Caribbean OBS Fault Research Survey. Iniciative (COFRESI)

Size: px
Start display at page:

Download "Caribbean OBS Fault Research Survey. Iniciative (COFRESI)"

Transcription

1 Caribbean OBS Fault Research Survey Iniciative (COFRESI) May 6, 2013 PROPOSAL Submitted to: National Science Fundation Submitted by: Department of Geology, University of Puerto Rico at Mayagüez Proposal Duration: 16 months Proposed Amount: $ 411,009. Starting Date: January 1, 2014 Principal Investigator: Fernando Martínez Torres, Bs. Graduate Student

2 1 Proposal Statement PROJECT DESCRIPTION I propose to deploy five Ocean Bottom Seismometer (OBS) at the Northeastern of Puerto Rico-Virgin Islands in order to record earthquake hypocenters from a swarm of earthquakes that occurred in this region every year. These seismic eventes will be relocate using a double difference earthquake location algorithm and the data will be use to create a tridimensional wave velocity model of this region. The creation of such a model is intended to better understand the location and geometry of the North American subducting slab under the Caribbean plate. Visualizing the geometry of the subducting slab is critical in helping understand the aspects of earthquake rupture processes in this region and is a key component for constraining calculations such as inference of subduction zone mechanics, interpretation of seismic structure and dynamic modeling (Anderson et. al., 2007). 2 Objective Statement The purpose of my research is to improve the current wave velocity model creating a tridimensional model that takes into account the location of the slab, for having a better location of earthquakes close to the Puerto Rico Trench. The goal of this research is to: (1) Relocate a one-year period of events using joint data from the Puerto Rico Seismic Network (PRSN) land stations and Ocean Bottom Seismometers, and (2) Produce a tomographic image of the forearc that will be valuable for location operations at the PRSN. This exercise is expected to test my hypothesis of quantifying the PRSN bias towards offshore event locations. If our relocated events show a depth dependency on slab interface, then I can be certain that our velocity model is precise, and therefore ready to implement in PRSN daily location operations. 1

3 3 Introduction/Background The Puerto Rico Seismic Network (PRSN) has recorded seismic swarms data at the northeastern region of Puerto Rico up to the present, since it began operating in Scientist believe that these seismic swarms are caused by a tear in the North American slab due to the increases of the plate boundary arc curvature (Brink, 2005). This hypothesis has not been yet proven due to sparse and inaccurate data sets. Puerto Rico-Virgin Islands (PRVI) microplate is part of the northeastern island arc of the Caribbean. The placement of seismometers has been inhibited as a result of poor land exposure, limiting and thus preventing us to install seismometer at the north area where the seismic swarms are taking place, having an azimuthal gap of 270º. The closest seismic station at the North of the seismic swarms may be in the Bahamas or Florida, where stations are 1,500 kilometers away, making unable to record the type of low magnitude events characteristic of these swarms. At such distant stations, swarm earthquakes from the northeastern PRVI region may not be detected, on account of these seismic swarms are not capable of releasing enough energy, hence instruments may collect incomplete or no data from them. This serve as evidence that such region is complex, at least in the seismological sense. Therefore, it is vital to have instruments at the north of these seismic swarms to be able to identify active faults where the swarms are occurring, constrain their depth and estimate faults geometries. Another limiting factor for offshore earthquake locations at PRSN is the existing velocity model, were this one-dimensional velocity model assumes that all layers in the trench are horizontal, limiting the ability to locate hypocenters. (Figure 3). This limitation we currently face created a bias at the time of locate earthquakes, obtaining ambiguous hypocenter location. Therefore, 2

4 we may not know if the published hypocenters are correct. These seismic hypocenter locations are essential to understand and locate the rupture processes of earthquakes. This results in the inability to explain the nature of seismic swarms. In order to circumvent this problem the United States Geological Survey (USGS) deployed five OBSes at the North of the Virgin Islands for a period of six months in 2007 (Figure 1)(López et. al., 2009). With the OBS data we are able to decreased the azimuthal gap from the PRSN land station from 270 to 70, improving hypocenter relocations (Vieten, 2012). The data recorded by the OBSes was merged with the data recorded by the land PRSN stations in order to produce a complete P and S phase arrival dataset(lópez et. al., 2009). To process the recorded data by the OBS, it was use the programs of HypoDD and TomoDD in order to constrain a three-dimensional velocity model of the Northeastern of the Caribbean. This contribute in decrease the existing bias in order to located earthquakes hypocenters and the data were processed. Due to the sparse dataset, we was not able to have a accurate image of the slab. To have an accurate image of the slab, more data are needed. 3.1 Tectonic Setting The Northeastern Caribbean is a complex region to study, at least in the seismological sense, given that as an island arc, there is always a limited location where to place seismic stations. The North America-Caribbean plate boundary zone (NBCPBZ, Mann et al., 2002), a 3200 km long buffer zone, extends from northern Central America to the Greater Antilles (Grindlay et. al., 2005). The northeastern Caribbean plate boundary zone can be subdivided into three microplates: the Gonave, the Hispaniola and the Puerto Rico-Virgin 3

5 Island (PRVI) (Jansma and Mattioli, 2005). The PRVI region is located at a zone where oblique subduction between the North America and Caribbean plates take place (Figure 2) (Doser et. al., 2005). The PRVI microplate is surrounded by different faults features: at the east is the Anegada Passage, in the south is the Muertos Trough, in the west the Mona Passage and in the north the Puerto Rico Trench. Similar to other island arcs, PRVI is difficult to study seismologically and thus, tectonically, due to insufficient data collection from their surrounding oceanic crust (Brink, 2005). One explanation for this is the fact that the movement of the Caribbean plate is relative slow compared to other plates (Jansma et. al., 2000). Global position systems studies show that PRVI moves together with the Caribbean plate, towards the E-NE at a rate of ± 3 mm/yr (Mann et. al., 2002). 3.2 Previous Work In 2011, for my senior thesis I relocated 548 seismic events recorded by the OBS es in 2007 using hypodd and tomodd (Figure 4). This study show hypocenter relocations parallel to the Puerto Rico trench in an area of 150 Km 2. With the preliminary results we are able to image preliminarily the top 100 km of P-wave velocity structure in the swarm area suggesting preliminarily location, dimensions and orientation of the North America slab under Puerto Rico (Figure 5). The tomography shows a heretegenous material but due to the sparse dataset, we was not able to have a accurate image of the slab. A study in 2012 where only a second swarm (173 seismic events) was relocated using HypoDD (Vieten, 2012). Vieten uses two velocities models for doing the relocations: (1) PRSN model and (2) IASP91 model. Both models dosent represent the true velocity structure of the region but with the OBS the azimuthal gaps is reduce, having more accurate relocations of the hypocenters 4

6 than the original locations. Also due to the lack of vertical ray paths, the hypocenters relocation depths having high residual of 5 to 10 Km. 4 Methods Waldhauser and Ellsworth (2000) agree that is necessary to have knowledge of the precise spatial offset between earthquake hypocenters to study tectonic processes, earthquake recurrence, and earthquake interactions. To have better locations of these seismic events, I will relocate the hypocenters using data collected by the OBSes through a computer program called HypoDD. After acquiring results with HypoDD, I will use them in another computer program, TomoDD, to produce a tomographic image of the region. 4.1 HypoDD HypoDD is a FORTRAN computer program package developed by Waldhauser (2001) that uses a double-difference (DD) algorithm for relocating earthquakes hypocenters, which takes advantage of the fact that the hypocentral separation between two earthquakes is small. Therefore, the ray paths from the source to the station of this two earthquakes will travel almost the same materials having similar wave velocity. This algorithm is especially useful for regions where there are swarms present, because the distance between events are in the order of a few hundred meters (Waldhauser, 2001). As a result the program uses the location of larger events in the swarms as reference to relocate weaker events, clustering all the events along faults planes. To relocate the earthquake hypocenters with HypoDD, two essential steps are need. First, I will derive the travel time difference for two earthquakes by analyzing the catalog phase data (Waldhauser, 2001). Essentially, this step is 5

7 to minimize redundancy in the data set so that the catalog is converted to a phase data file using ph2dt (Waldhauser, 2001). The second step consists in using the differential travel time data to determine double-difference hypocenter locations (Waldhauser, 2001). During this process it is essential that all events have connecting vectors among them to avoid numerical instabilities in the code (Waldhauser, 2001). After processing the data in HypoDD the results will be plotted to visualize the difference in hypocenters. 4.2 TomoDD TomoDD, developed by Zhang and Thurber (2003) also employs the double difference technique to jointly determine event locations and velocity structure by using both absolute and differential travel time data from body waves. This program stems from the algorithm of HypoDD and thus it also relocates the earthquake hypocenters while it reduces systematic errors by choosing and using relative arrival times with minimal residuals to produce and improve a velocity model (Zhang and Thurber, 2003). This results in a three-dimensional velocity model of the trench, having a better representation of the geometry of the North America plate subducting under the Caribbean plate. 5 Time Line Term Spring 2014 Spring 2015 Fall 2015 Spring 2016 Plan OBS Deployment OBS Recovery Data Analysis Conclusions and resuts presentation 6

8 6 Figures Figure 1: Figure showing events recorded by the PRSN from April through September Light yellow color of events represent shallow depths, while darker colors are deeper. Stars represent GPS stations, triangles are PRSN land station and inverted triangles represent the 5 deployed oceans bottom seismometers (OBS) in 2007 (López et. al., 2009). Inset at the right top corner show a histogram of events as a function of time. Two peaks in the histogram represent the two swarms recorded during the six month period. 7

9 Figure 2: Plate tectonic setting of the Caribbean, with emphasis on the Northeastern area. White arrows show GPS data while solid lines trace main fault systems. Oblique subduction along the Northeastern Caribbean while frontal subduction occurs at the Lesser Antilles arc (Ali et. al., 2008). Figure 3: PRNS s current velocity model. 8

10 Figure 4: Relocations of all events were performed using first HypoDD (top) and then with TomoDD (below). The blue epicenters are the original locations after merge and initial 1-D relocation. Left figures are map views, while on the right are profiles with events within the rectangular box. Red epicenters are event relocations. Black lines joining red and blue locations indicate relocation tendency. Due to a lack of strong event pair links many events relocated to the surface indicating a lack of convergence in the process. Overall, HypoDD tend to bring events closer to the surface, while TomoDD is able to pull together closer events within the cluster. 9

11 Figure 5: TomoDD velocity model results. Cross-sections shown are contiguous north-south slices through the swarm region. The 0 km in the x axis is the center of the cluster and the y axis is depth in km. Colors represent P-wave velocity following the color scale bar on the right. Most of all profiles do not show a significant result except for the last three figures on the right column, where an apparent slab can be seen subducting towards the south. Black dots are relocated events. 10

12 References Ali, S., Freed, A., Calais, E., Manaker, D., and McCann2, W.R., 2008, Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation: Geophysis Journal, v. 174, p Anderson, M., Alvarado, P., Zandt, G., and Beck, S., 2007, Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina: Geophysics Journal, v. 171, p Brink, U., 2005, Vertical Motions of the Puerto Rico Trench and Puerto Rico and their cause: Journal of Geophysical Research, v. 110, p Doser, D.I., Rodríguez, C., and Flores, C., 2005, Historical earthquakes of the Puerto Rico-Virgin Islands region ( ): Geological Society of America, Special Paper, v. 385, p Grindlay, N., Hearne, M., and Mann, P., 2005, High Risk of Tsunami in the Northern Caribbean: EOS, Transactions, American Geophysical Union, v. 86, p Jansma, P. and Mattioli, G., 2005, GPS results from Puerto Rico and the Virgin Islands: Constraints on tectonic setting and rates of active faulting: Geological Society of America Special Paper, v. 385, p Jansma, P., Mattioli, G., López, A., DeMets, C., Dixon, T., Mann, P., and Calais, E., 2000, Neotectonics of Puerto Rico and the Virgin Islands, northeastern Caribbean, from GPS geodesy: Tectonics, v. 19, p López, A., Pulliam, J., Brink, U.T., Mintz, H., and Hillebrandt-Andrade, V., 2009, Deployment of Ocean Bottom Seismometers South of the Puerto Rico 11

13 Trench Yields new Insights into the Behavior of Seismic Swarms: AGU 2009 Fall Meeting Poster Presentation. Mann, P., Calais, E., Ruegg, J., DeMets, C., Jansma, P., and Mattioli, G., 2002, Oblique collision in the northeastern Caribbean from GPS meassurments and geological observations: Tectonics, v. 21, p Vieten, R.M., 2012, Relocations of a Seismic Swarm in the Northeastern Caribbean Using Ocean Bottom Seismometers [Master s thesis]: Gottfried Wilhelm Leibniz University Hannover, 97 p. Waldhauser, F., 2001, HypoDD: A computer program to compute doubledifference earthquake locations: U.S. Geological. Survey Open-File Report, p Waldhauser, F. and Ellsworth, W., 2000, A double-difference earthquake location algorithm: Seismological Society America, v , p Zhang, H. and Thurber, C., 2003, Deployment of Ocean Bottom Seismometers South of the Puerto Rico Trench Yields new Insights into the Behavior of Seismic Swarms: Seismological Society of America, v. 93, p

crustal volume of the swarm. This initiated interest and concern that another

crustal volume of the swarm. This initiated interest and concern that another 3. Earthquae locations Data from permanent seismic networs located the 2001 Enola mainshoc within the crustal volume of the 1982-84 swarm. This initiated interest and concern that another 1982-lie sequence

More information

Magnitude 7.0 PERU. This region of the Andes is a sparsely populated area, there were no immediate reports of injuries or damage.

Magnitude 7.0 PERU. This region of the Andes is a sparsely populated area, there were no immediate reports of injuries or damage. A magnitude 7.0 earthquake occurred in southeastern Peru on Friday about 27 kilometers northeast of the town of Azángaro, Peru, near the border with Bolivia. The earthquake occurred at a depth of 257.4

More information

overlie the seismogenic zone offshore Costa Rica, making the margin particularly well suited for combined land and ocean geophysical studies (Figure

overlie the seismogenic zone offshore Costa Rica, making the margin particularly well suited for combined land and ocean geophysical studies (Figure Chapter 1 Introduction Historically, highly destructive large magnitude (M w >7.0) underthrusting earthquakes nucleate along the shallow segment of subduction zone megathrust fault, and this region of

More information

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE An 8.2-magnitude earthquake struck off the coast of northern Chile, generating a local tsunami. The USGS reported the earthquake was centered 95 km (59 miles) northwest of Iquique at a depth of 20.1km

More information

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

Magnitude 8.3 SEA OF OKHOTSK

Magnitude 8.3 SEA OF OKHOTSK A powerful earthquake in Russia's Far East was felt as far away as Moscow, about 7,000 kilometers (4,400 miles) west of the epicenter, but no casualties or damage were reported. The epicenter was in the

More information

A magnitude 7.8 earthquake has occurred km (63.3 mi) ESE of Suva, Fiji at a depth of km (378 miles).

A magnitude 7.8 earthquake has occurred km (63.3 mi) ESE of Suva, Fiji at a depth of km (378 miles). A magnitude 7.8 earthquake has occurred 101.8 km (63.3 mi) ESE of Suva, Fiji at a depth of 608.6 km (378 miles). There is no risk of a tsunami from an earthquake at this depth. Images courtesy of Google

More information

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise Strain Analysis Introduction Name: The earthquake cycle can be viewed as a process of slow strain accumulation

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004 GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi:10.1029/2004gl020366, 2004 Characteristic seismic activity in the subducting plate boundary zone off Kamaishi, northeastern Japan, revealed by precise

More information

SEISMOTECTONIC ANALYSIS OF A COMPLEX FAULT SYSTEM IN ITALY: THE

SEISMOTECTONIC ANALYSIS OF A COMPLEX FAULT SYSTEM IN ITALY: THE SEISMOTECTONIC ANALYSIS OF A COMPLEX FAULT SYSTEM IN ITALY: THE GARFAGNANA-NORTH (NORTHERN TUSCANY) LINE. Eva Claudio 1, Eva Elena 2, Scafidi Davide 1, Solarino Stefano 2, Turino Chiara 1 1 Dipartimento

More information

Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation

Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation Geophys. J. Int. (08) 174, 904 9 doi: 10.1111/j.1365-246X.08.03634.x Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation

More information

Earthquake source parameters for the January, 2010, Haiti mainshock and aftershock sequence

Earthquake source parameters for the January, 2010, Haiti mainshock and aftershock sequence Earthquake source parameters for the January, 2010, Haiti mainshock and aftershock sequence Meredith Nettles 1,2 and Vala Hjörleifsdóttir 1,3 1 Lamont-Doherty Earth Observatory of Columbia University 2

More information

Magnitude 7.6 & 7.6 PERU

Magnitude 7.6 & 7.6 PERU Two deep 7.6 magnitude earthquakes have shaken a sparsely populated jungle region near the Peru-Brazil border in southeast Peru. There were no immediate reports of injuries or damage. The second M 7.6

More information

Central Coast Seismicity Locations. Jeanne Hardebeck US Geological Survey Menlo Park, CA

Central Coast Seismicity Locations. Jeanne Hardebeck US Geological Survey Menlo Park, CA Central Coast Seismicity Locations Jeanne Hardebeck US Geological Survey Menlo Park, CA 11/29/2011 Seismic Network Issues for Earthquake Location: - Many stations are single-component, difficult to identify

More information

APPLICATION OF A PASSIVE TOMOGRAPHY METHOD AND CORRELATION WITH ACTIVE SEISMIC OBSERVATIONS IN THE KYPARISSIAKOS GULF, SOUTHWESTERN HELLENIC ARC

APPLICATION OF A PASSIVE TOMOGRAPHY METHOD AND CORRELATION WITH ACTIVE SEISMIC OBSERVATIONS IN THE KYPARISSIAKOS GULF, SOUTHWESTERN HELLENIC ARC APPLICATION OF A PASSIVE TOMOGRAPHY METHOD AND CORRELATION WITH ACTIVE SEISMIC OBSERVATIONS IN THE KYPARISSIAKOS GULF, SOUTHWESTERN HELLENIC ARC Tsambas A. 1, Fasoulaka Ch. 2, Papoulia J. 1, Makris J.

More information

7.1 FIJI 1, :57:22 UTC

7.1 FIJI 1, :57:22 UTC A magnitude 7.1 earthquake struck 141 km (88 miles) northeast of Ndoi Island, Fiji, and 313 km (194 mi) west-northwest of Nuku alofa, Tonga according to the US Geological Survey, but there were no reports

More information

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN Japan was rattled by a strong aftershock and tsunami warning Thursday night nearly a month after a devastating earthquake and tsunami flattened the northeastern coast. This earthquake can be considered

More information

Lab 9: Satellite Geodesy (35 points)

Lab 9: Satellite Geodesy (35 points) Lab 9: Satellite Geodesy (35 points) Here you will work with GPS Time Series data to explore plate motion and deformation in California. This lab modifies an exercise found here: http://www.unavco.org:8080/cws/pbonucleus/draftresources/sanandreas/

More information

Magnitude 7.4 SOUTH GEORGIA ISLAND REGION

Magnitude 7.4 SOUTH GEORGIA ISLAND REGION A magnitude 7.4 earthquake occurred in the South Georgia Island Region. South Georgia Island is a British territory in the South Atlantic Ocean that lies about 800 miles east of the Falkland Islands. It

More information

Magnitude 7.1 PERU. There are early reports of homes and roads collapsed leaving one dead and several dozen injured.

Magnitude 7.1 PERU. There are early reports of homes and roads collapsed leaving one dead and several dozen injured. A magnitude 7.1 earthquake has occurred offshore Peru. The earthquake struck just after 4 a.m. local time and was centered near the coast of Peru, 40 km (25 miles) south-southwest of Acari, Peru at a depth

More information

Supplementary Material

Supplementary Material 1 Supplementary Material 2 3 4 Interseismic, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38-18 S) 5 6 7 8 9 11 12 13 14 1 GPS data set We combined in a single data set

More information

Seismological Study of Earthquake Swarms in South-Eastern Puerto Rico

Seismological Study of Earthquake Swarms in South-Eastern Puerto Rico Seismological Study of Earthquake Swarms in South-Eastern Puerto Rico Principal Investigator: Lillian Soto-Cordero [1] Co-Investigators: Victor Huérfano 1, Leonardo Cano [2], Robert Watts [3], and Christa

More information

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update 01-October-2009 Christophe Vigny Directeur de recherches at CNRS Laboratoire de Géologie Geoscience Dept. Of ENS,

More information

Crustal Structure and Fault Geometry of the 2010 Haiti Earthquake from Temporary Seismometer Deployments

Crustal Structure and Fault Geometry of the 2010 Haiti Earthquake from Temporary Seismometer Deployments Bulletin of the Seismological Society of America, Vol. 13, No. 4, pp. 35 35, August 13, doi: 1.1785/1133 E Crustal Structure and Fault Geometry of the 1 Haiti Earthquake from Temporary Seismometer Deployments

More information

Landsat TM processing in the investigation of active fault zones, South Lajas Valley Fault Zone and Cerro Goden Fault Zone as an example

Landsat TM processing in the investigation of active fault zones, South Lajas Valley Fault Zone and Cerro Goden Fault Zone as an example Landsat TM processing in the investigation of active fault zones, South Lajas Valley Fault Zone and Cerro Goden Fault Zone as an example ANTONIO E. CAMERON-GONZÁLEZ 1 1 Department of Geology, University

More information

crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE

crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE Tim Stern and SAHKE team* * VUW, GNS, University of Southern California, University of Tokyo(Japan) SAHKE = Seismic

More information

revised October 30, 2001 Carlos Mendoza

revised October 30, 2001 Carlos Mendoza Earthquake Sources in the circum-caribbean Region Puerto Rico Tsunami Mitigation and Warning Program Federal Emergency Management Agency Preliminary Report: Task 3 revised October 30, 2001 Carlos Mendoza

More information

Magnitude 7.6 HONDURAS

Magnitude 7.6 HONDURAS A magnitude 7.6 earthquake has occurred in the Caribbean between Honduras and the Cayman Islands approximately 125 miles (202 km) north-northeast of Barra Patuca, Honduras, and 188 miles (303 km) southwest

More information

Velocity-Interface Structure of the Southwestern Ryukyu Subduction Zone from EW OBS/MCS Data

Velocity-Interface Structure of the Southwestern Ryukyu Subduction Zone from EW OBS/MCS Data Marine Geophysical Researches 22: 265-287, 2001. 2002 Kluwer Academic Publishers. Printed in the Netherlands. Velocity-Interface Structure of the Southwestern Ryukyu Subduction Zone from EW9509-1 OBS/MCS

More information

Electronic supplement for Forearc motion and deformation between El Salvador and Nicaragua: GPS, seismic, structural, and paleomagnetic observations

Electronic supplement for Forearc motion and deformation between El Salvador and Nicaragua: GPS, seismic, structural, and paleomagnetic observations DR2011053 Electronic supplement for Forearc motion and deformation between El Salvador and Nicaragua: GPS, seismic, structural, and paleomagnetic observations by D. Alvarado et al., Lithosphere, April,

More information

Geodesy (InSAR, GPS, Gravity) and Big Earthquakes

Geodesy (InSAR, GPS, Gravity) and Big Earthquakes Geodesy (InSAR, GPS, Gravity) and Big Earthquakes Mathew Pritchard Teh-Ru A. Song Yuri Fialko Luis Rivera Mark Simons UJNR Earthquake Research Panel, Morioka, Japan - Nov 6, 2002 Goals Accurate and high

More information

Double-difference relocations of the 2004 off the Kii peninsula earthquakes

Double-difference relocations of the 2004 off the Kii peninsula earthquakes LETTER Earth Planets Space, 57, 357 362, 25 Double-difference relocations of the 24 off the Kii peninsula earthquakes Bogdan Enescu 1, James Mori 1, and Shiro Ohmi 1 1 Disaster Prevention Research Institute

More information

Magnitude 7.3 OFFSHORE EL SALVADOR

Magnitude 7.3 OFFSHORE EL SALVADOR A magnitude 7.3 earthquake struck off the Pacific coast of Central America late Monday night, early reports indicate one death. The earthquake occurred at a depth of 40 km (24.9 miles). Its epicenter was

More information

Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean

Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean Geophys. J. Int. (2008) 174, 889 903 doi: 10.1111/j.1365-246X.2008.03819.x Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean D. M. Manaker, 1 E. Calais, 1 A. M. Freed, 1

More information

A magnitude 7.4 earthquake struck 255 km (158 miles) southwest of Tonga, according to the US Geological Survey, but there were no reports of damage.

A magnitude 7.4 earthquake struck 255 km (158 miles) southwest of Tonga, according to the US Geological Survey, but there were no reports of damage. A magnitude 7.4 earthquake struck 255 km (158 miles) southwest of Tonga, according to the US Geological Survey, but there were no reports of damage. The earthquake hit at 5:19 am local time and was centered

More information

The Continuously Operation Caribbean Observational Network: COCONet

The Continuously Operation Caribbean Observational Network: COCONet The Continuously Operation Caribbean Observational Network: COCONet Glen S. Mattioli University of Texas at Arlington Presenting for COCONet Executive Committee: M. Miller(1), E. Calais(2), C. Meertens(1),

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies STRUCTURE OF THE KOREAN PENINSULA FROM WAVEFORM TRAVEL-TIME ANALYSIS Roland Gritto 1, Jacob E. Siegel 1, and Winston W. Chan 2 Array Information Technology 1 and Harris Corporation 2 Sponsored by Air Force

More information

Magnitude 8.2 FIJI. A magnitude 8.2 earthquake occurred km (226.7 mi) E of Suva, Fiji at a depth of km (350 miles).

Magnitude 8.2 FIJI. A magnitude 8.2 earthquake occurred km (226.7 mi) E of Suva, Fiji at a depth of km (350 miles). A magnitude 8.2 earthquake occurred 364.8 km (226.7 mi) E of Suva, Fiji at a depth of 563.4 km (350 miles). There is no risk of a tsunami from an earthquake at this depth. Images courtesy of Google The

More information

The Earthquake Cycle Chapter :: n/a

The Earthquake Cycle Chapter :: n/a The Earthquake Cycle Chapter :: n/a A German seismogram of the 1906 SF EQ Image courtesy of San Francisco Public Library Stages of the Earthquake Cycle The Earthquake cycle is split into several distinct

More information

REPLY TO THE OPEN LETTER

REPLY TO THE OPEN LETTER Acta Geodyn. Geomater., Vol. 10, No. 1 (169), 41 45, 2013 DOI: 10.13168/AGG.2013.0003 REPLY TO THE OPEN LETTER TO CRUSTAL DEFORMATION MODELING OF THE WEST BOHEMIA SWARM AREA, CENTRAL EUROPE.Vladimír SCHENK

More information

Magnitude 7.5 NEW BRITAIN REGION, PAPUA NEW GUINEA

Magnitude 7.5 NEW BRITAIN REGION, PAPUA NEW GUINEA A magnitude 7.5 earthquake struck off the eastern coast of Papua New Guinea on Tuesday, approximately 130 km (81 mi) southsouthwest of Kokopo at a depth of 42 km (26.1 mi). There are reports of some structural

More information

9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion

9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion 1965-36 9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion 22 September - 4 October, 2008 Tomography and Active Tectonics in Kanto, Japan Francis T.

More information

High-precision location of North Korea s 2009 nuclear test

High-precision location of North Korea s 2009 nuclear test Copyright, Seismological Research Letters, Seismological Society of America 1 High-precision location of North Korea s 2009 nuclear test Lianxing Wen & Hui Long Department of Geosciences State University

More information

Magnitude 7.1 PHILIPPINES

Magnitude 7.1 PHILIPPINES A magnitude 7.1 earthquake struck in the southeastern Philippines just after 8 am local time Tuesday morning killing 82 people and reducing a 17 th century church to rubble. Offices and schools were closed

More information

Location uncertainty for a microearhquake cluster

Location uncertainty for a microearhquake cluster Analysis of location uncertainty for a microearhquake cluster: A case study Gabriela Melo, Alison Malcolm, Oleg Poliannikov, and Michael Fehler Earth Resources Laboratory - Earth, Atmospheric, and Planetary

More information

Magnitude 7.0 VANUATU

Magnitude 7.0 VANUATU A major earthquake struck in the southwest Pacific Ocean at a depth of 27 km beneath the island of Melampa in the Vanuatu island chain. There are no reports of damage. The Modified Mercalli Intensity (MMI)

More information

Seismic Hazard Assessment Study for the Eastern Caribbean Islands

Seismic Hazard Assessment Study for the Eastern Caribbean Islands Seismic Hazard Assessment Study for the Eastern Caribbean Islands Port of Spain, Trinidad May 2nd 2011 Walter Salazar Richard Robertson Lloyd Lynch Joan Latchman Elisa Zuccolo Francesca Bozzoni Mirko Corigliano

More information

to: Interseismic strain accumulation and the earthquake potential on the southern San

to: Interseismic strain accumulation and the earthquake potential on the southern San Supplementary material to: Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system by Yuri Fialko Methods The San Bernardino-Coachella Valley segment of the

More information

RR#8 - Free Response

RR#8 - Free Response Base your answers to questions 1 through 4 on the passage and the map below and on your knowledge of Earth science. The map indicates the epicenter (*) of a major earthquake that occurred at 38 N 142 E.

More information

Originally published as:

Originally published as: Originally published as: Henstock, T., McNeill, L., Dean, S., Barton, P., Tilmann, F., Rietbrock, A., Robinson, D., Gulick, S., Austin, J., Djajadihardja, Y., Natawidjaja, D., Permana, H., Bonneville,

More information

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out 4. Focal Mechanism Solutions A way to investigate source properties of the 2001 sequence is to attempt finding well-constrained focal mechanism solutions to determine if they are consistent with those

More information

Dynamic Crust Practice

Dynamic Crust Practice 1. Base your answer to the following question on the cross section below and on your knowledge of Earth science. The cross section represents the distance and age of ocean-floor bedrock found on both sides

More information

Lab 2: Plate tectonics

Lab 2: Plate tectonics Geology 101 Name(s): Lab 2: Plate tectonics Plate tectonics is the theory that is used to explain geological phenomena worldwide. For this reason, most of the useful maps that illustrate plate tectonics

More information

Magnitude 7.5 NEW BRITAIN REGION, PAPUA NEW GUINEA

Magnitude 7.5 NEW BRITAIN REGION, PAPUA NEW GUINEA A magnitude 7.5 earthquake struck off the eastern coast of Papua New Guinea on Sunday, approximately 54 km (33 miles) southeast of Kokopo. Residents reported strong ground shaking for about five minutes.

More information

S e i s m i c W a v e s

S e i s m i c W a v e s Project Report S e i s m i c W a v e s PORTLAND STATE UNIVERSITY PHYSICS 213 SPRING TERM 2005 Instructor: Dr. Andres La Rosa Student Name: Prisciliano Peralta-Ramirez Table Of Contents 1. Cover Sheet 2.

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

San Jacinto Fault Zone and Sage Brush Flat High Frequency Experiments

San Jacinto Fault Zone and Sage Brush Flat High Frequency Experiments San Jacinto Fault Zone and Sage Brush Flat High Frequency Experiments Frank Vernon! Scripps Institution of Oceanography! University of California, San Diego!! 2015 Udine AUG! 13 March 2015! Southern California

More information

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March Sendai Earthquake NE Japan March 11, 2011 Some explanatory slides Bob Stern, Dave Scholl, others updated March 14 2011 Earth has 11 large plates and many more smaller ones. Plates are 100-200 km thick

More information

MAR110 Lecture #5 Plate Tectonics-Earthquakes

MAR110 Lecture #5 Plate Tectonics-Earthquakes 1 MAR110 Lecture #5 Plate Tectonics-Earthquakes Figure 5.0 Plate Formation & Subduction Destruction The formation of the ocean crust from magma that is upwelled into a pair of spreading centers. Pairs

More information

FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA

FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA Siti Norbaizura MAT SAID Supervisor: Tatsuhiko HARA MEE10505 ABSTRACT Since November 30, 2007, small local earthquakes have been observed

More information

Magnitude 7.1 SOUTH SANDWICH ISLANDS

Magnitude 7.1 SOUTH SANDWICH ISLANDS A magnitude 7.1 earthquake occurred at a depth of 164.7 km (102 miles) in the South Sandwich Islands, an uninhabited British territory off the coast of Argentina in the southern Atlantic Ocean. Antarctica

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004

Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004 LETTER Earth Planets Space, 57, 411 416, 2005 Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004 Shigeki Aoki 1, Masaki Nishi 2, Koji Nakamura 2, Tetsuo

More information

RELOCATION OF LARGE EARTHQUAKES ALONG THE SUMATRAN FAULT AND THEIR FAULT PLANES

RELOCATION OF LARGE EARTHQUAKES ALONG THE SUMATRAN FAULT AND THEIR FAULT PLANES Synopses of Master Papers Bulletin of IISEE, 47, 25-30, 2013 RELOCATION OF LARGE EARTHQUAKES ALONG THE SUMATRAN FAULT AND THEIR FAULT PLANES Biana Rahayu Wulandari MEE11605 Supervisor: Nobuo HURUKAWA ABSTRACT

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1131692/dc1 Supporting Online Material for Localized Temporal Change of the Earth s Inner Core Boundary This PDF file includes: Materials and Methods Figs. S1 to S3

More information

SCIENCE OF TSUNAMI HAZARDS

SCIENCE OF TSUNAMI HAZARDS ISSN 8755 6839 SCIENCE OF TSUNAMI HAZARDS Journal of Tsunami Society International Volume 29 Number 3 2010 ASSESSMENT OF THE TSUNAMIGENIC POTENTIAL ALONG THE NORTHERN CARIBBEAN MARGIN Case Study: Earthquake

More information

EARTHQUAKE RELOCATION IN GREECE USING A UNIFIED AND HOMOGENIZED SEISMOLOGICAL CATALOGUE

EARTHQUAKE RELOCATION IN GREECE USING A UNIFIED AND HOMOGENIZED SEISMOLOGICAL CATALOGUE Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, 2010 Πρακτικά 12 ου Διεθνούς Συνεδρίου, Πάτρα, Μάιος 2010 Bulletin of the Geological Society of Greece, 2010 Proceedings of the 12 th International Congress, Patras,

More information

Magnitude 7.5 PAPUA NEW GUINEA

Magnitude 7.5 PAPUA NEW GUINEA A magnitude 7.5 earthquake occurred 33 kilometers (20 miles) southwest of Tari, Papua New Guinea, at a depth of 35 km (22 miles). Papua New Guinea is located on the eastern half of the island of New Guinea,

More information

Differentiating earthquake tsunamis from other sources; how do we tell the difference?

Differentiating earthquake tsunamis from other sources; how do we tell the difference? Differentiating earthquake tsunamis from other sources; how do we tell the difference? David Tappin (1), Stephan Grilli (2), Jeffrey Harris (2), Timothy Masterlark (3), James Kirby (4), Fengyan Shi Shi

More information

Title. Author(s)Heki, Kosuke. CitationScience, 332(6036): Issue Date Doc URL. Type. File Information. A Tale of Two Earthquakes

Title. Author(s)Heki, Kosuke. CitationScience, 332(6036): Issue Date Doc URL. Type. File Information. A Tale of Two Earthquakes Title A Tale of Two Earthquakes Author(s)Heki, Kosuke CitationScience, 332(6036): 1390-1391 Issue Date 2011-06-17 Doc URL http://hdl.handle.net/2115/48524 Type article (author version) File Information

More information

Magnitude 7.6 & 7.4 SOLOMON ISLANDS

Magnitude 7.6 & 7.4 SOLOMON ISLANDS A magnitude 7.6 earthquake struck near the Solomon Islands on Sunday morning local time; there were no immediate reports of damage. The earthquake was centered 100 km (60 miles) south of Kira Kira, a town

More information

Oblique collision in the northeastern Caribbean from GPS measurements and geological observations

Oblique collision in the northeastern Caribbean from GPS measurements and geological observations TECTONICS, VOL. 21, NO. 6, 1057, doi:10.1029/2001tc001304, 2002 Oblique collision in the northeastern Caribbean from GPS measurements and geological observations Paul Mann, 1 Eric Calais, 2 Jean-Claude

More information

Study megathrust creep to understand megathrust earthquakes

Study megathrust creep to understand megathrust earthquakes 1 Study megathrust creep to understand megathrust earthquakes Kelin Wang Pacific Geoscience Centre, Geological Survey of Canada, kelin.wang@canada.ca Introduction Once upon a time, there was a belief that

More information

Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan.

Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan. Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan Masahiro Kosuga 1 1. Corresponding Author. Professor, Graduate School of

More information

GEOLOGY MEDIA SUITE Chapter 13

GEOLOGY MEDIA SUITE Chapter 13 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 13 Earthquakes 2010 W.H. Freeman and Company Three different types of seismic waves are recorded by seismographs Key Figure

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

Journal of Geophysical Research (Solid Earth) Supporting Information for

Journal of Geophysical Research (Solid Earth) Supporting Information for Journal of Geophysical Research (Solid Earth) Supporting Information for Postseismic Relocking of the Subduction Megathrust Following the 2007 Pisco, Peru earthquake D.Remy (a), H.Perfettini (b), N.Cotte

More information

Magnitude 7.2 OAXACA, MEXICO

Magnitude 7.2 OAXACA, MEXICO A magnitude 7.2 earthquake has occurred in Oaxaca, Mexico at a depth of 24.6 km (15 miles). It was felt as far away as Guatemala. There have been no reported deaths directly linked to the earthquake. Emergency

More information

Case Study 2: 2014 Iquique Sequence

Case Study 2: 2014 Iquique Sequence Case Study 2: 2014 Iquique Sequence Overview Mw 8.2 earthquake on 1 April 2014 at 11:08:43 UTC Pictures of damage Seismicity maps Foreshock seismicity -> Main shock -> Aftershock 1 April 2014 11:08:43

More information

Lateral extrusion and tectonic escape in Ilan Plain of northeastern Taiwan

Lateral extrusion and tectonic escape in Ilan Plain of northeastern Taiwan Lateral extrusion and tectonic escape in Ilan Plain of northeastern Taiwan Angelier, J., Chang, T.Y., Hu, J.C., Chang, C.P., Siame, L., Lee, J.C., Deffontaines, B., Chu, H.T, Lu, C.Y., Does extrusion occur

More information

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge GSA Data Repository Item: 2007183 Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge Brian J. demartin 1*, Robert

More information

3.3. Waveform Cross-Correlation, Earthquake Locations and HYPODD

3.3. Waveform Cross-Correlation, Earthquake Locations and HYPODD 3.3. Waveform Cross-Correlation, Earthquake Locations and HYPODD 3.3.1 Method More accurate relative earthquake locations depend on more precise relative phase arrival observations so I exploit the similarity

More information

Magnitude 7.0 PAPUA, INDONESIA

Magnitude 7.0 PAPUA, INDONESIA A 7.0 magnitude earthquake struck eastern Indonesia's mountainous West Papua province on Saturday but there were no immediate reports of casualties or damage. The region is sparsely populated. According

More information

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard Ultimately what we want is a seismic intensity measure that will allow us to quantify effect of an earthquake on a structure. S a

More information

On May 4, 2001, central Arkansas experienced an M=4.4 earthquake followed by a

On May 4, 2001, central Arkansas experienced an M=4.4 earthquake followed by a 1. Introduction On May 4, 2001, central Arkansas experienced an M=4.4 earthquake followed by a surprisingly large number of small earthquakes. We recorded about 2500 above the ambient noise level on a

More information

20 mm/yr mm/yr BERI DTCH MRDR. WHAL Atka AFZ

20 mm/yr mm/yr BERI DTCH MRDR. WHAL Atka AFZ Coupling, Slip Partitioning and Arc Deformation Along the Aleutian Subduction zone M. Wyss, H. Avé Lallemant, D. Christensen, J. Freymueller, R. Hansen, P Haeussler, K. Jacob, M. Kogan, S. McNutt, J. Oldow,

More information

Deformation cycles of great subduction earthquakes in a viscoelastic Earth

Deformation cycles of great subduction earthquakes in a viscoelastic Earth Deformation cycles of great subduction earthquakes in a viscoelastic Earth Kelin Wang Pacific Geoscience Centre, Geological Survey of Canada School of Earth and Ocean Science, University of Victoria????

More information

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION A major 7.7 magnitude earthquake struck at 8:04 PM local time in western British Columbia, Canada. The epicenter is located on Moresby Island, the southern large island in the Queen Charlotte Islands region.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11492 Figure S1 Short-period Seismic Energy Release Pattern Imaged by F-net. (a) Locations of broadband seismograph stations in Japanese F-net used for the 0.5-2.0 Hz P wave back-projection

More information

Magnitude 7.9 SE of KODIAK, ALASKA

Magnitude 7.9 SE of KODIAK, ALASKA A magnitude 7.9 earthquake occurred at 12:31 am local time 181 miles southeast of Kodiak at a depth of 25 km (15.5 miles). There are no immediate reports of damage or fatalities. Light shaking from this

More information

Haiti: Earthquake on January 12, 2010

Haiti: Earthquake on January 12, 2010 Geophysical Hazards and Plate Boundary Processes In Central America, Mexico and the Caribbean Haiti: Earthquake on January 12, 2010 Situation, achievements and perspective. Hotel La Condesa, Costa Rica

More information

Magnitude 7.6 SOUTH OF IQUIQUE, CHILE

Magnitude 7.6 SOUTH OF IQUIQUE, CHILE A powerful aftershock struck off northern Chile prompting an evacuation of the coastal area and raising fears of a tsunami. This magnitude 7.6 earthquake is the largest of a series of aftershocks following

More information

Magnitude 7.5 PALU, INDONESIA

Magnitude 7.5 PALU, INDONESIA A magnitude 7.5 earthquake occurred 80.8 km (50.2 mi) north of Palu, Indonesia at a depth of 10 km (6.2 miles). This earthquake triggered a tsunami with wave heights up to 2 m (6.6 ft) that an official

More information

CSU Student Research Competition Summary Submission

CSU Student Research Competition Summary Submission Name: CSU Student Research Competition Summary Submission Shawn Morrish Title: Coseismic Uplift and Geomorphic Response to the September 5, 2012 Mw7.6 Nicoya Earthquake, Costa Rica Abstract: The Nicoya

More information

External Grant Award Number 04HQGR0058 IMPROVED THREE-DIMENSIONAL VELOCITY MODELS AND EARTHQUAKE LOCATIONS FOR CALIFORNIA

External Grant Award Number 04HQGR0058 IMPROVED THREE-DIMENSIONAL VELOCITY MODELS AND EARTHQUAKE LOCATIONS FOR CALIFORNIA External Grant Award Number 04HQGR0058 IMPROVED THREE-DIMENSIONAL VELOCITY MODELS AND EARTHQUAKE LOCATIONS FOR CALIFORNIA Clifford H. Thurber University of Wisconsin-Madison 1215 W. Dayton St. Madison,

More information

Chapter 3 Minimum 1-D Velocity Model: Using joint determination of hypocenters and velocity 3.1 Introduction

Chapter 3 Minimum 1-D Velocity Model: Using joint determination of hypocenters and velocity 3.1 Introduction Chapter 3 Minimum 1-D Velocity Model: Using joint determination of hypocenters and velocity 3.1 Introduction This chapter deals with the estimation of a new 1-D velocity model in the Kumaon- Garhwal Himalaya

More information

Bulletin of the Seismological Society of America, Vol. 97, No. 1A, pp. S43 S61, January 2007, doi: /

Bulletin of the Seismological Society of America, Vol. 97, No. 1A, pp. S43 S61, January 2007, doi: / Bulletin of the Seismological Society of America, Vol. 97, No. 1A, pp. S43 S61, January 2007, doi: 10.1785/0120050614 Teleseismic Relocation and Assessment of Seismicity (1918 2005) in the Region of the

More information

Iwan Yandika Sihotang, Tommy Hendriansyah, Nanang Dwi Ardi

Iwan Yandika Sihotang, Tommy Hendriansyah, Nanang Dwi Ardi Proceedings Indonesia International Geothermal Convention & Exhibition 2014 Jakarta Convention Center, Indonesia 4-6 June 2014 FOCAL MECHANISM FOR DETERMINING FAULT PLANES ORIENTATION IN GAMMA GEOTHERMAL

More information

RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES

RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES Rey M. Lumbang MEE12608 Supervisor: Nobuo Hurukawa ABSTRACT We relocated large magnitude (Mw 7.0) earthquakes that

More information

Tomographic imaging of P wave velocity structure beneath the region around Beijing

Tomographic imaging of P wave velocity structure beneath the region around Beijing 403 Doi: 10.1007/s11589-009-0403-9 Tomographic imaging of P wave velocity structure beneath the region around Beijing Zhifeng Ding Xiaofeng Zhou Yan Wu Guiyin Li and Hong Zhang Institute of Geophysics,

More information