Beam monitors in J-PARC

Size: px
Start display at page:

Download "Beam monitors in J-PARC"

Transcription

1 Beam monitors in J-PARC KEK, Accelerator division H. Kuboki Introduction: Beam Monitors in J-PARC BPM system in J-PARC Main Ring BPM gain calibration (Beam Based Gain Calibration (BBGC)) T. Toyama, S. Hatakeyama A, J. Takano, M. Tejima KEK, A JAEA

2 J-PARC Kamioka Tokai, Ibaraki operation (goal) ν detector LINAC 16mA (50mA) 3 GeV RCS 215 kw (1MW) 30 GeV MR 190kW (750W) MLF Hadron hall

3 J-PARC Main ring (MR) Hadron Rapid Cycling Synchrotron (RCS) LINAC MLF Ion Source Neutrino

4 Monitors in J-PARC Beam duct x,y (horizontal, vertical) Profile Position Beam z (beam direction) Bunch Shape Loss Current Time varying information (Turn by Turn etc.) etc.

5 Monitors in J-PARC Profile x,y Beam Position z RCS & inj. BT 54 BPM(COD, turn-by-turn) 3 BPM (RF) 4 BPM (fast) 1 BPM (tune) 2 DCCT / SCT 7 MCT, FCT, WCM 2 IPM 7 MWPM 90 BLM (proportional) 24 BLM (ionization) 20 BLM (scintillator) 2 Exciter 3Ν BT (up to 3N dump) 1 FCT 3 BPM 32 BLM 2 Halo monitor ν BT 1 FCT Abort dump line 2 BPM 1 SEEM 4 BLM T. Toyama Bunch Shape Loss MEBT 8 BPM 6 SCT 5 FCT 4 WS/BSM 4 BLM RFQ DTL/SDTL 29 BPM 18 SCT 47 FCT 4 WS/BSM 53 BLM BSM: beam size mon. A0BT 181MeV L3BT & dumps 17 BPM 3 SCT 4 FCT 4 WS/BSM 30 BLM ACS: under construction Additional devices are in preparation. H0 dump line 1 FCT 48 BPM 11 SCT 5 FCT 24 WS/BSM 38 BLM ACS 400MeV 42 BPM 21 SCT 41 FCT 4 WS 3 BSM 21 BLM 3-50BT 5 FCT 14 BPM 5 SEEM 50 BLM (proportional) 4 BLM (ionization) Bunch Shape Monitor (INR) MR 2 DCCT 7 FCT 2 WCM 186 BPM (COD, turn-byturn) 2 BPM (stripline) 238 BLM (proportional) 36 BLM (ionization) 2 BLM (scintillator) 1 SEEM 5 Luminescence screen 3 IPM 2 Flying wire 2 Exciter Hadron BT 1 SEEM *Monitors not counted for beam transport lines to the utilities, 3N BT, Hadron BT, ν BT

6 Bunch Shape Monitors (LINAC) A. Miura et al. Developed by A.V.Feschenko, P.N. Ostroumov et al, INR, Moscow A. Miura et al., INR 月 J-PARC LINAC に設置中 測定例 (A. V. Feschenko et al.,pac07) 70 ps

7 Profile Monitors Residual gas Ionization Profile Monitor: IPM HV feedthrough K. Satou et al. from T. Toyama Flying Wire Profile Monitor S. Igarashi et al. Multi Ribbon Beam Profile Monitor Y. Hashimoto et al. 35kV 33kV Electrode MCP EGA 130mm Ceramic bushing Voltage divider 100MΩ resister Cross section of V-IPM OTR Profile Monitor Y. Hashimoto et al. Gas-sheet Beam Profile Monitor Y. Hashimoto et al.

8 Beam Position Monitor (BPM) Same position as Q magnets (information of focus/defocus points) Diagonal cut electrode type (Main Ring) Parallel electrode type (Transport line) Diagonal cut type Quad parallel type Δ/Σ Δ/Σ Wire posi. Full aperture Wire position T. Toyama et al. D. Arakawa et al.

9 Main ring (MR) Injection Fast extraction (FX) Neutrino RF cavity Slow extraction (SX) Hadron Total length Energy 1568 m 3-30 GeV β Lorentz γ Harmonic 9 No. Bunches 8 Periods RF freq. Bunch length (time) Bunch length (space) µsec MHz 70~200 nsec 20~60 m Tune FX: ν x =22.40, ν y =20.75 SX: ν x =22.30, ν y =20.78 No. of BPM 186 (1 BPM/7-8 m) High intensity reduction of beam loss 500 m Stable beam orbit

10 Corrected COD Y. Sato Alignment errors are inevitable NEEDS COD correction CASE1 (2010 Aug) w USING steering magnets based on BPMs CASE2 (2011 Jun) 2.4 Accuracy of BPMs is a BIG KEY 0 Time (ms) 120 E13 protons per bunch 2.5 SCTR simulation for MR 150 kw eq. Model Alignment Simulated (DX-QcX) rms Simulated (DY-QcY) rms Simulated beam loss in injection for MR 150 kw eq. CASE1 (2010 Aug) 0.22 mm 0.19 mm 120 W (0.8%) CASE2 (2011 Jun) 0.42 mm 0.37 mm 220 W (1.5%) 10

11 J-PARC の Beam Position Monitor (BPM) Layout of electrode L R cosθ δl l δl U sinθ D θ T. Toyama

12 BPM system V L, V R, V U,V D : digitized signal (ADC out) Low Pass Filter Amp. Gain Different setup depending on beam intensity T. Toyama

13 Position calculation VV LL = λλgg LL VV RR = λλgg RR VV UU = λλgg UU 1 + xx aa 1 xx aa 1 + yy aa g L, g R, g U, g D Gains from electrode divided by Left gain (= g L ). g L =1 V L, V R, V U, V D Signal strength from electrode L,R,U,D λ Beam intensity passing through BPM x,y Beam positions (horizontal, vertical) a Effective radius from BPM center BPM alignment errors correction VV DD = λλgg DD 1 yy aa Beam Based Alignment (BBA) [2] xx = VV LL gg LL VV RR gg RR aa VV LL gg LL + gg RR VV RR yy = VV UU gg UU VV DD gg DD aa VV UU gg UU + gg DD VV DD (1) Most effective method to correct BPM position error very effective but takes long term (several days ~ 1 week) (2) Gain errors (signal transfer, electric circuit) Beam Based Gain Calibration (BBGC) [3] data acquisition is easier than BBA (a few~ several hours) [2] T. Toyama et al., PASJ meeting (2014). [3] K. Satoh and M. Tejima, Proc. of PAC95, p (1995).

14 BBGC (Beam Based Gain Calibration) 1) Kick the COD by steering magnet larger amplitude 2) Orbit data with various amplitudes are acquired. Signal from each electrode varies depending on beam positions (below fig.). 3) Gains (g L, g R, g U, g D ) are determined as reproducing the all signal strength from the electrodes. (-0.2,+0.2) y (mrad) (+0.2,+0.2) X : 5 points (x,y )=(ZSH001, ZSV216) Y : 5 points (ZSH210, ZSV209) X Y : 4 points Total14 points 14 points 10 shot 2 sets=280 data X (mrad) 2 phases pattern gains of BPM at nodes are not well reproduced. Amplitude (-0.2,-0.2) -0.2 (+0.2,-0.2) Beam direction -0.4

15 BBGC data analysis VV LL = λλgg LL 1 + xx aa Position xx = VV LL gg LL VV RR gg RR aa VV LL gg LL + gg RR VV RR yy = VV UU gg UU VV DD gg DD aa VV UU gg UU + gg DD VV DD VV RR = λλgg RR 1 xx aa Remove x,y,a λλ = 1 2 VV LL gg LL + VV RR gg RR Remove λ VV LL = 1 gg RR VV RR + 1 gg UU VV UU + 1 gg DD VV DD (gg LL = 1) VV UU = λλgg UU VV DD = λλgg DD 1 + yy aa 1 yy aa λλ = 1 2 VV UU gg UU + VV DD gg DD Simplified: RR gg RR + UU gg UU + DD gg DD = LL m equations, m:number of data RR 1 UU 1 DD 1 RR mm UU mm DD mm 1 ggrr 1 gguu = 1 ggdd LL 1 LL mm A x b Calculation of gains Solve the A x=b equations

16 Method (1) Least Square Fitting (LS) (2) Total Least Square Fitting (TLS) Minimize: residual R mm R = jj=1 RR jj gg RR + UU jj gg UU + DD jj gg DD LL jj 2 Minimize: total distance D DD = 1 GG mm 2 jj=1 GG = 1, 1 gg RR, RR jj gg RR + UU jj gg UU + DD jj gg DD LL jj 1 gg UU, 1 gg DD LL RR gg RR + UU gg UU + DD gg DD = 0 2 GG : plane equation in L,R,U,D: vector perpendicular to the plane

17 Method (1) Least Square Fitting (LS) (2) Total Least Square Fitting (TLS) Calculation procedure AA TT AA TT AA 11 AA TT AA xx = bb AA xx = AA TT bb AA xx = AA TT AA 11 AA TT bb xx = AA TT AA 11 AA TT bb AA TT AA xx = bb AA λλii xx = AA TT bb AA TT AA λλii 11 AA TT AA λλii xx = AA TT AA λλii 11 AA TT bb xx = AA TT AA λλii 11 AA TT bb λ: unknown const. I: Unit matrix

18 Simulation 1: Preparation of Gains VV LL = λλgg LL 1 + xx (g aa L, g R, g U, g D ) = (1.00, 1.01, 1.005, 0.975) 2: Determine positions VV LL = λλgg LL 1 + xx aa 2 x 2, 2 y 2, 25 points (right fig.) 3: Determine the signal for each position and gain VV LL = λλgg LL 1 + xx aa 4: Noise generation for V assuming V/V = 0.2% with Gaussian distribution 5: 500 data points are generated for 1 position λ: Coef. of beam int. a: calibrated value by offline

19 Simulation Conditions: True gains: (g L, g R, g U, g D ) = (1.00, 1.01, 1.005, 0.975) 2 x 2, 2 y 2, generated for 25 points Noise generation for V L, V R, V U, V D V/V = 0.2% Gaussian distribution 500 points per 1 position

20 Fitting results g R g U g D True LS TLS LS: Least Square Fitting TLS: Total Least Square Fitting # of data: m=25 500=12500 RR 1 UU 1 DD 1 RR mm UU mm DD mm 1 ggrr 1 gguu = 1 ggdd LL 1 LL mm TLS method can adequately reproduce the true gains.

21 Analysis (Beam data) Gains vary depending on the settings of the circuit Proton/8-bunch Amp. gain Low Pass Filter Low Int OFF High Int ON Low Pass Filter Amp. Gain Signal from electrode Low Int. High Int. Waveform from each electrode FFT spectra of waveform Low Int MHz 5.01 MHz High Int MHz (used for analysis) Time (µsec) Gains are calculated for 3.34 MHz peak (signal strength from L,R,U,D) Freqency (MHz)

22 Results of gain calculation Low Int. High Int. g R /g L Maximally a few-several % difference g U /g L BBGC is needed depending on beam intensity g D /g L BPM address No.

23 Difference of gains by derived by different Runs Low Int. 14/04/01 14/11/29-30 High Int. 14/11/ /11/29-30 g D /g L g U /g L g R /g L BPM address No. BPM address No.

24 Difference of gains by derived by different Runs Low Int. High Int. g D /g L g U /g L g R /g L BPM address No. BPM address No.

25 Evaluation of the results Evaluated by Root Mean Square (RMS)= Low Int. xx2 ii nn of COD position for Low and High beam intensities High Int. x (mm) black: ref. gain, blue: cal. gain black: ref. gain, red: calc. gain y (mm) BPM addr. # BPM addr. # Low Int. High Int. RMS x RMS y RMS x RMS y Ref. gain Cal. gain

26 Summary (mainly Beam Based Gain Calibration) 186 BPMs are used in J-PARC MR for COD correction Required accuracy ~ a few 100 µm Correction of alignment errors of BPMs is necessary BPM gain has individuality by signal transfer or electric circuit. Beam Based Gain Calibration (BBGC) is effective method to correct position error along with Beam Based Alignment (BBA) Gains vary with the setting of electric circuit depending on beam intensity. BBGC has been done for Low and High beam intensity. RMS of COD was improved for x position while RMS of y became worse under investigation (real difference in gains or some errors?) Establishment of BBGC for various beam intensities and will be applied for corrections of position errors.

Front end, linac upgrade, and commissioning of J-PARC. Y. Liu KEK/J-PARC, Japan

Front end, linac upgrade, and commissioning of J-PARC. Y. Liu KEK/J-PARC, Japan KEK Front end, linac upgrade, and commissioning of J-PARC j-parc Y. Liu KEK/J-PARC, Japan ICFA mini-workshop on Beam Commissioning for High Intensity Accelerators Dongguan, China, June 8-10, 2015 Outlines

More information

Operational Experience with J-PARC Injection and Extraction Systems

Operational Experience with J-PARC Injection and Extraction Systems Operational Experience with J-PARC Injection and Extraction Systems Pranab Kumar Saha Japan Proton Accelerator Research Complex (J-PARC) 46th ICFA Advanced Beam Dynamics Workshop ( HB2010 ) Morschach,

More information

Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam

Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam FRXGBD3 Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam 4 th, May, 2018 Akihiko Miura, J-PARC, JAEA Tomoaki Miyao, J-PARC, KEK Katsuhiro Moriya, J-PARC, JAEA

More information

HIGH POWER BEAM OPERATION OF THE J-PARC RCS AND MR. Yoichi Sato for J-PARC Accelerator Group May 3 rd, 2018 THYGBF1, IPAC2018

HIGH POWER BEAM OPERATION OF THE J-PARC RCS AND MR. Yoichi Sato for J-PARC Accelerator Group May 3 rd, 2018 THYGBF1, IPAC2018 HIGH POWER BEAM OPERATION OF THE J-PARC RCS AND MR Yoichi Sato for J-PARC Accelerator Group May 3 rd, 2018 THYGBF1, IPAC2018 1 Contents Overview RCS 1 MW beam test Compatibility of both MLF and Main Ring

More information

Working Group F: Diagnostics and Instrumentation for High-Intense Beams Summary

Working Group F: Diagnostics and Instrumentation for High-Intense Beams Summary Working Group F: Diagnostics and Instrumentation for High-Intense Beams Summary Manfred Wendt for the Working Group F contributors 8/29/2008 HB2008 WG F: Diagnostics Summary 1 WG F: Overview Presentations

More information

PULSE-TO-PULSE TRANSVERSE BEAM EMITTANCE CONTROLLING FOR MLF AND MR IN THE 3-GeV RCS OF J-PARC

PULSE-TO-PULSE TRANSVERSE BEAM EMITTANCE CONTROLLING FOR MLF AND MR IN THE 3-GeV RCS OF J-PARC THO3AB3 Proceedings of HB, East-Lansing, MI, USA PULSE-TO-PULSE TRANSVERSE BEAM EMITTANCE CONTROLLING FOR MLF AND MR IN THE 3-GeV RCS OF J-PARC P.K. Saha, H. Harada, H. Hotchi and T. Takayanagi J-PARC

More information

ELECTRON CLOUD STUDY AT SX OPERATION MODE AT J-PARC MR

ELECTRON CLOUD STUDY AT SX OPERATION MODE AT J-PARC MR ELECTRON CLOUD STUDY AT SX OPERATION MODE AT J-PARC MR *, H. Kuboki, R. Muto, K. Satou, M. Tomizawa and T. Toyama Accelerator Division Japan Proton Accelerator Research Complex (J-PARC) High Energy Accelerator

More information

How J-PARC recovered from the big earthquake

How J-PARC recovered from the big earthquake How J-PARC recovered from the big earthquake KEK / Fujio Naito Outline About J-PARC The earthquake Damage on J-PARC Recovery plan Beam study results Summary J-PARC (Japan Proton Accelerator Research Complex)

More information

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems:

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems: A Project to convert TLS Booster to hadron accelerator 1. Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV, and a storage ring. The TLS storage ring is currently operating

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

STATUS REPORT ON SURVEY AND ALIGNMENT OF J-PARC AFTER THE EARTHQUAKE

STATUS REPORT ON SURVEY AND ALIGNMENT OF J-PARC AFTER THE EARTHQUAKE STATUS REPORT ON SURVEY AND ALIGNMENT OF J-PARC AFTER THE EARTHQUAKE N. Tani#, T. Morishita, S. Meigo, M. Harada, H. Stefanus, JAEA/J-PARC, Tokai, Japan M. Shirakata, T. Ishii, Y. Fujii, Y. Shirakabe,

More information

Commissioning of the SNS Beam Instrumentation

Commissioning of the SNS Beam Instrumentation Commissioning of the SNS Beam Instrumentation Commissioning of the SNS Beam Instrumentation Tom Shea for the SNS Diagnostics Team Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA The Spallation

More information

Beam injection study at Aichi SR and UVSOR-III (Pulsed multipole Injection)

Beam injection study at Aichi SR and UVSOR-III (Pulsed multipole Injection) Beam injection study at Aichi SR and UVSOR-III (Pulsed multipole Injection) Naoto Yamamoto a, M. Hosaka a, H. Zen b, T. Konomi c, K. Hayashi c, J. Yamazaki c, Y. Takashima a, M. Katoh c a) Nagoya University,

More information

Performance Studies of the Vibration Wire Monitor on the Test Stand with Low Energy Electron Beam

Performance Studies of the Vibration Wire Monitor on the Test Stand with Low Energy Electron Beam Proc. 2nd Int. Symp. Science at J-PARC Unlocking the Mysteries of Life, Matter and the Universe http://dx.doi.org/10.7566/jpscp.8.012024 Performance Studies of the Vibration Wire Monitor on the Test Stand

More information

Beam Diagnostics for Low Energy Proton and H - Accelerators. Vic Scarpine Fermilab 2012 BIW April 16-19, 2012

Beam Diagnostics for Low Energy Proton and H - Accelerators. Vic Scarpine Fermilab 2012 BIW April 16-19, 2012 Beam Diagnostics for Low Energy Proton and H - Accelerators Vic Scarpine Fermilab 2012 BIW April 16-19, 2012 Outline High-power proton/h- accelerator future Generic accelerator front-ends Typical diagnostic

More information

NEW ARRANGEMENT OF COLLIMATORS OF J-PARC MAIN RING

NEW ARRANGEMENT OF COLLIMATORS OF J-PARC MAIN RING NEW ARRANGEMENT OF COLLIMATORS OF J-PARC MAIN RING M. J. Shirakata, S. Igarashi, K. Ishii, Y. Sato, and J. Takano J-PARC/KEK, Tokai/Tsukuba, Ibaraki, Japan Abstract The beam collimation system of J-PARC

More information

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev. Compressor Ring Valeri Lebedev Fermilab Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions Muon Collider Workshop Newport News, VA Dec. 8-1, 8 Where do we go?

More information

Beam Diagnostics. Measuring Complex Accelerator Parameters Uli Raich CERN BE-BI

Beam Diagnostics. Measuring Complex Accelerator Parameters Uli Raich CERN BE-BI Beam Diagnostics Measuring Complex Accelerator Parameters Uli Raich CERN BE-BI CERN Accelerator School Prague, 2014 Contents Some examples of measurements done with the instruments explained during the

More information

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI) Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI), 2003, A dedicated proton accelerator for 1p-physics at the future GSI Demands facilities for

More information

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER B. Mikulec, A. Findlay, V. Raginel, G. Rumolo, G. Sterbini, CERN, Geneva, Switzerland Abstract In the near future, a new

More information

The CeB6 Electron Gun for the Soft-X-ray FEL Project at SPring-8

The CeB6 Electron Gun for the Soft-X-ray FEL Project at SPring-8 May 25, 2004 DESY, Hamburg, Germany The CeB6 Electron Gun for the Soft-X-ray FEL Project at SPring-8 K. Togawa SPring-8 / RIKEN Harima Institute T. Shintake, H. Baba, T. Inagaki, T. Tanaka SPring-8 / RIKEN

More information

Proposal to convert TLS Booster for hadron accelerator

Proposal to convert TLS Booster for hadron accelerator Proposal to convert TLS Booster for hadron accelerator S.Y. Lee -- Department of Physics IU, Bloomington, IN -- NSRRC Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV,

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Beam Diagnostics Lecture 3 Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Contents of lecture 3 Some examples of measurements done with the instruments explained during the last 2 lectures

More information

Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON

Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON E.Huttel, I.Birkel, A.S.Müller, P.Wesolowski About ANKA Test by Frequency Generator Experiences in the Booster Experiences in the Storage

More information

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors.

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors. Beam Loss Monitors When energetic beam particles penetrates matter, secondary particles are emitted: this can be e, γ, protons, neutrons, excited nuclei, fragmented nuclei... Spontaneous radiation and

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

The SARAF 40 MeV Proton/Deuteron Accelerator

The SARAF 40 MeV Proton/Deuteron Accelerator The SARAF 40 MeV Proton/Deuteron Accelerator I. Mardor, D. Berkovits, I. Gertz, A. Grin, S. Halfon, G. Lempert, A. Nagler, A. Perry, J. Rodnizki, L. Weissman Soreq NRC, Yavne, Israel K. Dunkel, M. Pekeler,

More information

Varying accelerating fields

Varying accelerating fields Varying accelerating fields Two approaches for accelerating with time-varying fields Linear Accelerators Circular Accelerators Use many accelerating cavities through which the particle beam passes once.

More information

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007 LIS section meeting PS2 design status Y. Papaphilippou April 30 th, 2007 Upgrade of the injector chain (R. Garoby, PAF) Proton flux / Beam power 50 MeV 160 MeV Linac2 Linac4 1.4 GeV ~ 5 GeV PSB SPL RCPSB

More information

Proton Polarimetry for the EIC

Proton Polarimetry for the EIC Electron Ion Collider Users Meeting June 24-27, 2014 at Stony Brook University Proton Polarimetry for the EIC Andrei Poblaguev Brookhaven National Laboratory 2014.06.27 EIC Users Meeting 1 Outline Proton

More information

Design Status of the PEFP RCS

Design Status of the PEFP RCS Design Status of the PEFP RCS HB2010, Morschach, Switzerland J.H. Jang 1) Y.S. Cho 1), H.S. Kim 1), H.J. Kwon 1), Y.Y. Lee 2) 1) PEFP/KAERI, 2) BNL (www.komac.re.kr) Contents PEFP (proton engineering frontier

More information

LAYOUT AND SIMULATIONS OF THE FONT SYSTEM AT ATF2

LAYOUT AND SIMULATIONS OF THE FONT SYSTEM AT ATF2 LAYOUT AND SIMULATIONS OF THE FONT SYSTEM AT ATF J. Resta-López, P. N. Burrows, JAI, Oxford University, UK August 1, Abstract We describe the adaptation of a Feedback On Nano-second Timescales (FONT) system

More information

STATUS OF THE J-PARC FACILITY

STATUS OF THE J-PARC FACILITY STATUS OF THE J-PARC FACILITY Shoji Nagamiya, J-PARC Center, 2-4 Shirakata Shirane, Tokai-Mura, Ibaraki 319-1195, Japan Abstract J-PARC (Japan Proton Accelerator Research Complex) consists of three accelerators

More information

IFMIF mini-workshop on Beam Instrumentation. Ciemat, Madrid (Spain) 2-3 July 2007

IFMIF mini-workshop on Beam Instrumentation. Ciemat, Madrid (Spain) 2-3 July 2007 IFMIF BIW Agenda IFMIF mini-workshop on Beam Instrumentation Ciemat, Madrid (Spain) 2-3 July 2007 Monday, 2 july 2007 9:00 J. Sanchez Welcome message Today 9:10 A. Mosnier (CEA-Saclay) Instrumentation

More information

Diagnostics at SARAF

Diagnostics at SARAF Diagnostics at SARAF L. Weissman on behalf SARAF Beam Diagnostics in LEBT Beam Diagnostics in MEBT Beam Diagnostics in D-Plate ( including beam halo monitor) Some ideas for diagnostics Phase II Testing

More information

Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC )

Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC ) Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC ) Hayanori TAKEI, Koichiro HIRANO, Kazuyoshi TSUTSUMI 1) and Shin-ichiro MEIGO J-PARC Center, Japan Atomic Energy Agency,

More information

Acceleration to higher energies

Acceleration to higher energies Acceleration to higher energies While terminal voltages of 20 MV provide sufficient beam energy for nuclear structure research, most applications nowadays require beam energies > 1 GeV How do we attain

More information

Neutrino Factory in Japan: based on FFAG

Neutrino Factory in Japan: based on FFAG Neutrino Factory in Japan: based on FFAG Yoshiharu Mori (KEK) 1. Introduction 2. Scenario of muon acceleration 3. Neutrino Factory based on FFAG 4. Summary Introduction What is Neutrino Factory? High-intensity

More information

Small Isochronous Ring (SIR) project at NSCL, MSU. Eduard Pozdeyev NSCL, Michigan Sate University

Small Isochronous Ring (SIR) project at NSCL, MSU. Eduard Pozdeyev NSCL, Michigan Sate University Small Isochronous Ring (SIR) project at NSCL, MSU Eduard Pozdeyev NSCL, Michigan Sate University Talk Outline Isochronous regime in accelerators, application to Isochronous Cyclotrons Space charge effects

More information

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements A. Shemyakin 1, M. Alvarez 1, R. Andrews 1, J.-P. Carneiro 1, A. Chen 1, R. D Arcy 2, B. Hanna 1, L. Prost 1, V.

More information

Particle physics experiments

Particle physics experiments Particle physics experiments Particle physics experiments: collide particles to produce new particles reveal their internal structure and laws of their interactions by observing regularities, measuring

More information

Technological Challenges for High-Intensity Proton Rings

Technological Challenges for High-Intensity Proton Rings Technological Challenges for High-Intensity Proton Rings Yoshishige Yamazaki 52 nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams Park Plaza Beijing West, September

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

Comparison of simulated and observed beam profile broadening in the Proton Storage Ring and the role of space charge

Comparison of simulated and observed beam profile broadening in the Proton Storage Ring and the role of space charge PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 3, 3421 (2) Comparison of simulated and observed beam profile broadening in the Proton Storage Ring and the role of space charge J. D. Galambos,

More information

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim S2E (Start-to-End) Simulations for PAL-FEL Aug. 25 2008 Kyungpook Nat l Univ. Eun-San Kim 1 Contents I Lattice and layout for a 10 GeV linac II Beam parameters and distributions III Pulse-to-pulse stability

More information

Welcome to J-PARC NBI 2017

Welcome to J-PARC NBI 2017 The 10th International Workshop on Neutrino Beams and Instrumentation (NBI 2017), IVIL, Tokai-mura, 18-22 September 2017 Welcome to J-PARC NBI 2017 Tadashi Koseki J-PARC Center, KEK &JAEA Hadron accelerators

More information

The CIS project and the design of other low energy proton synchrotrons

The CIS project and the design of other low energy proton synchrotrons The CIS project and the design of other low energy proton synchrotrons 1. Introduction 2. The CIS project 3. Possible CMS 4. Conclusion S.Y. Lee IU Ref. X. Kang, Ph.D. thesis, Indiana University (1998).

More information

ÆThe Betatron. Works like a tranformer. Primary winding : coils. Secondary winding : beam. Focusing from beveled gap.

ÆThe Betatron. Works like a tranformer. Primary winding : coils. Secondary winding : beam. Focusing from beveled gap. Weak Focusing Not to be confused with weak folk cussing. Lawrence originally thought that the cyclotron needed to have a uniform (vertical) field. Actually unstable: protons with p vert 0 would crash into

More information

Beam based measurement of beam position monitor electrode gains

Beam based measurement of beam position monitor electrode gains PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 3, 98 () Beam based measurement of beam position monitor electrode gains D. L. Rubin,* M. Billing, R. Meller, M. Palmer, M. Rendina, N. Rider, D.

More information

Low Energy RHIC electron Cooling (LEReC)

Low Energy RHIC electron Cooling (LEReC) Low Energy RHIC electron Cooling (LEReC) LEReC overview: project goal and cooling approach Alexei Fedotov MEIC Collaboration Meeting 30 31 LEReC Project Mission/Purpose The purpose of the LEReC is to provide

More information

Update on Optics Modeling for the ATF Damping Ring at KEK Studies for low vertical emittance

Update on Optics Modeling for the ATF Damping Ring at KEK Studies for low vertical emittance Update on Optics Modeling for the ATF Damping Ring at KEK Studies for low vertical emittance 2009.05.08. K. Kubo, S. Kuroda, T. Okugi (KEK) M.D. Woodley (SLAC), A. Wolski, K. Panagiotidis (U. Liverpool

More information

DEVELOPMENT OF FFAG AT KYUSYU UNIVERSITY

DEVELOPMENT OF FFAG AT KYUSYU UNIVERSITY FFAG11, Sept.13-17, 2011, Oxford DEVELOPMENT OF FFAG AT KYUSYU UNIVERSITY N.Ikeda, Y.Yonemura, Y.Mori* Kyusyu University *invited FFAG11, Sept.13-17, 2011, Oxford DEVELOPMENTS OF FFAG IN JAPAN Osaka,RCNP

More information

High energy gamma production: analysis of LAL 4-mirror cavity data

High energy gamma production: analysis of LAL 4-mirror cavity data High energy gamma production: analysis of LAL 4-mirror cavity data Iryna Chaikovska LAL, Orsay POSIPOL 211, August, 28 1 Experiment layout Electron energy Electron charge Revolution period Electron bunch

More information

The MAX IV Thermionic preinjector

The MAX IV Thermionic preinjector The MAX IV Thermionic preinjector David Olsson ESLS RF, Lund, 2015-09-30 Injection Requirements I Full-energy injection from the LINAC 1.5 GeV and 3 GeV extraction points. Both storage rings will be operated

More information

10 GeV Synchrotron Longitudinal Dynamics

10 GeV Synchrotron Longitudinal Dynamics 0 GeV Synchrotron Longitudinal Dynamics G. Dugan Laboratory of Nuclear Studies Cornell University Ithaca, NY 483 In this note, I provide some estimates of the parameters of longitudinal dynamics in the

More information

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi HKUST Jockey Club Institute for Advanced Study CEPC Linac Injector HEP218 22 Jan, 218 Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi Institute of High Energy

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

Beam-Based Measurement of Dynamical Characteristics in Nuclotron

Beam-Based Measurement of Dynamical Characteristics in Nuclotron Bulg. J. Phys. 32 (2005) 136 146 Beam-Based Measurement of Dynamical Characteristics in Nuclotron O. Brovko 1, E. Ivanov 1, D. Dinev 2 1 Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region,

More information

High Intensity Operation and Control of Beam Losses in a Cyclotron based Accelerator

High Intensity Operation and Control of Beam Losses in a Cyclotron based Accelerator High Intensity Operation and Control of Beam Losses in a Cyclotron based Accelerator M.Seidel J.Grillenberger, A.C.Mezger for the PSI Accelerator Team Accelerator Facilities at PSI Neutron Source and Instruments

More information

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron Preliminary design study of JUICE Joint Universities International Circular Electronsynchrotron Goal Make a 3th generation Synchrotron Radiation Lightsource at 3 GeV Goal Make a 3th generation Synchrotron

More information

Diagnostics Needs for Energy Recovery Linacs

Diagnostics Needs for Energy Recovery Linacs Diagnostics Needs for Energy Recovery Linacs Georg H. Hoffstaetter Cornell Laboratory for Accelerator-based Sciences and Education & Physics Department Cornell University, Ithaca New York 14853-2501 gh77@cornell.edu

More information

BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM

BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM JINR BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM W.Höfle, G.Kotzian, E.Montesinos, M.Schokker, D.Valuch (CERN) V.M. Zhabitsky (JINR) XXII Russian Particle Accelerator Conference 27.9-1.1. 21, Protvino

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron Serena Persichelli CERN Impedance and collective effects BE-ABP-ICE Abstract The term trapped mode refers to a resonance

More information

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS 1.5-GeV FFAG Accelerator as Injector to the BNL-AGS Alessandro G. Ruggiero M. Blaskiewicz,, T. Roser, D. Trbojevic,, N. Tsoupas,, W. Zhang Oral Contribution to EPAC 04. July 5-9, 5 2004 Present BNL - AGS

More information

ILC Beam Dynamics Studies Using PLACET

ILC Beam Dynamics Studies Using PLACET ILC Beam Dynamics Studies Using PLACET Andrea Latina (CERN) July 11, 2007 John Adams Institute for Accelerator Science - Oxford (UK) Introduction Simulations Results Conclusions and Outlook PLACET Physical

More information

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Linac Booster o 4.5-4.8e12 ppp at 0.5 Hz o Space charge (30% loss in the first 5 ms) o Main magnet field quality

More information

II) Experimental Design

II) Experimental Design SLAC Experimental Advisory Committee --- September 12 th, 1997 II) Experimental Design Theory and simulations Great promise of significant scientific and technological achievements! How to realize this

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN BERLinPro An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN BERLinPro: ERL demonstration facility to prepare the ground for a few GeV ERL @ Berlin-Adlershof Goal: 100MeV, 100mA beam Small emittance,

More information

Laser Based Diagnostics for Measuring H - Beam Parameters

Laser Based Diagnostics for Measuring H - Beam Parameters Laser Based Diagnostics for Measuring H - Beam Parameters Yun Liu on behalf of Beam Instrumentation Group Research Accelerator Division Spallation Neutron Source Oak Ridge National Laboratory OUTLINE Overview

More information

Status of Proof-of-Principle Experiment of Coherent Electron Cooling at BNL

Status of Proof-of-Principle Experiment of Coherent Electron Cooling at BNL Status of Proof-of-Principle Experiment of Coherent Electron Cooling at BNL Outline 2 Why we doing it? What is Coherent electron Cooling System description Subsystem performance Plan for Run 18 e-n Luminosity

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design

Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 10, 054701 (2007) Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design E. Keil* CERN, Geneva,

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics. Linac4 chopper line commissioning strategy

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics. Linac4 chopper line commissioning strategy slhc Project CERN-BE-21-27 Linac4 chopper line commissioning strategy G. Bellodi, J-B. Lallement, A. M. Lombardi, P. A. Posocco, E. Sargsyan Abstract CERN-BE-21-27 29/6/21 The report outlines the strategy

More information

Overview of Acceleration

Overview of Acceleration Overview of Acceleration R B Palmer, Scott Berg, Steve Kahn (presented by Steve Kahn) Nufact-04 RF Frequency Acc types and System Studies Linacs RLA s FFAG s Injection/Extraction US Study 2a acceleration

More information

Preliminary design studies of a 100 MeV H /H + LINAC as injector for SNS synchrotron/ads LINAC

Preliminary design studies of a 100 MeV H /H + LINAC as injector for SNS synchrotron/ads LINAC PRAMANA cfl Indian Academy of Sciences Vol. 59, No. 5 journal of November 2002 physics pp. 859 869 Preliminary design studies of a 100 MeV H /H + LINAC as injector for SNS synchrotron/ads LINAC S A PANDE,

More information

positron source EPOS - general concept - timing system - digital lifetime measurement

positron source EPOS - general concept - timing system - digital lifetime measurement The pulsed high-brightness positron source EPOS R. Krause-Rehberg 1, G. Brauer 2, A. Krille 1, M. Jungmann 1, S. Sachert 1, A. Rogov 2, K. Nowak 2 1 Martin-Luther-University Halle, Germany 2 Research Center

More information

7th IPAC, May 8-13, 2016, Busan, Korea

7th IPAC, May 8-13, 2016, Busan, Korea 7th IPAC, May 8-13, 2016, Busan, Korea ER@CEBAF A High-Energy, Multiple-Pass, Energy Recovery Experiment at CEBAF On behalf of the JLab-BNL ER@CEBAF collaboration : I. Ben-Zvi, Y. Hao, P. Korysko, C. Liu,

More information

Accelerators. There are some accelerators around the world Nearly all are for industrial (20 000) or clinical use (10 000)

Accelerators. There are some accelerators around the world Nearly all are for industrial (20 000) or clinical use (10 000) Accelerators There are some 30 000 accelerators around the world Nearly all are for industrial (20 000) or clinical use (10 000) Scientific research community (~ 100) Synchrotron light sources Ion beam

More information

Beam dynamics studies of H-beam chopping in a LEBT for project X

Beam dynamics studies of H-beam chopping in a LEBT for project X Beam dynamics studies of H-beam chopping in a LEBT for project X Qing Ji, David Grote, John Staples, Thomas Schenkel, Andrew Lambert, and Derun Li Lawrence Berkeley National Laboratory, 1 Cyclotron Road,

More information

Chapter 2 T2K Experiment

Chapter 2 T2K Experiment Chapter 2 T2K Experiment The T2K experimental setup consists of the J-PARC accelerator, a neutrino beamline, near detectors and a far detector (Super-K) as illustrated in Fig. 2.1. The T2K neutrino beamline

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

Synchrotron Motion. RF cavities. Charged particles gain and lose energy in electric field via

Synchrotron Motion. RF cavities. Charged particles gain and lose energy in electric field via 217 NSRRC FEL Longitudinal Motion (SYL) 1 Synchrotron Motion RF cavities Charged particles gain and lose energy in electric field via Δ. For DC accelerators such as the Cockcroft-Walton and Van-der- Graaff

More information

Measurement of Beam Profile

Measurement of Beam Profile Measurement of Beam Profile The beam width can be changed by focusing via quadruples. Transverse matching between ascending accelerators is done by focusing. Profiles have to be controlled at many locations.

More information

Cornell Injector Performance

Cornell Injector Performance Cornell Injector Performance Adam Bartnik 1 Cornell Injector Performance as an ERL injector 2 Cornell Injector Performance as an ERL injector as an FEL injector (e.g. LCLS-II) as an injector for EIC applications

More information

Low alpha mode for SPEAR3 and a potential THz beamline

Low alpha mode for SPEAR3 and a potential THz beamline Low alpha mode for SPEAR3 and a potential THz beamline X. Huang For the SSRL Accelerator Team 3/4/00 Future Light Source Workshop 00 --- X. Huang Outline The low-alpha mode for SPEAR3 Potential for a THz

More information

Introduction to Collider Physics

Introduction to Collider Physics Introduction to Collider Physics William Barletta United States Particle Accelerator School Dept. of Physics, MIT The Very Big Picture Accelerators Figure of Merit 1: Accelerator energy ==> energy frontier

More information

STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC

STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC V.P. Bolotin, N.A. Vinokurov, N.G. Gavrilov, D.A. Kayran, B.A. Knyazev, E.I. Kolobanov, V. V. Kotenkov, V.V. Kubarev, G.N. Kulipanov, A.N. Matveenko, L.E.

More information

IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and "step-like" magnet

IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and step-like magnet IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and "step-like" magnet N. Chauvin 1 R. Duperrier 1 P.A.P. Nghiem 1 J. Y. Tang 2 D. Uriot 1 Z.Yang 2 1 Commissariat

More information

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004 ELIC Design Ya. Derbenev, K. Beard, S. Chattopadhyay, J. Delayen, J. Grames, A. Hutton, G. Krafft, R. Li, L. Merminga, M. Poelker, E. Pozdeyev, B. Yunn, Y. Zhang Center for Advanced Studies of Accelerators

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

ALIGNMENT OF CAVITIES AND MAGNETS AT J-PARC LINAC

ALIGNMENT OF CAVITIES AND MAGNETS AT J-PARC LINAC The th International Workshop on Accelerator Alignment, KEK, Tsukuba, -5 February 28 ALIGNMENT OF CAVITIES AND MAGNETS AT J-PARC LINAC T. Morishita, H. Ao, H. Asano, T. Ito, A. Ueno, T. Ohkawa, and K.

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

An ERL-Based High-Power Free- Electron Laser for EUV Lithography

An ERL-Based High-Power Free- Electron Laser for EUV Lithography An ERL-Based High-Power Free- Electron Laser for EUV Lithography Norio Nakamura High Energy Accelerator Research Organization(KEK) 2015 EUVL Workshop, Maui, Hawaii, USA, June 15-19, 2015. ERL-EUV Design

More information

P-Carbon CNI Polarimeter Operation Experience

P-Carbon CNI Polarimeter Operation Experience P-Carbon CNI Polarimeter Operation Experience, A. Poblaguev, D. Steski, K. Yip, A. Zelenski Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: huanghai@bnl.gov The p-carbon polarimeter working

More information

SSA Measurements with Primary Beam at J-PARC

SSA Measurements with Primary Beam at J-PARC SSA Measurements with Primary Beam at J-PARC Joint UNM/RBRC Workshop on Orbital Angular Momentum in Albuquerque February 25 th, 2006 Yuji Goto (RIKEN/RBRC) February 25, 2006 Yuji Goto (RIKEN/RBRC) 2 Introduction

More information