Figure 1. Map of Feather River Basin in northern California. (A) Region straddles the northwestern Sierra Nevada and Sacramento Valley.

Size: px
Start display at page:

Download "Figure 1. Map of Feather River Basin in northern California. (A) Region straddles the northwestern Sierra Nevada and Sacramento Valley."

Transcription

1 Figure 1. Map of Feather River Basin in northern California. (A) Region straddles the northwestern Sierra Nevada and Sacramento Valley. (B) Feather River Basin with Yuba and Bear subbasins. Most hydraulic mines were near 121 W longitude in Yuba and Bear basins.

2 Figure 2. Levee spacings with narrow Feather River floodway, wide Yuba R. floodway, and narrow constriction at Yuba mouth.

3 Figure 3. Levee cross-valley spacings in 1999 compared to 1909 (Feather River) and 1906 (Yuba River).

4 Figure 4. Widening of levee spacings from 1909 to 1999 on the lower Feather River. Levee spacings in 1909 were narrower. (A) 1909 levees on the east bank above and below Star Bend constricted channels to not much wider than low-water channel. By 1999 these constrictions were gone west bank levees B were in essentially the same position as in (B) Levees positions on east bank of Feather River changed little from 1909 to A railroad embankment on the right bank constrained widths of moderate floods to less than 250 m. High floods flowed into Sutter Basin through crevasses. A Star Bend

5 Figure 5. Excerpt of rectified north half of Von Schmidt (1859) map of lower Feather River (flowing north to south) and Yuba River (flowing from upper right). Scale added.

6 Figure longitudinal profile of lower Yuba River from The Narrows in the fan apex to Shanghai Bend below the Feather River confluence. Solid line is channel-bed elevation in The middle dashed and lower dotted lines are elevations of the pre-mining channel and bedrock, respectively. Numbers adjacent to thin vertical lines are depths of boreholes (meters) done in that provide minimum depths of hydraulic mining sediment. Two thick vertical lines give depths to bedrock (17 and 15.9 m) based on bedrock exposed by dredging. (Source: CDC, 1906).

7 Figure 7. Excerpt from 1861 map of Yuba County showing two features not shown on 1859 map: (a) a channel southeast of the main channel around the area marked Linda. (b) a western chute cutting off the confluence. These conditions should represent pre-mining channels. (Source: Wescoatt, 1861)

8 Figure 8. Early positions of lower Yuba River based on Mendell s 1882 map. Undated paleochannels (light dotted) match 1859 pre-mining channels (dark dashed) (Von Schmidt, 1859; cf. Figure 5). A pre-1876 channel to the south (light dotted) matches the channel shown by Wescoatt (1861) and is interpreted as contemporary with the 1859 pre-mining channel to the north. A channel system along the south levee was labeled low-water channel in By 1880, much of the low-water Yuba channel had shifted two to three km northwest. Source: Mendell (1882) based on 1879 survey by Hall (1880).

9 Figure 9. Yuba River floodplain above Marysville in Lightly shaded channel is 1906 low-water channel. Dark channel is 2006 low-water channel. Heavy dashed line in southwest is 1859 channel (Von Schmidt, 1859). Heavy dotted line above and below center is 1879 channel (Mendell 1882). Other channels are 1906 high-water channels including former locations of main channel. Bordering lines along northwest and southeast floodplain margins are levees 4.1 km apart. Star is site of USGS stream gage and stratigraphic section. (Source: CDC, 1906, Sheet 2)

10 A C Historical B Figure. 10. Historical sediment at the US Geological Survey stream gauge on the Yuba River near Marysville is more than 6 m deep. A stump near the base of the section, rooted in pre-historic sediment, has two root crowns; indicating that the tree survived initial burial.

11 Figure 11. Excerpt from 1865 map of Yuba-Feather confluence showing three cutoffs from the lower Yuba southern meander bend in early stages of channel aggradation. The northern cutoff (NC) became an avulsion, abandoning the southern meander (SM) over which the Linda levee was later built (Figure 8). The southern cutoff (SC) apparently connected the Yuba River SM to the Feather River at Elisa Bend (EB). The western chute (WC) may be the same high-water channel shown in 1861 (Figure 7) which was later dredged. (Source: Pixley et al., 1865.) WC NC SM SC EB

12 X B X A Figure 12. Channelization around the Yuba-Feather confluence. A. A series of ditches were dredged south of Marysville by Two ditches connected with the Feather River at Elisa Bend and another turned the confluence south. Stratigraphic sections collected at the Xs are shown in Figures 13 and 15. (Source: CDC, 1912) B. These ditches are shown prominently in (Source: Crook, 1914)

13 Figure 13. Stratigraphic section on right bank of lower Yuba River at Marysville. Dark, massive silts at the base represent pre-mining alluvium. Historical sediment is highly stratified and at least 4.5 m thick; probably 5.5 m thick. BD is bulk density; T Hg is total elemental mercury concentration in sediment samples.

14 Fig. 14. Feather River channel changes at Elisa and Shanghai Bends. (A) In 1906, the Feather River in this area was beginning to experience changes in planform. Levees above the bend had shifted the channel eastward and altered the flow direction above the bend. The straight Dredge Canal to the south along the west levee initiated flows that bypassed Elisa Bend that ultimately resulted in an avulsion. (Source: CDC, 1912). (B) By 1909, much of the flow was passing south through the new dredged channel which was no longer straight but had begun a meander to the east. Elisa Bend was shifting south in a lower-amplitude wave. (C) The modern topography shows the configuration of upper Shanghai Bend and the channel scar that was Elisa Bend. Derived from 1999 LiDAR and sonar data. A EB

15 Figure 15. Stratigraphic sections of Feather River right bank exposures. (A) Above Shanghai Bend showing historical sediment ~5.5 m thick. Total mercury concentrations in sediment samples A through D were 0.18, 0.47, 0.35, and 0.05, respectively. (B) Below Shanghai Bend a distinct soil clearly marks premining surface ~3.3 m deep.

16 Figure 16. Sand sheets below the Bear River confluence are interpreted as a legacy of sediment from the hydraulic mining era. October, (Source of photo: California Department of Water Resources)

17 Figure 17. Lower Feather River at Sutter Bypass confluence. (A) 1909 CDC map: incipient cutoff of single channel. (B) Shaded relief map with oxbow lake largely filled in Derived from LiDAR DEM and SONAR channel bathymetry (Stonestreet and Lee, 2000).

18 Figure 18. Alternating longitudinal bars on lower Feather River from the beginning of Sutter Bypass to the Sacramento confluence. (A) Long wavelength bars on 1909 map (CDC, 1912). (B) Short wavelength bars on August 4 th, 1966 aerial photograph (EROS, 1966)

19 Figure 19. Crevasses through Southern Pacific Railroad embankment delivering water and sediment from lower Feather River to Sutter Basin. (Source: CDC, 1912)

Historical channel changes in the lower Yuba and Feather Rivers, California: Long-term effects of contrasting river-management strategies

Historical channel changes in the lower Yuba and Feather Rivers, California: Long-term effects of contrasting river-management strategies spe 451-04 2nd pgs page 57 The Geological Society of America Special Paper 451 2009 Historical channel changes in the lower Yuba and Feather Rivers, California: Long-term effects of contrasting river-management

More information

Historical channel change on the Upper Gila River, Arizona and New Mexico in response to anthropogenic modifications and extreme floods

Historical channel change on the Upper Gila River, Arizona and New Mexico in response to anthropogenic modifications and extreme floods Historical channel change on the Upper Gila River, Arizona and New Mexico in response to anthropogenic modifications and extreme floods www.archives.gov www.paztcn.wr.usgs.gov wrh.noaa.gov Upper Gila River

More information

Step 5: Channel Bed and Planform Changes

Step 5: Channel Bed and Planform Changes Step 5: Channel Bed and Planform Changes When disturbed, streams go through a series of adjustments to regain equilibrium with the flow and sediment supply of their watersheds. These adjustments often

More information

The controls on and evolution of channel morphology of the Sacramento River: A case study of River Miles

The controls on and evolution of channel morphology of the Sacramento River: A case study of River Miles The controls on and evolution of channel morphology of the Sacramento River: A case study of River Miles 201-185 Eric Larsen, Emily Anderson, Ellen Avery, Krishna Dole Geology Department University of

More information

Geomorphic Importance of Winter Peak Flows and Annual Snowmelt Hydrographs in a Sierra Nevada Boulder-Bedrock River

Geomorphic Importance of Winter Peak Flows and Annual Snowmelt Hydrographs in a Sierra Nevada Boulder-Bedrock River Geomorphic Importance of Winter Peak Flows and Annual Snowmelt Hydrographs in a Sierra Nevada Boulder-Bedrock River Scott McBain and Bill Trush McBain & Trush, Inc. Clavey River and Cherry Creek vicinity

More information

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012 Stream Geomorphology Leslie A. Morrissey UVM July 25, 2012 What Functions do Healthy Streams Provide? Flood mitigation Water supply Water quality Sediment storage and transport Habitat Recreation Transportation

More information

Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California

Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California Mike Rudd (Project Manager), Charley Miller & Chad Krofta Declines in Tahoe s Water Clarity The

More information

Earth Science Chapter 6 Section 2 Review

Earth Science Chapter 6 Section 2 Review Name: Class: Date: Earth Science Chapter 6 Section Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most streams carry the largest part of their

More information

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT Eric W. Larsen REPORT FOR DUCKS UNLIMITED March 31, 2006-1 - Contents

More information

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes page - 1 Section A - The Hydrologic Cycle Figure 1 illustrates the hydrologic cycle which quantifies how water is cycled throughout

More information

LOMR SUBMITTAL LOWER NEHALEM RIVER TILLAMOOK COUNTY, OREGON

LOMR SUBMITTAL LOWER NEHALEM RIVER TILLAMOOK COUNTY, OREGON LOMR SUBMITTAL LOWER NEHALEM RIVER TILLAMOOK COUNTY, OREGON Prepared for: TILLAMOOK COUNTY DEPARTMENT OF COMMUNITY DEVELOPMENT 1510-B THIRD STREET TILLAMOOK, OR 97141 Prepared by: 10300 SW GREENBURG ROAD,

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

Stop 1: Marmot Dam Stop 1: Marmot Dam

Stop 1: Marmot Dam Stop 1: Marmot Dam Stop 1: Marmot Dam Stop 1: Marmot Dam Following the removal of Marmot Dam in 2007, the fate of the reservoir sediments has been monitored through a series of surveys and sediment transport measurements.

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

CULTURAL HISTORY Suzzette Fig. 1. Undated Plat Map of Suzzette. Unsigned; probably drawn by J. Lee Chambers.

CULTURAL HISTORY Suzzette Fig. 1. Undated Plat Map of Suzzette. Unsigned; probably drawn by J. Lee Chambers. CULTURAL HISTORY Suzzette by Neal McLain The map collection at the Brazoria County Historical Museum contains numerous plat maps of property subdivisions. While examining these maps, I ran across two maps

More information

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water Final Exam Running Water Erosion and Deposition Earth Science Chapter 5 Pages 120-135 Scheduled for 8 AM, March 21, 2006 Bring A scantron form A calculator Your 3 x 5 paper card of formulas Review questions

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

Chapter 12: River Systems and Landforms

Chapter 12: River Systems and Landforms Chapter 12: River Systems and Landforms Base Levels: Local and Ultimate Figure 12.6 Figure 12.2 A Drainage Basin Rills and Gullies feeding into small Streams in Iowa North American Drainage Basins Figure

More information

Lecture 19: Fluvial Facies

Lecture 19: Fluvial Facies GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lecture 19: Fluvial Facies Aims Examine controls on alluvial channel pattern List the types of channel pattern Examine meandering

More information

Riparian Assessment. Steps in the right direction... Drainage Basin/Watershed: Start by Thinking Big. Riparian Assessment vs.

Riparian Assessment. Steps in the right direction... Drainage Basin/Watershed: Start by Thinking Big. Riparian Assessment vs. Riparian Assessment vs. Monitoring Riparian Assessment What is a healthy stream? Determine stream/riparian health Determine change or trend, especially in response to mgmt Classification = designation

More information

LOMR SUBMITTAL LOWER NESTUCCA RIVER TILLAMOOK COUNTY, OREGON

LOMR SUBMITTAL LOWER NESTUCCA RIVER TILLAMOOK COUNTY, OREGON LOMR SUBMITTAL LOWER NESTUCCA RIVER TILLAMOOK COUNTY, OREGON Prepared for: TILLAMOOK COUNTY DEPARTMENT OF COMMUNITY DEVELOPMENT 1510-B THIRD STREET TILLAMOOK, OR 97141 Prepared by: 10300 SW GREENBURG ROAD,

More information

PolyMet NorthMet Project

PolyMet NorthMet Project RS 26 Draft-01 December 8, 2005 RS26 Partridge River Level 1 Rosgen Geomorphic Survey Rosgen Classification Partridge River from Headwaters to Colby Lake Prepared for PolyMet NorthMet Project December

More information

LANDFORMS OF THE LOWER YUBA RIVER

LANDFORMS OF THE LOWER YUBA RIVER LOWER YUBA RIVER ACCORD MONITORING AND EVALUATION PROGRAM LANDFORMS OF THE LOWER YUBA RIVER APRIL 2012 Prepared for: The Lower Yuba Accord River Management Team by Josh Wyrick, PhD., and Greg Pasternack,

More information

NATURAL RIVER. Karima Attia Nile Research Institute

NATURAL RIVER. Karima Attia Nile Research Institute NATURAL RIVER CHARACTERISTICS Karima Attia Nile Research Institute NATURAL RIVER DEFINITION NATURAL RIVER DEFINITION Is natural stream of water that flows in channels with ih more or less defined banks.

More information

11/12/2014. Running Water. Introduction. Water on Earth. The Hydrologic Cycle. Fluid Flow

11/12/2014. Running Water. Introduction. Water on Earth. The Hydrologic Cycle. Fluid Flow Introduction Mercury, Venus, Earth and Mars share a similar history, but Earth is the only terrestrial planet with abundant water! Mercury is too small and hot Venus has a runaway green house effect so

More information

HYDROLOGY AND HYDRAULICS MUSKEG RIVER BRIDGE

HYDROLOGY AND HYDRAULICS MUSKEG RIVER BRIDGE PUBLIC WORKS CANADA HYDROLOGY AND HYDRAULICS MUSKEG RIVER BRIDGE KILOMETRE 207.9, LIARD HIGKWAY December 1978 I I f I I I I # Bolter Parish Trimble Ltd. ONLIULTINO Public Works, Canada, 9925-109 Street,

More information

PR122A NARRATIVE Updated 25 July 2014

PR122A NARRATIVE Updated 25 July 2014 PR122A NARRATIVE Updated 25 July 2014 Cross section PR122A was established in 1979 across a new cutoff channel that had formed during the 1978 flood across the neck of a meander bend in Powder River at

More information

ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN

ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN Conor Shea - Hydrologist U.S. Fish and Wildlife Service Conservation Partnerships Program Arcata, CA Learning Objectives Examine

More information

Technical Memorandum No Sediment Model

Technical Memorandum No Sediment Model Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.9 Sediment Model Task: Development of Sediment Model To: PRWFPA Staff Working Group Prepared by: Gregory Morris and Elsie Parrilla

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

Conceptual Model of Stream Flow Processes for the Russian River Watershed. Chris Farrar

Conceptual Model of Stream Flow Processes for the Russian River Watershed. Chris Farrar Conceptual Model of Stream Flow Processes for the Russian River Watershed Chris Farrar Several features of creeks affect the interactions between surface and groundwater. This conceptual model uses the

More information

Fate of historic metal releases from the Coeur d Alene mining district Northern Idaho

Fate of historic metal releases from the Coeur d Alene mining district Northern Idaho Fate of historic metal releases from the Coeur d Alene mining district Northern Idaho Stephen E. Box US Geological Survey U.S. Metal Production Coeur d'alene, ID Butte, MT Tintic-East Tintic, UT Ag (10

More information

Vermont Stream Geomorphic Assessment. Appendix E. River Corridor Delineation Process. VT Agency of Natural Resources. April, E0 - April, 2004

Vermont Stream Geomorphic Assessment. Appendix E. River Corridor Delineation Process. VT Agency of Natural Resources. April, E0 - April, 2004 Vermont Stream Geomorphic Assessment Appendix E River Corridor Delineation Process Vermont Agency of Natural Resources - E0 - River Corridor Delineation Process Purpose A stream and river corridor delineation

More information

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy.

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy. 1 2 Function... Sevier River... to successfully carry sediment and water from the watershed....dissipate energy. 3 ALLUVIAL FEATURES 4 CHANNEL DIMENSION The purpose of a stream is to carry water and sediment

More information

Avoiding Geohazards in the Mid-Atlantic Highlands by Using Natural Stream Principles

Avoiding Geohazards in the Mid-Atlantic Highlands by Using Natural Stream Principles Avoiding Geohazards in the Mid-Atlantic Highlands by Using Natural Stream Principles J. Steven Kite, WVU Neal Carte, WVDOT Will Harman, Michael Baker Corp. Donald D. Gray, WVU Photo: W. Gillespie North

More information

Stream Classification

Stream Classification Stream Classification Why Classify Streams? Communication Tool Describe Existing Conditions & Trends Describe Restoration Goals Research Tool Morphologic Stream Classification Systems Schumm (1977) Alluvial

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

Streams. Water. Hydrologic Cycle. Geol 104: Streams

Streams. Water. Hydrologic Cycle. Geol 104: Streams Streams Why study streams? Running water is the most important geologic agent in erosion, transportation and deposition of sediments. Water The unique physical and chemical properties of water make it

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

PR167 NARRATIVE Updated 25 July 2014

PR167 NARRATIVE Updated 25 July 2014 PR167 NARRATIVE Updated 25 July 2014 Cross section PR167 was established in 1977 in the upriver limb of a large meander bend of Powder River in Sections 21 and 28 of T6S, R50E (the bend described as near

More information

FLUVIAL LANDFORMS. Floodplains

FLUVIAL LANDFORMS. Floodplains FLUVIAL LANDFORMS Floodplains fairly flat & continuous surface occupying much of a valley bottom normally underlain by unconsolidated sediments subject to periodic flooding (usually once every year or

More information

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone David Hoffman University of Missouri Rolla Natural Hazards Mitigation Institute Civil, Architectural & Environmental

More information

The last three sections of the main body of this report consist of:

The last three sections of the main body of this report consist of: Threatened and Endangered Species Geological Hazards Floodplains Cultural Resources Hazardous Materials A Cost Analysis section that provides comparative conceptual-level costs follows the Environmental

More information

Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades?

Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades? Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades? Faith Fitzpatrick USGS WI Water Science Center, Middleton, WI fafitzpa@usgs.gov

More information

DISCUSSION PURPOSES ONLY C A L I F O R N I A S T A T E L A N D S C O M M I S S I O N

DISCUSSION PURPOSES ONLY C A L I F O R N I A S T A T E L A N D S C O M M I S S I O N C A L I F O R N I A S T A T E L A N D S C O M M I S S I O N SAN JOAQUIN RIVER REACH 2B OVERVIEW OF THE CALIFORNIA STATE LANDS COMMISSION ADMINISTRATIVE MAPS PRESENTATION Water Boundary Principles Best

More information

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER Eric W. Larsen University of California, Davis With the assistance of Evan Girvetz REPORT

More information

Climatic Change Implications for Hydrologic Systems in the Sierra Nevada

Climatic Change Implications for Hydrologic Systems in the Sierra Nevada Climatic Change Implications for Hydrologic Systems in the Sierra Nevada Part Two: The HSPF Model: Basis For Watershed Yield Calculator Part two presents an an overview of why the hydrologic yield calculator

More information

Opportunities to Improve Ecological Functions of Floodplains and Reduce Flood Risk along Major Rivers in the Puget Sound Basin

Opportunities to Improve Ecological Functions of Floodplains and Reduce Flood Risk along Major Rivers in the Puget Sound Basin Opportunities to Improve Ecological Functions of Floodplains and Reduce Flood Risk along Major Rivers in the Puget Sound Basin Christopher Konrad, US Geological Survey Tim Beechie, NOAA Fisheries Managing

More information

Starting at Rock Bottom

Starting at Rock Bottom Starting at Rock Bottom At rock bottom of the Brushy Creek site s geological column lies the first clue to human habitation: A smelting and heattreating furnace, and mold, carved into Bed Ked: Figure 15

More information

SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS

SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS GSA DATA REPOSITORY 2014069 Hajek and Edmonds SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS Each experiment starts from the initial condition of a straight channel 10 km

More information

APPENDIX A M&T/Llano Seco Long-Term Water Reliability Study These photos are examples of rock spurs in use throughout the United States

APPENDIX A M&T/Llano Seco Long-Term Water Reliability Study These photos are examples of rock spurs in use throughout the United States APPENDIX A M&T/Llano Seco Long-Term Water Reliability Study These photos are examples of rock spurs in use throughout the United States Glenn Colusa Irrigation District completed a Sacramento River project

More information

WITTKOP, BENNETT, CHORMANN AND WUNSCH

WITTKOP, BENNETT, CHORMANN AND WUNSCH 1 GEOLOGY OF THE MAY 2006 SUNCOOK RIVER AVULSION by Chad Wittkop, Department of Geology, University of Wisconsin Eau Claire, Eau Claire, WI 54701 Derek Bennett, Rick Chormann and David Wunsch, New Hampshire

More information

Year 6. Geography. Revision

Year 6. Geography. Revision Year 6 Geography Revision November 2017 Rivers and World knowledge How the water cycle works and the meaning of the terms evaporation, condensation, precipitation, transpiration, surface run-off, groundwater

More information

Bank Erosion and Morphology of the Kaskaskia River

Bank Erosion and Morphology of the Kaskaskia River Bank Erosion and Morphology of the Kaskaskia River US Army Corps Of Engineers St. Louis District Fayette County Soil and Water Conservation District Team Partners : Carlyle Lake Ecosystem Partnership Vicinity

More information

PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0

PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0 PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0 LYCOMING COUNTY S.R.15, SECTION C41 FINAL HYDROLOGIC AND HYDRAULIC REPORT STEAM VALLEY RUN STREAM RELOCATION DATE: June, 2006 REVISED:

More information

Chapter 11. Rivers: Shaping our landscape

Chapter 11. Rivers: Shaping our landscape Chapter 11 Rivers: Shaping our landscape Learning outcomes In this presentation you will learn: Common terms associated with rivers About the three stages of a river About the processes of river erosion

More information

4.3. Geomorphologic route along the Urasalakh River

4.3. Geomorphologic route along the Urasalakh River The Expedition Lena-Anabar 2003 4 Periglacial studies around Cape Mamontov Klyk 4.3. Geomorphologic route along the Urasalakh River Dimitri Bolshiyanov and Alexander Makarov 4.3.1 Structure of Quaternary

More information

Probabilistic Evaluation of a Meandering Low-Flow Channel. February 24 th, UMSRS

Probabilistic Evaluation of a Meandering Low-Flow Channel. February 24 th, UMSRS Probabilistic Evaluation of a Meandering Low-Flow Channel February 24 th, 2014 2014 UMSRS 1 2 acknowledgments Low- Flow Channel (LFC) overview Proposed Diversion Channel collects runoff from: The Rush

More information

FLUVIAL GEOMORPHOLOGY OF THE ENTIAT RIVER, WA, AND IMPLICATIONS FOR STREAM RESTORATION

FLUVIAL GEOMORPHOLOGY OF THE ENTIAT RIVER, WA, AND IMPLICATIONS FOR STREAM RESTORATION FLUVIAL GEOMORPHOLOGY OF THE ENTIAT RIVER, WA, AND IMPLICATIONS FOR STREAM RESTORATION Godaire, Jeanne E., Bureau of Reclamation, P.O. Box 25007, Denver, CO 80225, 303-445- 3164, jgodaire@usbr.gov; Russell,

More information

River Meandering and Braiding. Pierre Y. Julien. Department of Civil and Environmental Engineering Colorado State University Fort Collins, Colorado

River Meandering and Braiding. Pierre Y. Julien. Department of Civil and Environmental Engineering Colorado State University Fort Collins, Colorado River Meandering and Braiding Pierre Y. Julien Department of Civil and Environmental Engineering Colorado State University Fort Collins, Colorado River Mechanics and Sediment Transport Lima Peru January

More information

CR AAO Bridge. Dead River Flood & Natural Channel Design. Mitch Koetje Water Resources Division UP District

CR AAO Bridge. Dead River Flood & Natural Channel Design. Mitch Koetje Water Resources Division UP District CR AAO Bridge Dead River Flood & Natural Channel Design Mitch Koetje Water Resources Division UP District Old County Road AAO Bridge Map courtesy of Marquette County Silver Lake Basin McClure Basin

More information

Kaskaskia Morphology Study Headwaters to Lake Shelbyville

Kaskaskia Morphology Study Headwaters to Lake Shelbyville Kaskaskia Morphology Study Headwaters to Lake Shelbyville KWA Mini Summit 5 March 2012 1 Kaskaskia Morphology Study Headwaters to Lake Shelbyville Conducted by U.S. Army Corps of Engineers, St. Louis District

More information

Section 5. Low-Gradient Streams. What Do You See? Think About It. Investigate. Learning Outcomes

Section 5. Low-Gradient Streams. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 4 Surface Processes Section 5 Low-Gradient Streams What Do You See? Learning Outcomes In this section, you will Use models and real-time streamflow data to understand the characteristics of lowgradient

More information

Pat Dryer Half Moon Lake: A True Oxbow Lake? Geography 364 April 1 st, 2007

Pat Dryer Half Moon Lake: A True Oxbow Lake? Geography 364 April 1 st, 2007 Pat Dryer Half Moon Lake: A True Oxbow Lake? Geography 364 April 1 st, 2007 Appendix Abstract 2 Introduction 3 Methods 3 Results 3 Discussion 5 Conclusion 11 1 Abstract Half Moon Lake appears to be an

More information

Influence of Paleochannels on Seepage

Influence of Paleochannels on Seepage Study 4 Influence of Paleochannels on Seepage Public Draft 2014 Monitoring and Analysis Plan September 2013 August 2012 Influence of Paleochannels on Seepage 1. Statement of Need Historical maps, aerial

More information

Sacramento Valley Groundwater Basin, Sutter Subbasin

Sacramento Valley Groundwater Basin, Sutter Subbasin Sacramento Valley Groundwater Basin, Sutter Subbasin Groundwater Basin Number: 5-21.62 County: Sutter Surface Area: 234,400 acres (366 square miles) Boundaries and Hydrology The Sutter Subbasin lies in

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information

Flow regime, floodplain inundation and floodplain waterbody connectivity at Congaree National Park

Flow regime, floodplain inundation and floodplain waterbody connectivity at Congaree National Park Flow regime, floodplain inundation and floodplain waterbody connectivity at Congaree National Park John Kupfer Dept. of Geography Univ. of South Carolina Kimberly Meitzen Duke University Nature Conservancy

More information

USGS scientists with Venezuelan military liaisons.

USGS scientists with Venezuelan military liaisons. USGS scientists with Venezuelan military liaisons. In December, 1999, heavy rainfall triggered thousands of debris flows and caused numerous flash floods in a 300- kilometer long area of the north coast

More information

PR206 NARRATIVE Updated 16 June 2015

PR206 NARRATIVE Updated 16 June 2015 PR206 NARRATIVE Updated 16 June 2015 Cross section PR206 was established in 1977 in a fairly straight reach of Powder River about a kilometer downriver of the Highway 212 bridge at Broadus. The section

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL DESCRIPTIONS OF OTHER STRATIGRAPHIC SECTIONS Cherry Creek In its middle reaches, Cherry Creek meanders between three paired terraces within a narrow bedrock valley. The highest is

More information

1. The topographic map below shows a depression contour line on Earth's surface.

1. The topographic map below shows a depression contour line on Earth's surface. 1. The topographic map below shows a depression contour line on Earth's surface. Points A, B, C, and D represent surface locations. Contour line elevations are in feet. Which profile best shows the topography

More information

DOWNSTREAM SORTING OF SEDIMENT (additional control on channel width, depth and slope)

DOWNSTREAM SORTING OF SEDIMENT (additional control on channel width, depth and slope) DOWNSTREAM SORTING OF SEDIMENT (additional control on channel width, depth and slope) Image removed due to copyright concerns As the gravel gets finer, it is transported at lower slopes. The result is

More information

Leveraging new models and data to improve flood stage forecast. Improving Flood Stage Forecasting in the Feather River Watershed. September 11 th 2015

Leveraging new models and data to improve flood stage forecast. Improving Flood Stage Forecasting in the Feather River Watershed. September 11 th 2015 Leveraging new models and data to improve flood stage forecast Improving Flood Stage Forecasting in the Feather River Watershed September 11 th 2015 Mitch Russo, P.E. (DWR) Ashok Bathulla, P.E., CFM (GEI)

More information

4.17 Spain. Catalonia

4.17 Spain. Catalonia 4.17 Spain Catalonia In Spain, inundation studies are the responsibility of the respective Hydrographic Confederations of each river basin (River Basin Authorities). The actual status of inundation studies

More information

4.9 GEOLOGY AND SOILS

4.9 GEOLOGY AND SOILS 4.9 GEOLOGY AND SOILS 4.9.1 EXISTING CONDITIONS TOPOGRAPHY AND RELIEF Zone 40 is located in the central portion of Sacramento County. The topography of the county is represented by three physiographic

More information

Page 1. Name:

Page 1. Name: Name: 1) Which event is the best example of erosion? dissolving of rock particles on a limestone gravestone by acid rain breaking apart of shale as a result of water freezing in a crack rolling of a pebble

More information

Figure 1. Which part of the river is labelled in Figure 1? a) Mouth b) Source c) Lower course d) channel

Figure 1. Which part of the river is labelled in Figure 1? a) Mouth b) Source c) Lower course d) channel Rivers 1. Study Figure 1 showing the long profile of a river Figure 1 A Which part of the river is labelled in Figure 1? a) Mouth b) Source c) Lower course d) channel (1 mark) 2. Complete the sentences

More information

Lab 12 Coastal Geology

Lab 12 Coastal Geology Lab 12 Coastal Geology I. Fluvial Systems Hydrologic Cycle Runoff that flows into rivers = precipitation (rain and snowmelt) [infiltration (loss to groundwater) + evaporation (loss to atmosphere) + transpiration

More information

Solutions to Flooding on Pescadero Creek Road

Solutions to Flooding on Pescadero Creek Road Hydrology Hydraulics Geomorphology Design Field Services Photo courtesy Half Moon Bay Review Solutions to Flooding on Pescadero Creek Road Prepared for: San Mateo County Resource Conservation District

More information

Wetland & Floodplain Functional Assessments and Mapping To Protect and Restore Riverine Systems in Vermont. Mike Kline and Laura Lapierre Vermont DEC

Wetland & Floodplain Functional Assessments and Mapping To Protect and Restore Riverine Systems in Vermont. Mike Kline and Laura Lapierre Vermont DEC Wetland & Floodplain Functional Assessments and Mapping To Protect and Restore Riverine Systems in Vermont Mike Kline and Laura Lapierre Vermont DEC NWI+ Hydro-Geomorphic Characterization of Wetlands and

More information

The Geology of Sebago Lake State Park

The Geology of Sebago Lake State Park Maine Geologic Facts and Localities September, 2002 43 55 17.46 N, 70 34 13.07 W Text by Robert Johnston, Department of Agriculture, Conservation & Forestry 1 Map by Robert Johnston Introduction Sebago

More information

Chapter 3 Erosion in the Las Vegas Wash

Chapter 3 Erosion in the Las Vegas Wash Chapter 3 Erosion in the Las Vegas Wash Introduction As described in Chapter 1, the Las Vegas Wash (Wash) has experienced considerable change as a result of development of the Las Vegas Valley (Valley).

More information

PHYSICAL GEOGRAPHY. By Brett Lucas

PHYSICAL GEOGRAPHY. By Brett Lucas PHYSICAL GEOGRAPHY By Brett Lucas FLUVIAL PROCESSES Fluvial Processes The Impact of Fluvial Processes on the Landscape Streams and Stream Systems Stream Channels Structural Relationships The Shaping and

More information

STAAR Science Tutorial 40 TEK 8.9C: Topographic Maps & Erosional Landforms

STAAR Science Tutorial 40 TEK 8.9C: Topographic Maps & Erosional Landforms Name: Teacher: Pd. Date: STAAR Science Tutorial 40 TEK 8.9C: Topographic Maps & Erosional Landforms TEK 8.9C: Interpret topographic maps and satellite views to identify land and erosional features and

More information

UPPER COSUMNES RIVER FLOOD MAPPING

UPPER COSUMNES RIVER FLOOD MAPPING UPPER COSUMNES RIVER FLOOD MAPPING DRAFT BASIC DATA NARRATIVE FLOOD INSURANCE STUDY SACRAMENTO COUTY, CALIFORNIA Community No. 060262 November 2008 Prepared By: CIVIL ENGINEERING SOLUTIONS, INC. 1325 Howe

More information

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT STREAM CLASSIFICATION & RIVER ASSESSMENT Greg Babbit Graduate Research Assistant Dept. Forestry, Wildlife & Fisheries Seneca Creek, Monongahela National Forest, West Virginia OBJECTIVES Introduce basic

More information

Structural Geology Lab. The Objectives are to gain experience

Structural Geology Lab. The Objectives are to gain experience Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air

More information

3.3 CLIMATE, GEOLOGY, TOPOGRAPHY, AND SOILS CLIMATE GEOLOGY TOPOGRAPHY

3.3 CLIMATE, GEOLOGY, TOPOGRAPHY, AND SOILS CLIMATE GEOLOGY TOPOGRAPHY 3.3 CLIMATE, GEOLOGY, TOPOGRAPHY, AND SOILS This section describes the climate, geology, topography, and soil resource characteristics of the Yolo Bypass Wildlife Area (Wildlife Area). Agricultural soil

More information

GEOMORPHIC CHANGES IN LOWER CACHE CREEK 2012

GEOMORPHIC CHANGES IN LOWER CACHE CREEK 2012 GEOMORPHIC CHANGES IN LOWER CACHE CREEK 2012 Eric W. Larsen Technical Memorandum Prepared for Cache Creek Technical Advisory Committee Natural Resources Program Yolo County Board of Supervisors 2012 Prepared

More information

Highland Lake Bathymetric Survey

Highland Lake Bathymetric Survey Highland Lake Bathymetric Survey Final Report, Prepared For: The Town of Highland Lake 612 Lakeshore Drive Oneonta, AL 35121 Prepared By: Tetra Tech 2110 Powers Ferry Road SE Suite 202 Atlanta, GA 30339

More information

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER Eric W. Larsen University of California, Davis With the assistance of Evan Girvetz

More information

!"#$%&&'()*+#$%(,-./0*)%(!

!#$%&&'()*+#$%(,-./0*)%(! 8:30 Sign in Hoosic River Revival Coalition!"#$%&&'()*+#$%(,-./0*)%(! 12-#30+4/#"5-(60 9:00 Welcome and Introductions 9:15 Goals for Today s Program: A Description of the Planning Process 9:30 First Session:

More information

GLG362/GLG598 Geomorphology K. Whipple October, 2009 I. Characteristics of Alluvial Channels

GLG362/GLG598 Geomorphology K. Whipple October, 2009 I. Characteristics of Alluvial Channels I. Characteristics of Alluvial Channels Self-formed morphology set by entrainment, transport, and deposition They move unconsolidated sedimentary materials present in the valley fill flood plain/bank flow

More information

SURFACE GEOLOGY AND LIQUEFACTION SUSCEPTIBILITY IN THE INNER RIO GRANDE VALLEY NEAR ALBUQUERQUE, NEW MEXICO

SURFACE GEOLOGY AND LIQUEFACTION SUSCEPTIBILITY IN THE INNER RIO GRANDE VALLEY NEAR ALBUQUERQUE, NEW MEXICO SURFACE GEOLOGY AND LIQUEFACTION SUSCEPTIBILITY IN THE INNER RIO GRANDE VALLEY NEAR ALBUQUERQUE, NEW MEXICO Keith I. Kelson, Christopher S. Hitchcock, and Carolyn E. Randolph William Lettis & Associates,

More information

Sedimentation Rate Change in the Winooski River Delta

Sedimentation Rate Change in the Winooski River Delta Sedimentation Rate Change in the Winooski River Delta Chris Ricker and Brian Connelly Abstract Historical air photographs, from 1937 show the Winooski River Delta extended much farther into Lake Champlain

More information

Overview of fluvial and geotechnical processes for TMDL assessment

Overview of fluvial and geotechnical processes for TMDL assessment Overview of fluvial and geotechnical processes for TMDL assessment Christian F Lenhart, Assistant Prof, MSU Research Assoc., U of M Biosystems Engineering Fluvial processes in a glaciated landscape Martin

More information

Countermeasure Calculations and Design

Countermeasure Calculations and Design Countermeasure Calculations and Design Summarized from Bridge Scour and Stream Instability Countermeasures, Experience, Selection, and Design Guidance, Second Edition, Publication No. FHWA NHI 01-003,

More information

IMPORTANCE OF GEOLOGIC CHARACTERIZATION FOR LEVEE FOUNDATION AND BORROW MATERIALS AS STUDIED AT THE INDIAN GRAVES LEVEE DISTRICT, ADAMS COUNTY, IL

IMPORTANCE OF GEOLOGIC CHARACTERIZATION FOR LEVEE FOUNDATION AND BORROW MATERIALS AS STUDIED AT THE INDIAN GRAVES LEVEE DISTRICT, ADAMS COUNTY, IL IMPORTANCE OF GEOLOGIC CHARACTERIZATION FOR LEVEE FOUNDATION AND BORROW MATERIALS AS STUDIED AT THE INDIAN GRAVES LEVEE DISTRICT, ADAMS COUNTY, IL Conor Watkins Missouri University of Science and Technology

More information

3.0 ROBERTS BANK TIDAL FLAT MORPHOLOGY

3.0 ROBERTS BANK TIDAL FLAT MORPHOLOGY Vancouver Port Authority Northwest Hydraulic Consultants Ltd. /Triton Consultants Ltd. Roberts Bank Container Expansion File: 33863 Coastal Geomorphology Study - 19 - November 2004 3.0 ROBERTS BANK TIDAL

More information