Crab Cavity Wakefield Analysis
ILC Crab Cavity Wakefield Analysis Yesterday, Peter McIntosh discussed the overall requirements for the ILC crab cavities, the systemlevel design, and the team that is working on it. Here, I will discuss
More informationBeam losses versus BLM locations at the LHC
Geneva, 12 April 25 LHC Machine Protection Review Beam losses versus BLM locations at the LHC R. Assmann, S. Redaelli, G. RobertDemolaize AB  ABP Acknowledgements: B. Dehning Motivation  Are the proposed
More informationIon clearing in an ERL
Ion clearing in an ERL Georg H. Hoffstaetter and Matthias Liepe Laboratory for Elementary Particle Physics, Cornell University, Ithaca/NY (USA) Abstract The restgas in the beampipe of a particle accelerator
More informationEngines of Discovery
Engines of Discovery R.S. Orr Department of Physics University of Toronto Berkley 1930 1 MeV Geneva 20089 14 TeV Birth of Particle Physics and Accelerators 1909 Geiger/Marsden MeV a backscattering  Manchester
More informationCommissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010
Commissioning of PETRA III Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 PETRA III Parameters Circumference (m) Energy (GeV) ε x (nm rad) ε y (pm rad) Current (ma) # bunches Straight
More informationPreliminary Design of m + m  Higgs Factory MachineDetector Interface
Fermilab Accelerator Physics Center Preliminary Design of m + m  Higgs Factory MachineDetector Interface Nikolai Mokhov Y. Alexahin, V. Kashikhin, S. Striganov, I. Tropin, A. Zlobin Fermilab Higgs Factory
More informationThe ElectronIon Collider
The ElectronIon Collider C. Tschalaer 1. Introduction In the past year, the idea of a polarized electronproton (ep) or electronion (ea) collider of high luminosity (10 33 cm 2 s 1 or more) and c.m.
More informationERL FACILITY AT CERN FOR APPLICATIONS
ERL FACILITY AT CERN FOR APPLICATIONS Erk Jensen (CERN) Big thanks to contributors: A. Bogacz (JLAB), O. Brüning, R. Calaga, V. Chetvertkova, E. Cormier (CELIA), R. Jones, M. Klein, A. Valloni, D. Pellegrini,
More informationThe FAIR Accelerator Facility
The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of
More informationPenning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping.
Penning Traps Contents Introduction Clasical picture Radiation Damping Number density B and E fields used to increase time that an electron remains within a discharge: Penning, 936. Can now trap a particle
More informationSynchrotron Radiation Reflection from Outer Wall of Vacuum Chamber
, YerPhI Synchrotron Radiation Reflection from Outer Wall of Vacuum Chamber M.A. Aginian, S.G. Arutunian, E.G.Lazareva, A.V. Margaryan Yerevan Physics Institute The presentation is devoted to the eightieth
More informationStatus of Fast Ion Instability Studies
Zur Anzeige wird der QuickTime Dekompressor TIFF (Unkomprimiert) benötigt. Status of Fast Ion Instability Studies Guoxing Xia presented by E. Elsen European LC Workshop, Jan 89, 2007, Daresbury 0 Ion
More informatione e Collisions at ELIC
Physics With Collisions at ELIC Collisions at ELIC E. Chudakov (JLab), June 26, 26 Opportunity to build a collider using the ELIC ring Physics motivation for a high luminosity, polarized collider Discussion
More informationLHC Collimation and Loss Locations
BLM Audit p. 1/22 LHC Collimation and Loss Locations BLM Audit Th. Weiler, R. Assmann, C. Bracco, V. Previtali, S Redaelli Accelerator and Beam Department, CERN BLM Audit p. 2/22 Outline Introduction /
More informationLinac JUAS lecture summary
Linac JUAS lecture summary Part1: Introduction to Linacs Linac is the acronym for Linear accelerator, a device where charged particles acquire energy moving on a linear path. There are more than 20 000
More informationLarge Hadron Collider at CERN
Large Hadron Collider at CERN Steve Playfer 27km circumference depth 70140m University of Edinburgh 15th Novemebr 2008 17.03.2010 Status of the LHC  Steve Playfer 1 17.03.2010 Status of the LHC  Steve
More informationDownloaded from
Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns
More informationComparison of Gaussian and super Gaussian laser beams for addressing atomic qubits
Appl Phys B (6 :3 DOI 7/s346647y Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits Katharina Gillen Christandl Glen D Gillen M J Piotrowicz,3 M Saffman Received: 6 October
More informationIntroduction to Longitudinal Beam Dynamics
Introduction to Longitudinal Beam Dynamics B.J. Holzer CERN, Geneva, Switzerland Abstract This chapter gives an overview of the longitudinal dynamics of the particles in an accelerator and, closely related
More informationAccelerator R&D Opportunities: Sources and Linac. Developing expertise. D. Rubin, Cornell University
Accelerator R&D Opportunities: Sources and Linac D. Rubin, Cornell University Electron and positron sources Requirements Status of R&D Linac Modeling of beam dynamics Development of diagnostic and tuning
More informationUpdate to ECLOUD Calculations for the 3.2 and 6.4 km ILC Damping Ring Lattice Designs
45th ICFA Beam Dynamic Workshop June 8 12, 2009, Cornell University, Ithaca New York Update to ECLOUD Calculations for the 3.2 and 6.4 km ILC Damping Ring Lattice Designs Update to quadrupole calculations
More informationLife of the dust macroparticles in storage rings
SLACPUB059 3/0/005 Life of the dust macroparticles in storage rings S. Heifets, Qing Qin, M. Zolotorev Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA Abstract The sudden
More informationTouschek polarimeter for beam energy measurement of VEPP4M collider LNFSS08 1 / 16
Touschek polarimeter for beam energy measurement of VEPP4M collider Ivan Nikolaev Budker Institute of Nuclear Physics Novosibirsk, Russia Frascati Spring School Bruno Touschek May 1216 2008 Touschek
More informationLarge Scale Parallel Wake Field Computations with PBCI
Large Scale Parallel Wake Field Computations with PBCI E. Gjonaj, X. Dong, R. Hampel, M. Kärkkäinen, T. Lau, W.F.O. Müller and T. Weiland ICAP `06 Chamonix, 26 October 2006 Technische Universität Darmstadt,
More informationAnalysis of the longitudinal space charge impedance of a round uniform beam inside parallel plates and rectangular chambers I.
Analysis of the longitudinal space charge impedance of a round uniform beam inside parallel plates and rectangular chambers L. Wang SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA Y. Li
More informationA Polarized Electron PWT Photoinjector for the ILC
2005 ALCPG & ILC Workshops Snowmass, U.S.A. A Polarized Electron PWT Photoinjector for the ILC David Yu, Yan Luo, Alexei Smirnov, DULY Research Inc., Rancho Palos Verdes, CA 90275 Ivan Bazarov, Cornell
More informationAccelerator Physics Homework #3 P470 (Problems: 15)
Accelerator Physics Homework #3 P470 (Problems: 5). Particle motion in the presence of magnetic field errors is (Sect. II.2) y + K(s)y = B Bρ, where y stands for either x or z. Here B = B z for x motion,
More informationElectronCloud Studies for the NLC and TESLA
ElectronCloud Studies for the NLC and TESLA Mauro Pivi NLC Division SLAC Jan 2004 this is a progress report builds on previous simulation experience with PEPII, LHC and SPS, KEKB, APS, PSR, SNS and other
More informationFIELD FLATNESS AND NONSTATIONARY BEHAVIOUR OF THE 4*7CELLTESLASUPERSTRUCTURE
FIELD FLATNESS AND NONSTATIONAY BEHAVIOU OF THE 4*CELLTESLASUPESTUCTUE H.W. Glock, D. Hecht, U. van ienen Institut für Allgemeine Elektrotechnik,Universität ostock Albert EinsteinStraße, D1851 ostock,
More informationLHC Luminosity and Energy Upgrade
LHC Luminosity and Energy Upgrade Walter Scandale CERN Accelerator Technology department EPAC 06 27 June 2006 We acknowledge the support of the European CommunityResearch Infrastructure Activity under
More informationBeam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator
Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator R. Joel England J. B. Rosenzweig, G. Travish, A. Doyuran, O. Williams, B. O Shea UCLA Department
More informationFully Quantum Measurement of the Electron Magnetic Moment
Fully Quantum Measurement of the Electron Magnetic Moment prepared by Maren Padeffke (presented by N. Herrmann) Outline Motivation and History Experimental Methods Results Conclusion Sources Motivation
More informationInterface with Experimental Detector in the High Luminosity Run
Chapter 5 Interface with Experimental Detector in the High Luminosity Run H. Burkhardt CERN, BE Department, Genève 23, CH1211, Switzerland This chapter describes the upgrade of the interaction regions
More information3. Synchrotrons. Synchrotron Basics
1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance
More informationMeasurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron
Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Urschütz Peter (AB/ABP) CLIC meeting, 29.10.2004 1 Overview General Information on the PS Booster Synchrotron Motivation
More informationPreparing for a Crystal Experiment Proposal
Preparing for a Crystal Experiment Proposal U. Wienands, SLAC Special thanks to S. Mack, U. Ottawa SULI Student 2011. Channeling in Crystals * Discovered in the 60s: Atoms lined up in strings or planes,
More informationMODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES
MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu DOE Center on Annual Meeting May 2015 Download this talk: http://www.eecs.berkeley.edu/~lieber
More informationSLACPUB Submitted to Radiation Protection and Dosimetry. Work supported by Department of Energy contract DEAC0276SF00515
SLACPUB11088 CALCULATIONS OF NEUTRON AND PHOTON SOURCE TERMS AND ATTENUATION PROFILES FOR THE GENERIC DESIGN OF THE SPEAR3 STORAGE RING SHIELD S. H. Rokni, H. Khater, J. C. Liu, S. Mao and H. Vincke
More informationFrom the Wideröe gap to the linac cell
Module 3 Coupled resonator chains Stability and stabilization Acceleration in periodic structures Special accelerating structures Superconducting linac structures From the Wideröe gap to the linac cell
More informationSLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland
SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices
More informationHamiltonian based evaluation of the longitudinal acceptance of a high power linac
Brookhaven National Laboratory February 4rd 2014 Hamiltonian based evaluation of the longitudinal acceptance of a high power linac Emanuele Laface Physicist European Spallation Source Motivations: Motivations:
More informationLinear Collider Collaboration Tech Notes
LCC0073 SLACPUB9004 September 2001 Linear Collider Collaboration Tech Notes Microwave Quadrupoles for Beam Breakup Supression In the NLC Main Linac K.L.F. Bane and G. Stupakov Stanford Linear Accelerator
More informationAnalysis of BPM Signal Nonlinearities in CESR Vacuum Chamber
Analysis of BPM Signal Nonlinearities in CESR Vacuum Chamber Johan Bonilla Department of Physics, Stanford University, Stanford, CA, 94305 (Dated: August 10, 2012) Nonlinear frequencies present in fourier
More informationA Polarized Electron PWT Photoinjector for the ILC
2005 ALCPG & ILC Workshops Snowmass, U.S.A. A Polarized Electron PWT Photoinjector for the ILC David Yu, Yan Luo, Alexei Smirnov, DULY Research Inc., Rancho Palos Verdes, CA 90275 Ivan Bazarov, Cornell
More informationAccelerator Physics Homework #7 P470 (Problems: 14)
Accelerator Physics Homework #7 P470 (Problems: 4) This exercise derives the linear transfer matrix for a skew quadrupole, where the magnetic field is B z = B 0 a z, B x = B 0 a x, B s = 0; with B 0 a
More informationSound Radiation Of Cast Iron
Purdue University Purdue epubs International Compressor Engineering Conference School of Mechanical Engineering 2002 Sound Radiation Of Cast Iron N. I. Dreiman Tecumseh Products Company Follow this and
More informationAperture Measurements and Implications
Aperture Measurements and Implications H. Burkhardt, SL Division, CERN, Geneva, Switzerland Abstract Within short time, the 2/90 optics allowed to reach similar luminosity performance as the 90/60 optics,
More informationElectron cloud buildup and instability: Numerical simulations for the CERN Proton Synchrotron
PHYSICAL REVIEW SPECIAL TOPICS  ACCELERATORS AND BEAMS, VOLUME 6, (23) Electron cloud buildup and instability: Numerical simulations for the CERN Proton Synchrotron M. Giovannozzi, E. Métral, G. Métral,
More informationFermilab HG cavity and coupler R&D
Fermilab HG cavity and coupler R&D Motivation HOM calculations Nikolay Solyak Fermilab Outline Main Coupler and HOM dumping Multipactor Lorentz Forces Single bunch beam dynamics Summary Nikolay Solyak
More informationHighbeta Cavity Design
Highbeta Cavity Design K.Saito High Energy Accelerator Research Organization (KEK), Accelerator Lab 1. SW Operation with SRF RF Cavity. Pill Box Cavity 3. Figure of merits of SRF Cavity Design 4. Criteria
More information4. Spontaneous Emission october 2016
4. Spontaneous Emission october 016 References: Grynberg, Aspect, Fabre, "Introduction aux lasers et l'optique quantique". Lectures by S. Haroche dans "Fundamental systems in quantum optics", cours des
More informationPOSITRON EMISSION ISOTOPE PRODUCTION CYCLOTRON AT DLNP JINR (STATUS REPORT)
Ó³ Ÿ. 2008.. 5, º 7(149).. 74Ä79 ˆ ˆŠ ˆ ˆŠ Š ˆ POSITRON EMISSION ISOTOPE PRODUCTION CYCLOTRON AT DLNP JINR (STATUS REPORT) Yu. G. Alenitsky 1, Yu. N. Denisov, A. F. Chesnov, A. A. Glazov, S. V. Gurskiy,
More informationTLEP White Paper : Executive Summary
TLEP White Paper : Executive Summary q TLEP : A ﬁrst step in a long term vision for particle physics In the context of a global project CERN implementation A. Blondel J. Osborne and C. Waajer See Design
More informationAdvanced Design of the FAIR Storage Ring Complex
Advanced Design of the FAIR Storage Ring Complex M. Steck for the FAIR Technical Division and the Accelerator Division of GSI The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC
More information3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications
3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications September 1416, 2013 Electromagnets in Synchrotron Design and Fabrication Prepared by: Farhad Saeidi, Jafar Dehghani Mechanic Group,Magnet
More informationAccelerators and Colliders
Accelerators and Colliders References Robert Mann: An introduction to particle physics and the standard model Tao Han, Collider Phenomenology, http://arxiv.org/abs/hepph/0508097 Particle Data Group, (J.
More informationALIGNMENT RESULT FOR MAGNET UNITS OF THE SPRING8 STORAGE RING
ALIGNMENT RESULT FOR MAGNET UNITS OF THE SPRING8 STORAGE RING Chao ZHANG, Sakuo MATSUI, Junichi OHNISHI and Koji TSUMAKI SPring8, Kamigori, Akogun, Hyogo 67812, Japan 1. INTRODUCTION Magnet installation
More informationPhysics 663. Particle Physics Phenomenology. April 9, Physics 663, lecture 2 1
Physics 663 Particle Physics Phenomenology April 9, 2002 Physics 663, lecture 2 1 History Two Principles Electrostatic CockcroftWalton Accelerators Van de Graaff and tandem Van de Graaff Transformers
More informationDISTRIBUTED ELECTRON CLOUD CLEARING ELECTRODES
DISTRIBUTED ELECTRON CLOUD CLEARING ELECTRODES T. Kroyer, F. Caspers, E. Métral, F. Zimmermann, CERN, Geneva, Switzerland Abstract Clearing electrodes can be an efficient means for suppressing the electron
More informationPhysics 1502: Lecture 8 Today s Agenda. Today s Topic :
Physics 1502: Lecture 8 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics today: due next Friday Go to masteringphysics.com
More informationHLLHC: parameter space, constraints & possible options
HLLHC: parameter space, constraints & possible options Many thanks to R. Assmann, C. Bhat, O. Brüning, R. Calaga, R. De Maria, S. Fartoukh, J.P. Koutchouk, S. Myers, L. Rossi, W. Scandale, E. Shaposhnikova,
More informationWave Phenomena Physics 15c. Lecture 9 Wave Reflection Standing Waves
Wave Phenomena Physics 15c Lecture 9 Wave Reflection Standing Waves What We Did Last Time Energy and momentum in LC transmission lines Transfer rates for normal modes: and The energy is carried by the
More informationStatusreport. Status of the GSI accelerators for FRS operation. Jens Stadlmann (FAIR Synchrotrons)
Statusreport Status of the GSI accelerators for FRS operation Jens Stadlmann (FAIR Synchrotrons) Overview Intensities reached and "candidates" for experiments. Uranium? Upgrade program New developments:
More informationSound Pressure Generated by a Bubble
Sound Pressure Generated by a Bubble Adrian Secord Dept. of Computer Science University of British Columbia ajsecord@cs.ubc.ca October 22, 2001 This report summarises the analytical expression for the
More informationRF System Calibration Using Beam Orbits at LEP
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL DIVISION CERNSL2228 OP LEP Energy Working Group 2/1 RF System Calibration Using Beam Orbits at LEP J. Wenninger Abstract The target for beam energy
More informationSUPPLEMENTARY FIGURES
SUPPLEMENTARY FIGURES Supplementary Figure 1. Projected band structures for different coupling strengths. (a) The nondispersive quasienergy diagrams and (b) projected band structures for constant coupling
More informationSimulation of the Beam Dump for a High Intensity Electron gun
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN BEAMS DEPARTMENT CERNBE2014007 BI Simulation of the Beam Dump for a High Intensity Electron gun S. Doebert; T. Lefèvre; A, Jeff; CERN Geneva/CH K. Pepitone
More informationSqueezed Light for Gravitational Wave Interferometers
Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom und Molekülphysik, Universität Hannover MaxPlanckInstitut
More informationSpoke and other TEMclass superconducting cavities. J.L. Muñoz, ESSBilbao AcademyIndustry Matching Event CIEMAT, Madrid, 27.May.
Spoke and other TEMclass superconducting cavities J.L. Muñoz, ESSBilbao AcademyIndustry Matching Event CIEMAT, Madrid, 27.May.2013 Outline Introduction Basic design of TEM cavities Cavity design issues
More informationNonlinear Optics II (Modulators & Harmonic Generation)
Nonlinear Optics II (Modulators & Harmonic Generation) P.E.G. Baird MT2011 Electrooptic modulation of light An electrooptic crystal is essentially a variable phase plate and as such can be used either
More informationExtraction from cyclotrons. P. Heikkinen
Extraction from cyclotrons P. Heikkinen Classification of extraction schemes Linear accelerators Circular accelerators No extraction problem Constant orbit radius (sychrotrons, betatrons) Increasing orbit
More informationStorage Ring Optics Measurement, Model, and Correction. Yiton T. Yan SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
SLACPUB12438 April 2007 Storage Ring Optics Measurement, Model, and Correction Yiton T. Yan SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA 1 Introduction To improve the optics of a storage ring,
More informationChopping HighIntensity Ion Beams at FRANZ
Chopping HighIntensity Ion Beams at FRANZ C. Wiesner, M. Droba, O. Meusel, D. Noll, O. Payir, U. Ratzinger, P. Schneider IAP, GoetheUniversität Frankfurt am Main Outline 1) Introduction: The FRANZ facility
More informationDesign of a LowEnergy Chopper System for FRANZ
05.03.2007 Design of a LowEnergy System for FRANZ Christoph Wiesner Contents Introduction Design and Layout of the MultiParticle Simulation LEBT Outlook Function of the Input: 150 ma cw proton beam,
More informationLecture 9: Reflection, Transmission and Impedance
Matthew Schwartz Lecture 9: Reflection, Transmission and Impedance Boundary conditions at a junction Suppose we take two taut strings, one thick and one thin and knot them together. What will happen to
More informationMuon reconstruction performance in ATLAS at Run2
2 Muon reconstruction performance in ATLAS at Run2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) Email: hannah.herde@cern.ch ATLPHYSPROC2052 5 October 205 The ATLAS muon
More information