GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004

Size: px
Start display at page:

Download "GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004"

Transcription

1 GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004 Characteristic seismic activity in the subducting plate boundary zone off Kamaishi, northeastern Japan, revealed by precise hypocenter distribution analysis using ocean-bottom seismometers T. Okada, K. Sakoda, T. Matsuzawa, R. Hino, and A. Hasegawa Research Center for Prediction of Earthquake and Volcanic Eruption, Graduate School of Science, Tohoku University, Sendai, Japan S. Sakai and T. Kanazawa Earthquake Research Institute, University of Tokyo, Tokyo, Japan Received 26 April 2004; revised 6 September 2004; accepted 15 September 2004; published 8 October [1] High seismic activity prevails along the plate boundary to the east of northeastern Japan. To understand how this seismic activity is related to subduction process, hypocenter locations are re-determined using data obtained over 6 years by fiber-cabled permanent ocean bottom seismometers off Kamaishi. The double-difference method is adopted to obtain the relative location in more detail. As a result of this analysis, a number of seismic clusters including small repeating earthquakes are identified along the plate boundary. This observation supports the hypothesis that seismic coupling is very low in this region and there only small asperities are distributed along the plate boundary off Kamaishi. A number of events with downdip compressional focal mechanisms are identified, corresponding to the upper plane seismicity of the double seismic zone in this area. Although most of these events are located in the crust of the subducting Pacific Plate, some are located in the mantle of the slab. INDEX TERMS: 7209 Seismology: Earthquake dynamics and mechanics; 7218 Seismology: Lithosphere and upper mantle; 7230 Seismology: Seismicity and seismotectonics; 8123 Tectonophysics: Dynamics, seismotectonics. Citation: Okada, T., K. Sakoda, T. Matsuzawa, R. Hino, A. Hasegawa, S. Sakai, and T. Kanazawa (2004), Characteristic seismic activity in the subducting plate boundary zone off Kamaishi, northeastern Japan, revealed by precise hypocenter distribution analysis using ocean-bottom seismometers, Geophys. Res. Lett., 31, L19604, doi: / 2004GL Copyright 2004 by the American Geophysical Union /04/2004GL Introduction [2] Many large earthquakes occur along the plate boundary east off northeastern Japan. However, there have been no earthquakes of magnitude greater than 6 in the off- Kamaishi area (N39 40, E ) since 1926 when the Japan Meteorological Agency (JMA) started to locate the hypocenters, whereas small- and micro-earthquakes are common. The amount of back-slip estimated by inverting GPS data for the last 5 years is also small off Kamaishi compared to that in southern areas such as the focal area of the 1978 off-miyagi earthquake [Suwa et al., 2003]. These features suggest that the majority of the plate boundary off Kamaishi is in steady-slip (creep), with only small asperities. Matsuzawa et al. [2002] have detected a characteristic earthquake sequence with M4.8 ± 0.1 regularly occurring at the same location off Kamaishi, Iwate Prefecture, since 1957, with a recurrence interval of 5.52 ± 0.68 yr. This has been interpreted as representing the repeating rupture of an asperity with a dimension of 1 km. The very regular occurrence of this rupture is perhaps due to the repeating slips of the isolated asperity surrounded by a stable sliding area that is slipping at a nearly constant rate. By comparing the source area of the two recent M4.8 earthquakes (1995 and 2001) obtained by waveform inversions, the two events can be clearly related to the repeated rupture of the same asperity area, supporting the hypothesis of persistent asperities [Okada et al., 2003]. Many similar earthquake groups (repeating small earthquakes) have also been discovered in this region [Igarashi et al., 2003; Uchida et al., 2003]. These repeating small earthquakes are also interpreted as representing the repeated rupture of small asperities along the plate boundary in the same manner as the M4.8 characteristic earthquake sequence. [3] It has proven difficult to obtain reliable hypocenter locations under the sea because seismic stations are usually only deployed on land. To assist with the accurate location of events, three ocean-bottom accelerometers and two pressure-meters were deployed off Kamaishi in 1997 (Figure 1) [Kanazawa et al., 1996; Hino et al., 2001]. The devices are fiber-cabled and have operated continuously. Using data from these ocean-bottom accelerometers, microearthquakes including the repeating small earthquakes in the off-kamaishi region are re-located in this study and employed to discuss the seismicity off Kamaishi, where the seismic coupling is expected to be low. 2. Hypocenter Determination Using Ocean Bottom Seismographs [4] When using data from ocean-bottom seismographs (OBSs) to determine the location of hypocenters, it is necessary to eliminate the effect of the sedimentary layer beneath the sea bottom by a station-correction method. In the present study the station corrections are estimated as follows. First, the hypocenters of microearthquakes of cluster B shown in Figure 2, which includes the M4.8 interplate characteristic earthquake sequence, are relocated using data from inland stations alone. Arrival time data from the catalogs of Tohoku University and the Japan Meteoro- L of5

2 Figure 1. Station distribution. Squares: Ocean-bottom stations used in this study. Triangles: Seismic stations routinely operated by Tohoku University, JMA and Hi-net. Circle: Kamaishi City. Outlined area represents the region in which hypocenters were relocated in this study. logical Agency (JMA) are used in this step. The velocity model employed is that proposed by Hasegawa et al. [1978]. The hypocenters for these events are thought to be located reliably without OBS data because they are located near the coast line. The station correction is then estimated by averaging sign-inverted travel-time residuals observed at each station for those reference events. Twenty-one welllocated events for the period from 1997 to 2002 are selected in this step for calculation of station corrections. Note that the station corrections obtained in this study are also effected by lateral heterogeneity of the crust. [5] The hypocenters of 1864 events occurring in the period in the area off Kamaishi (N , E ) are determined using OBS data with the station corrections. Figure 2 shows the hypocenter distribution without OBS data (Figure 2a) in comparison with the relocated hypocenter distribution using OBS data (Figure 2b). Without OBS data, the hypocenters far to the east off Kamaishi cannot be well determined, and are constrained to be located on the surface or around the Moho (at 31 km depth) in the velocity model. Using OBS data and the station corrections, on the other hand, most events are located at depths of 10 to 20 km along a low-angle westward dipping plane corresponding to the plate boundary (c.f. Bold line in Figure 2 [Zhao et al., 1997]). Note that the events are located at inadequately deeper region without the station corrections. We therefore infer that the station corrections used in this study would be adequate even for the event far to east off the Kamaishi to some extent. To the west of the boundary, the distribution of hypocenters becomes complex, although some earthquakes still occur near the plate boundary. 3. Relocation by the Double-Difference Location Method [6] The double-difference location method (DDLM) developed by Waldhauser and Ellsworth [2000] is adopted for re-relocation of microearthquakes in the western region of the off-kamaishi area where the station coverage is well. The initial locations of hypocenters are those determined using the station corrections, as discussed in the previous section. [7] For events with magnitudes of 1.0 or greater, differential arrival times are obtained using cross spectra calculated for waveform data from events with epicentral separation of less than 10 km. Waveforms were originally digitized at a sampling frequency of 100 Hz, with a time window of 2.56 s for both P- and S-waves. Time differences Figure 2. Hypocenter distribution off Kamaishi. Epicenter distribution (upper) and vertical cross sections along the line X-Y (lower) showing hypocenters relocated without (a) and with (b) OBS data. Triangles: OBS locations. Bold gray line: Plate boundary location estimated by Zhao et al. [1997]. 2of5

3 Figure 3. Hypocenter distribution relocated using (a) OBS data, and (b) OBS data and the double-difference method. Epicenter distribution (upper), and vertical cross section along the line X-Y (lower). Stars: Repeating small earthquakes [Uchida et al., 2003]. are estimated from the data in the frequency range of 3 to 12 Hz with squared coherency of greater than 0.8. [8] A total of 1217 events are re-relocated using DDLM in the western region (N , E ) off Kamaishi. A total of arrival time differences are obtained from catalog data for P-waves, and are obtained for S-waves. From the cross spectra, arrival time differences are obtained for P-waves and are obtained for S-waves. The LSQR method [Paige and Saunders, 1982] is employed to solve the equation. The average root mean square value of DDs for each event was reduced by this procedure from 1.42 s to 0.45 s. Here after, the re-relocation using DDLM will be referred to as DDLM-relocation. [9] Figure 3b shows the DDLM-relocated hypocenter distribution. The relocated hypocenters cluster together more densely than the hypocenters before the relocation (Figure 3a). The events belonging to a large cluster located beneath station OB3 at depths of 5 to 30 km fall into two groups (A1, A2). The events in cluster B, which includes the M4.8 characteristic earthquake sequence, are also clustered, particularly in terms of depth. The repeating small earthquakes [Uchida et al., 2003] are indicated by stars. After the DDLM-relocation the events in each group of repeating small earthquakes can be seen to occur very close to each other. [10] The location error is determined by relocating five repeating small earthquake events of cluster R by the singular value decomposition (SVD) method [Waldhauser and Ellsworth, 2000], which allows the location error to be estimated directly. They are located within a radius of about 500 m. The average of the standard deviation is 80.8 m in the horizontal direction and m in the vertical direction. Note that the error estimate in this scheme may have to be understood as a minimum estimate of the possible errors. We also compared the rupture areas of events, assuming a circular fault [Brune, 1970] and a stress drop of bar [Matsuzawa et al., 2002], to the separations among the relocated events. Averaged value of separation is about a few hundred meters and averaged diameter of the circular rupture areas is about 100 m. Although the estimated rupture areas of these events do not overlap strictly, the relatively large location errors and ambiguous estimations of source sizes do not allow a definitive answer whether they overlap or not. [11] The fault plane solution was also obtained using the DDLM-relocated hypocenters and polarity data for P-wave initial motions from the catalogs of Tohoku University and the JMA. The distribution of the P-axis based on these fault plane solutions are shown in Figure 4. In group B, which includes the M4.8 characteristic earthquake sequence, the events have low-angle thrust (LT) solutions. These LT events can be interpreted as occurred along the plate boundary because the fault plane dipping to the west is expected to correspond to the plate boundary between the Pacific Plate and the overriding plate (the North American 3of5

4 upper plane seismicity occurs within the oceanic crust of the subducting Pacific Plate [Matsuzawa et al., 1986; Hasegawa et al., 1994]. The present analysis clearly highlights the spatial separation between the LT events (interplate events) and the DC events (intraplate events). The DC events of group C are expected to be located within the oceanic crust, which is estimated to be 5 to 10 km thick. One possible cause of such DC events is dehydration embrittlement due to the dehydration of basalt/gabbro [e.g., Kirby et al., 1996]. [15] In contrast, the deeper DC events of group D would occur near the Moho or within the mantle of the subducting Pacific Plate. These deeper DC events would therefore occur by dehydration embrittlement in the mantle of the slab [e.g., Hacker et al., 2003]. In the 2003 M7.0 off-miyagi earthquake, an intra-slab event that occurred on May 26, 2003 in a nearby region [Okada and Hasegawa, 2003; Sakoda et al., 2004], the rupture extended into both the crust and the mantle of the subducting Pacific Plate. Upper plane seismicity also occurred near the hypocenter of this event within both the crust and the mantle of the slab prior to the 2003 event. High background seismicity in the mantle may therefore delineate areas in which the rupture zone of the mainshock can be more readily extended into the mantle. Figure 4. Summary of study results. Gray circles: Hypocenter distribution. Bold lines: P-axis orientation of the fault plane solution. Gray broken lines: Zone of LT events, corresponding to the location of the probable plate boundary. Stars: Repeating small earthquakes. Gray line: Location of the plate boundary estimated by Zhao et al. [1997]. or the Okhotsk plate [e.g., Seno et al., 1996]). These LT events are distributed along the zone between regions B and A2. Thus, we infer that distribution of these LT events corresponds with the plate boundary. The location of the plate boundary obtained in this study is almost coincident with that estimated by Zhao et al. [1997]. [12] In area C, at depths 5 to 10 km below the zone of the LT events, events with down-dip compression (DC) solutions are distributed parallel to the zone of the LT events. This zone of DC events forms part of the upper plane seismicity of the double seismic zone in NE Japan [Igarashi et al., 2001]. Note that DC events also occur in deeper parts of region D. 4. Discussion [13] As shown in Figure 4, the distribution of repeating small earthquakes is similar to that of LT events. This suggests that the repeating small earthquakes are distributed along the plate boundary. Seismic activity along this plate boundary seems to be low, and to be limited to certain clusters that include repeating small earthquakes. This observation supports the hypothesis that most of the plate boundary is in steady-slip (creep), and that only small asperities occur off Kamaishi [Matsuzawa et al., 2002]. [14] The DC events corresponding to upper plane seismicity occur 5 to 10 km beneath the plate boundary. This 5. Conclusion [16] A plausible hypocenter distribution for the off- Kamaishi area in northeastern Japan was derived using data from ocean-bottom accelerometers in conjunction with the double-difference method. The results reveal a number of repeating small earthquakes to be located along the plate boundary, with seismicity limited to small clusters that include these repeating earthquakes. Upper plane seismicity occurring 5 to 15 km beneath the plate boundary is also identified, most of which is distributed in the crust of the subducting Pacific Plate, while some is distributed into the mantle of the slab. [17] Acknowledgments. The authors would like to thank A. Zollo, and two anonymous reviewers for helpful comments, Dr. N. Uchida for providing us the information on the repeating small earthquakes, and Dr. F. Waldhauser for use of his program hypodd. The data analyzed was provided by the JMA and Hi-net. This work was conducted as part of the 21st COE program, Advanced Science and Technology Center for the Dynamic Earth of Tohoku University. This work was also partially supported by MEXT.KAKENHI ( ) and JSPS.KAKENHI ( ), Japan. References Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, Hacker, B. R., S. M. Peacock, G. A. Abers, and S. D. Holloway (2003), Subduction factory: 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?, J. Geophys. Res., 108(B1), 2030, doi: /2001jb Hasegawa, A., N. Umino, and A. Takagi (1978), Double-planed structure of the deep seismic zone in the northeastern Japan arc, Tectonophysics, 47, Hasegawa, A., S. Horiuchi, and N. Umino (1994), Seismic structure of the northeastern Japan convergent margin: A synthesis, J. Geophys. Res., 99, 22,295 22,311. Hino, R., Y. Tanioka, T. Kanazawa, S. Sakai, M. Nishino, and K. Suyehiro (2001), Micro-tsunami from a local interplate earthquake detected by cabled offshore tsunami observation in northeastern Japan, Geophys. Res. Lett., 28, Igarashi, T., T. Matsuzawa, N. Umino, and A. Hasegawa (2001), Spatial distribution of focal mechanisms for interplate and intraplate earthquakes associated with the subducting Pacific plate beneath the northeastern 4of5

5 Japan arc: A triple-planed deep seismic zone, J. Geophys. Res., 106, Igarashi, T., T. Matsuzawa, and A. Hasegawa (2003), Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone, J. Geophys. Res., 108(B5), 2249, doi: /2002jb Kanazawa, T., et al. (1996), Off-Sanriku ocean bottom geophysical observation system using optical fiber cable, Prog. Abstr. Seismol. Soc. Jpn., Abstract P20. Kirby, S. H., E. Engdahl, and R. Denlinger (1996), Intermediate-depth intraslab earthquakes and arc volcanism as expressions of crustal and uppermost mantle metamorphism in subducting slabs (overview), in Subduction: Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp , AGU, Washington, D. C. Matsuzawa, T., N. Umino, A. Hasegawa, and A. Takagi (1986), Upper mantle velocity structure estimated from PS-converted wave beneath the north-eastern Japan arc, Geophys. J. R. Astron. Soc., 86, Matsuzawa, T., T. Igarashi, and A. Hasegawa (2002), Characteristic smallearthquake sequence off Sanriku, northeastern Japan, Geophys. Res. Lett., 29(11), 1543, doi: /2001gl Okada, T., and A. Hasegawa (2003), The M7.0 May 26, 2003 off-shore Miyagi prefecture earthquake in northeast Japan: Source process and aftershock distribution of an intra-slab event, Earth Planets Space, 55, Okada, T., T. Matsuzawa, and A. Hasegawa (2003), Comparison of source areas of M4.8 ± 0.1 repeating earthquakes off Kamaishi, NE Japan: Are asperities persistent features?, Earth Planet. Sci. Lett., 213, Paige, C., and M. Saunders (1982), LSQR: An algorithm for sparse linear equations and least squares problems, Trans. Math. Software, 8, Sakoda, K., T. Okada, and A. Hasegawa (2004), Upper plane seismicity of the double seismic zone beneath NE Japan arc and May 26, 2003, M7.1 off Miyagi earthquake: Characteristic seismic activity in and around the source area of a large intraslab earthquake, (in Japanese with English abstract), J. Seismol. Soc. Jpn., in press. Seno, T., T. Sakurai, and S. Stein (1996), Can the Okhotsk plate be discriminated from the North American plate?, J. Geophys. Res., 101, 11,305 11,316. Suwa, Y., S. Miura, A. Hasegawa, T. Sato, and K. Tachibana (2003), Interplate coupling beneath the NE Japan arc inferred from 3 dimensional crustal deformation, paper presented at 2003 IUGG General Assembly, Sapporo, Japan. Uchida, N., T. Matsuzawa, A. Hasegawa, and T. Igarashi (2003), Interplate quasi-static slip off Sanriku, NE Japan, estimated from repeating earthquakes, Geophys. Res. Lett., 30(15), 1801, doi: /2003gl Waldhauser, F., and W. L. Ellsworth (2000), A double-difference earthquake location algorithm: Method and application to the Northern Hayward fault, Bull. Seismol. Soc. Am., 90, Zhao, D., T. Matsuzawa, and A. Hasegawa (1997), Morphology of the subducting slab boundary in the northeastern Japan arc, Phys. Earth Planet. Inter., 102, A. Hasegawa, R. Hino, T. Matsuzawa, T. Okada, and K. Sakoda, Research Center for Prediction of Earthquake and Volcanic Eruption, Graduate School of Science, Tohoku Univ., Sendai , Japan. (okada@aob.geophys.tohoku.ac.jp) T. Kanazawa and S. Sakai, Earthquake Research Institute, University of Tokyo, Tokyo, Japan. 5of5

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms Tadashi Yaginuma 1, Tomomi Okada 1, Yuji Yagi 2, Toru Matsuzawa 1, Norihito

More information

Spatio-temporal variation in slip rate on the plate boundary off Sanriku, northeastern Japan, estimated from small repeating earthquakes

Spatio-temporal variation in slip rate on the plate boundary off Sanriku, northeastern Japan, estimated from small repeating earthquakes Spatio-temporal variation in slip rate on the plate boundary off Sanriku, northeastern Japan, estimated from small repeating earthquakes T. Matsuzawa, N. Uchida, T. Igarashi *, N. Umino, and A. Hasegawa

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14308, doi: /2008gl034461, 2008

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14308, doi: /2008gl034461, 2008 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35,, doi:10.1029/2008gl034461, 2008 Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: Implications

More information

Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0)

Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0) GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl048408, 2011 Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0) Dapeng Zhao, 1 Zhouchuan

More information

The M7.1 May 26, 2003 off-shore Miyagi Prefecture Earthquake in northeast Japan: Source process and aftershock distribution of an intra-slab event

The M7.1 May 26, 2003 off-shore Miyagi Prefecture Earthquake in northeast Japan: Source process and aftershock distribution of an intra-slab event Earth Planets Space, 55, 731 739, 2003 The M7.1 May 26, 2003 off-shore Miyagi Prefecture Earthquake in northeast Japan: Source process and aftershock distribution of an intra-slab event Tomomi Okada and

More information

MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM SEISMIC TOMOGRAPHY

MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM SEISMIC TOMOGRAPHY Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM

More information

Subduction zone dynamics: role of H 2 O in generation of earthquakes and magmas

Subduction zone dynamics: role of H 2 O in generation of earthquakes and magmas Subduction zone dynamics: role of H 2 O in generation of earthquakes and magmas Akira Hasegawa Research Center for Prediction of Earthquakes and Volcanic Eruptions Graduate School of Science, Tohoku University

More information

LETTER Earth Planets Space, 58, , 2006

LETTER Earth Planets Space, 58, , 2006 LEER Earth lanets Space, 58, 587 592, 26 Revisiting the three M 7 Miyagi-oki earthquakes in the 93s: possible seismogenic slip on asperities that were re-ruptured during the 978 M=7.4 Miyagi-oki earthquake

More information

LETTER Earth Planets Space, 63, , 2011

LETTER Earth Planets Space, 63, , 2011 LETTER Earth Planets Space, 63, 675 679, 2011 Coupling coefficient, hierarchical structure, and earthquake cycle for the source area of the 2011 off the Pacific coast of Tohoku earthquake inferred from

More information

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes Changjiang Wu 1 and Kazuki Koketsu Earthquake Research Institute, University

More information

Toru Matsuzawa. Title/Affiliation. Specialized Field

Toru Matsuzawa. Title/Affiliation. Specialized Field Toru Matsuzawa Title/Affiliation Specialized Field Research Subject Professor/ Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University Earthquake-generating

More information

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L24619, doi:10.1029/2004gl021228, 2004 An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake Changjiang

More information

Negative repeating doublets in an aftershock sequence

Negative repeating doublets in an aftershock sequence LETTER Earth Planets Space, 65, 923 927, 2013 Negative repeating doublets in an aftershock sequence X. J. Ma and Z. L. Wu Institute of Geophysics, China Earthquake Administration, 100081 Beijing, China

More information

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 24, 2248, doi:10.1029/2003gl018413, 2003 Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

More information

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone IJMS 2017 vol. 4 (2): 49-54 International Journal of Multidisciplinary Studies (IJMS) Volume 4, Issue 2, 2017 DOI: http://doi.org/10.4038/ijms.v4i2.22 Seismic Activity near the Sunda and Andaman Trenches

More information

Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations

Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations Earth Planets Space,,, Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations Ayako Nakamura, Youichi Asano, and Akira Hasegawa Research Center for Prediction of

More information

Repeating earthquakes and quasi-static slip on the plate boundary east off northern Honshu, Japan

Repeating earthquakes and quasi-static slip on the plate boundary east off northern Honshu, Japan Earth Planets Space, 56, 803 811, 2004 Repeating earthquakes and quasi-static slip on the plate boundary east off northern Honshu, Japan Toru Matsuzawa 1, Naoki Uchida 1, Toshihiro Igarashi 2, Tomomi Okada

More information

Double-difference relocations of the 2004 off the Kii peninsula earthquakes

Double-difference relocations of the 2004 off the Kii peninsula earthquakes LETTER Earth Planets Space, 57, 357 362, 25 Double-difference relocations of the 24 off the Kii peninsula earthquakes Bogdan Enescu 1, James Mori 1, and Shiro Ohmi 1 1 Disaster Prevention Research Institute

More information

Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north China

Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north China Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L23309, doi:10.1029/2007gl031594, 2007 Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north

More information

Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan.

Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan. Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan Masahiro Kosuga 1 1. Corresponding Author. Professor, Graduate School of

More information

Seismic scatterers within subducting slab revealed from ambient noise autocorrelation

Seismic scatterers within subducting slab revealed from ambient noise autocorrelation GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053321, 2012 Seismic scatterers within subducting slab revealed from ambient noise autocorrelation Yoshihiro Ito 1 and Katsuhiko Shiomi 2 Received

More information

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations K. Somei & K. Miyakoshi Geo-Reserch Institute, Osaka, Japan SUMMARY: A great

More information

Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004

Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004 LETTER Earth Planets Space, 57, 411 416, 2005 Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004 Shigeki Aoki 1, Masaki Nishi 2, Koji Nakamura 2, Tetsuo

More information

Preparatory process reflected in seismicity-pattern change preceding the M=7 earthquakes off Miyagi prefecture, Japan

Preparatory process reflected in seismicity-pattern change preceding the M=7 earthquakes off Miyagi prefecture, Japan LETTER Earth Planets Space, 58, 1581 1586, 2006 Preparatory process reflected in seismicity-pattern change preceding the M=7 earthquakes off Miyagi prefecture, Japan Shozo Matsumura National Research Institute

More information

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 414 AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE Shunroku YAMAMOTO 1 Naohito

More information

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Letter J. Phys. Earth, 41, 319-325, 1993 Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Yasuo Izutani Faculty of Engineering,

More information

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 016 Mw 7.0 Kumamoto Earthquake Heng-Yi Su 1 *, Aitaro Kato 1 Department of Earth Sciences, National Central University, Taoyuan

More information

LETTER Earth Planets Space, 56, , 2004

LETTER Earth Planets Space, 56, , 2004 LETTER Earth Planets Space, 56, 353 357, 2004 Deep seismic activities preceding the three large shallow earthquakes off south-east Hokkaido, Japan the 2003 Tokachi-oki earthquake, the 1993 Kushiro-oki

More information

REGIONAL CHARACTERISTICS OF STRESS FIELD AND ITS DYNAMICS IN AND AROUND THE NANKAI TROUGH, JAPAN

REGIONAL CHARACTERISTICS OF STRESS FIELD AND ITS DYNAMICS IN AND AROUND THE NANKAI TROUGH, JAPAN 46 4 2003 7 CHINESE JOURNAL OF GEOPHYSICS Vol. 46, No. 4 July, 2003 1 1 2 3 1, 100037 2, 920-1192 3, 237-0061,,, : -. (10 22 ), (60 85km) ; (40 ), (160km)..,. GPS,, -,,.,,,.. 0001-5733(2003) 04-0488 -

More information

Shallow inland earthquakes in NE Japan possibly triggered by the 2011 off the Pacific coast of Tohoku Earthquake

Shallow inland earthquakes in NE Japan possibly triggered by the 2011 off the Pacific coast of Tohoku Earthquake LETTER Earth Planets Space, 63, 749 754, 2011 Shallow inland earthquakes in NE Japan possibly triggered by the 2011 off the Pacific coast of Tohoku Earthquake Tomomi Okada 1, Keisuke Yoshida 1, Sadato

More information

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake Earth Planets Space, 53, 235 241, 2001 Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake Yuichiro Tanioka 1 and Kenji Satake 2 1 Meteorological Research

More information

Seismicity near the hypocenter of the 2011 off the Pacific coast of Tohoku earthquake deduced by using ocean bottom seismographic data

Seismicity near the hypocenter of the 2011 off the Pacific coast of Tohoku earthquake deduced by using ocean bottom seismographic data Earth Planets Space, 64, 1125 1135, 2012 Seismicity near the hypocenter of the 2011 off the Pacific coast of Tohoku earthquake deduced by using ocean bottom seismographic data Kensuke Suzuki 1, Ryota Hino

More information

LETTER Earth Planets Space, 63, , 2011

LETTER Earth Planets Space, 63, , 2011 LETTER Earth Planets Space, 63, 643 648, 2011 Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0) estimated based on GPS data Was the asperity in Miyagi-oki ruptured?

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L00G24, doi: /2011gl050399, 2012

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L00G24, doi: /2011gl050399, 2012 GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2011gl050399, 2012 Normal-faulting earthquakes beneath the outer slope of the Japan Trench after the 2011 Tohoku earthquake: Implications for the stress

More information

Crustal deformation by the Southeast-off Kii Peninsula Earthquake

Crustal deformation by the Southeast-off Kii Peninsula Earthquake Crustal deformation by the Southeast-off Kii Peninsula Earthquake 51 Crustal deformation by the Southeast-off Kii Peninsula Earthquake Tetsuro IMAKIIRE, Shinzaburo OZAWA, Hiroshi YARAI, Takuya NISHIMURA

More information

Ling Bai 1, Ichiro Kawasaki 1, Tianzhong Zhang 2, and Yuzo Ishikawa 3. Earth Planets Space, 58, , 2006

Ling Bai 1, Ichiro Kawasaki 1, Tianzhong Zhang 2, and Yuzo Ishikawa 3. Earth Planets Space, 58, , 2006 Earth Planets Space, 58, 823 830, 2006 An improved double-difference earthquake location algorithm using sp phases: application to the foreshock and aftershock sequences of the 2004 earthquake offshore

More information

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 7 74, doi:1.12/grl.976, 213 Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes Satoko Murotani,

More information

High-precision location of North Korea s 2009 nuclear test

High-precision location of North Korea s 2009 nuclear test Copyright, Seismological Research Letters, Seismological Society of America 1 High-precision location of North Korea s 2009 nuclear test Lianxing Wen & Hui Long Department of Geosciences State University

More information

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

Haruhisa N. (Fig. + ) *+ Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya.0. 20*+ Japan.

Haruhisa N. (Fig. + ) *+ Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya.0. 20*+ Japan. /- (,**2) 0,+/,,+ Source Mechanism and Seismic Velocity Structure of Source Region of Deep Low-frequency Earthquakes beneath Volcanoes: Case Studies of Mt Iwate and Mt Fuji Haruhisa N AKAMICHI + +3 (Fig

More information

Tomographic imaging of P wave velocity structure beneath the region around Beijing

Tomographic imaging of P wave velocity structure beneath the region around Beijing 403 Doi: 10.1007/s11589-009-0403-9 Tomographic imaging of P wave velocity structure beneath the region around Beijing Zhifeng Ding Xiaofeng Zhou Yan Wu Guiyin Li and Hong Zhang Institute of Geophysics,

More information

3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities

3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl049308, 2011 3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities B. Shibazaki,

More information

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION Kimiyuki Asano 1 and Tomotaka Iwata 2 1 Assistant Professor, Disaster Prevention

More information

Urgent aftershock observation of the 2004 off the Kii Peninsula earthquake using ocean bottom seismometers

Urgent aftershock observation of the 2004 off the Kii Peninsula earthquake using ocean bottom seismometers LETTER Earth Planets Space, 57, 363 368, 2005 Urgent aftershock observation of the 2004 off the Kii Peninsula earthquake using ocean bottom seismometers Shin ichi Sakai 1, Tomoaki Yamada 1, Masanao Shinohara

More information

RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES

RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES T. Sasatani 1, S. Noguchi, T. Maeda 3, and N. Morikawa 4 1 Professor, Graduate School of Engineering, Hokkaido University,

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara SCALING OF SHORT-PERIOD SPECTRAL LEVEL OF ACCELERATION

More information

Subduction of a wedge shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted waves and small repeating earthquakes

Subduction of a wedge shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted waves and small repeating earthquakes Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jb006962, 2010 Subduction of a wedge shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted

More information

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Toshitaka Baba Research Program for Plate Dynamics, Institute for Frontier

More information

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks LETTER Earth Planets Space, 63, 519 523, 2011 Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström,

More information

The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone

The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2*,**/ pp. +-- +.1 * The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone The Japanese University Group of the Joint Seismic Observations

More information

Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity

Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity Tectonophysics 403 (2005) 59 75 www.elsevier.com/locate/tecto Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity Akira HasegawaT, Junichi

More information

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data LETTER Earth Planets Space, 65, 917 921, 2013 Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data Ryou Honda 1, Yohei

More information

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake J-RAPID Symposium March 6-7, 2013 Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake Y. Honkura Tokyo Institute of Technology Japan Science and Technology

More information

Interlocking of heterogeneous plate coupling and aftershock area expansion pattern for the 2011 Tohoku-Oki Mw9 earthquake

Interlocking of heterogeneous plate coupling and aftershock area expansion pattern for the 2011 Tohoku-Oki Mw9 earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2011gl050703, 2012 Interlocking of heterogeneous plate coupling and aftershock area expansion pattern for the 2011 Tohoku-Oki Mw9 earthquake Fumiko Tajima

More information

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions Y. Ishii & K. Dan Ohsaki Research Institute, Inc., Tokyo

More information

A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model

A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model T. Iwata, K. Asano & H. Sekiguchi Disaster Prevention Research Institute, Kyoto

More information

The 2011 off the Pacific coast of Tohoku Earthquake related to a strong velocity gradient with the Pacific plate

The 2011 off the Pacific coast of Tohoku Earthquake related to a strong velocity gradient with the Pacific plate LETTER Earth Planets Space, 63, 663 667, 2011 The 2011 off the Pacific coast of Tohoku Earthquake related to a strong velocity gradient with the Pacific plate Makoto Matsubara 1 and Kazushige Obara 2 1

More information

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks Earth Planets Space, 99, 1 8, 2011 Centroid moment-tensor analysis of the 2011 Tohoku earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström, and Howard C. Koss Lamont-Doherty

More information

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS Third International Symposium on the Effects of Surface Geology on Seismic Motion Grenoble, France, 30 August - 1 September 2006 Paper Number: 105 BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA-

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L09304, doi: /2010gl042935, 2010

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L09304, doi: /2010gl042935, 2010 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042935, 2010 Seismic characteristics around the fault segment boundary of historical great earthquakes along the Nankai

More information

Aftershock observation of the Noto Hanto earthquake in 2007 using ocean bottom seismometers

Aftershock observation of the Noto Hanto earthquake in 2007 using ocean bottom seismometers LETTER Earth Planets Space, 6, 15 11, 28 Aftershock observation of the Noto Hanto earthquake in 27 using ocean bottom seismometers Tomoaki Yamada 1, Kimihiro Mochizuki 1, Masanao Shinohara 1, Toshihiko

More information

LETTERS. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip

LETTERS. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip Vol 442 13 July 2006 doi:10.1038/nature04931 Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip David R. Shelly 1, Gregory C. Beroza 1, Satoshi Ide 2 & Sho

More information

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II Development of a Predictive Simulation System for Crustal Activities in and around Japan - II Project Representative Mitsuhiro Matsu'ura Graduate School of Science, The University of Tokyo Authors Mitsuhiro

More information

Tomography of the 2011 Iwaki earthquake (M 7.0) and Fukushima

Tomography of the 2011 Iwaki earthquake (M 7.0) and Fukushima 1 2 3 Auxiliary materials for Tomography of the 2011 Iwaki earthquake (M 7.0) and Fukushima nuclear power plant area 4 5 6 7 8 9 Ping Tong 1,2, Dapeng Zhao 1 and Dinghui Yang 2 [1] {Department of Geophysics,

More information

Occurrence of quasi-periodic slow-slip off the east coast of the Boso peninsula, Central Japan

Occurrence of quasi-periodic slow-slip off the east coast of the Boso peninsula, Central Japan LETTER Earth Planets Space, 9, 11 1, Occurrence of quasi-periodic slow-slip off the east coast of the Boso peninsula, Central Japan Shinzaburo Ozawa, Hisashi Suito, and Mikio Tobita Geographical Survey

More information

DOUBLE-PLANED STRUCTURE OF INTERMEDIATE- DEPTH SEISMIC ZONE AND THERMAL STRESS IN THE DESCENDING PLATE. (Received December 20, 1983)

DOUBLE-PLANED STRUCTURE OF INTERMEDIATE- DEPTH SEISMIC ZONE AND THERMAL STRESS IN THE DESCENDING PLATE. (Received December 20, 1983) J. Phys. Earth, 31, 329-347, 1983 DOUBLE-PLANED STRUCTURE OF INTERMEDIATE- DEPTH SEISMIC ZONE AND THERMAL STRESS IN THE DESCENDING PLATE Hiroyuki HAMAGUCHI, Kazuhiko GOTO, and Ziro SUZUKI Geophysical Institute,

More information

CHARACTERISTICS OF SOURCE SPECTRA OF SMALL AND LARGE INTERMEDIATE DEPTH EARTHQUAKES AROUND HOKKAIDO, JAPAN

CHARACTERISTICS OF SOURCE SPECTRA OF SMALL AND LARGE INTERMEDIATE DEPTH EARTHQUAKES AROUND HOKKAIDO, JAPAN 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1861 CHARACTERISTICS OF SOURCE SPECTRA OF SMALL AND LARGE INTERMEDIATE DEPTH EARTHQUAKES AROUND HOKKAIDO,

More information

Seismicity around the seaward updip limit of the Nankai Trough seismogenic zone revealed by repeated OBS observations

Seismicity around the seaward updip limit of the Nankai Trough seismogenic zone revealed by repeated OBS observations FRONTIER RESEARCH ON EARTH EVOLUTION, VOL. 1 Seismicity around the seaward updip limit of the Nankai Trough seismogenic zone revealed by repeated OBS observations Koichiro Obana 1, Shuichi Kodaira 1, Yoshiyuki

More information

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L02611, doi:10.1029/2007gl032129, 2008 Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami S. Koshimura, 1 Y.

More information

Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law

Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law Naoyuki Kato (1), Kazuro Hirahara (2) and Mikio Iizuka (3) (1) Earthquake Research Institute, University

More information

Detection of Kuril subduction-zone earthquakes from remote historic records in Honshu, Japan, between 1656 and 1867

Detection of Kuril subduction-zone earthquakes from remote historic records in Honshu, Japan, between 1656 and 1867 ANNALS OF GEOPHYSICS, VOL. 47, N. 2/3, April/June 2004 Detection of Kuril subduction-zone earthquakes from remote historic records in Honshu, Japan, between 1656 and 1867 Kenji Satake Active Fault Research

More information

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring Bruce R. Julian U. S. Geological Survey, Menlo Park, CA 94025 USA julian@usgs.gov Gillian R. Foulger Dept. Earth

More information

Scaling relationship between the duration and the amplitude of non-volcanic deep low-frequency tremors

Scaling relationship between the duration and the amplitude of non-volcanic deep low-frequency tremors GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L07305, doi:10.1029/2007gl029391, 2007 Scaling relationship between the duration and the amplitude of non-volcanic deep low-frequency tremors Tomoko Watanabe, 1 Yoshihiro

More information

FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA

FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA Myo Thant 1, Hiroshi Kawase 2, Subagyo Pramumijoyo 3, Heru Hendrayana

More information

Slab pull, slab weakening, and their relation to deep intra-slab seismicity

Slab pull, slab weakening, and their relation to deep intra-slab seismicity GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L14305, doi:10.1029/2005gl022922, 2005 Slab pull, slab weakening, and their relation to deep intra-slab seismicity Susan L. Bilek Earth and Environmental Science

More information

Deep low-frequency earthquakes near the downward extension of the seismogenic fault of the 2000 Western Tottori earthquake

Deep low-frequency earthquakes near the downward extension of the seismogenic fault of the 2000 Western Tottori earthquake Earth lanets Space, 56, 1185 1189, 2004 Deep low-frequency earthquakes near the downward extension of the seismogenic fault of the 2000 Western Tottori earthquake Shiro Ohmi, Issei Hirose, and James J.

More information

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics Naoyuki Kato (1) and Tomowo Hirasawa (2) (1) Geological

More information

MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS

MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS Yasumaro KAKEHI 1 SUMMARY High-frequency (higher than 1 Hz) wave radiation processes

More information

TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT-

TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT- TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT- Amilcar Cabrera Supervisor: Yuichiro TANIOKA MEE16718 ABSTRACT Nicaragua

More information

Stress field in the 2008 Iwate Miyagi earthquake (M7.2) area

Stress field in the 2008 Iwate Miyagi earthquake (M7.2) area Article Volume 12, Number 6 18 June 2011 Q06006, doi:10.1029/2011gc003626 ISSN: 1525 2027 Stress field in the 2008 Iwate Miyagi earthquake (M7.2) area Zhouchuan Huang Department of, Tohoku University,

More information

Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data

Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003jb002683, 2004 Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data Yoshiko Yamanaka and Masayuki

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1131692/dc1 Supporting Online Material for Localized Temporal Change of the Earth s Inner Core Boundary This PDF file includes: Materials and Methods Figs. S1 to S3

More information

A shallow strong patch model for the 2011 great Tohoku oki earthquake: A numerical simulation

A shallow strong patch model for the 2011 great Tohoku oki earthquake: A numerical simulation GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl048565, 2011 A shallow strong patch model for the 2011 great Tohoku oki earthquake: A numerical simulation Naoyuki Kato 1 and Shingo Yoshida 1

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

Newly imaged shape of the deep seismic zone within the subducting Pacific plate beneath the Hokkaido corner, Japan-Kurile arc-arc junction

Newly imaged shape of the deep seismic zone within the subducting Pacific plate beneath the Hokkaido corner, Japan-Kurile arc-arc junction JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B12, 2565, doi:10.1029/2002jb002175, 2003 Newly imaged shape of the deep seismic zone within the subducting Pacific plate beneath the Hokkaido corner, Japan-Kurile

More information

Seismic Velocity Structure in the Crust and Upper Mantle beneath Northern Japan

Seismic Velocity Structure in the Crust and Upper Mantle beneath Northern Japan J. Phys. Earth, 42, 269-301, 1994 Seismic Velocity Structure in the Crust and Upper Mantle beneath Northern Japan Hiroki Miyamachi,l,* Minoru Kasahara,2 Sadaomi Suzuki,2,** Kazuo Tanaka,3 and Akira Hasegawa

More information

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes Author(s) 2008. This work is licensed under a Creative Commons License. Advances in Geosciences Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes Y. Tanioka 1, Y.

More information

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Earth Planets Space, 64, 1239 1243, 2012 Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Tamao Sato 1, Shinya Hiratsuka

More information

The Sanriku-Oki low-seismicity region on the northern margin of the great 2011 Tohoku-Oki earthquake rupture

The Sanriku-Oki low-seismicity region on the northern margin of the great 2011 Tohoku-Oki earthquake rupture JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jb008847, 2012 The Sanriku-Oki low-seismicity region on the northern margin of the great 2011 Tohoku-Oki earthquake rupture Lingling Ye, 1,2

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L02304, doi: /2009gl041835, 2010

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L02304, doi: /2009gl041835, 2010 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2009gl041835, 2010 Seismic structure of the Longmen Shan region from S wave tomography and its relationship with the Wenchuan

More information

Hypocenter distribution of plate boundary zone off Fukushima, Japan, derived from ocean bottom seismometer data

Hypocenter distribution of plate boundary zone off Fukushima, Japan, derived from ocean bottom seismometer data Earth Planets Space, 57, 93 105, 2005 Hypocenter distribution of plate boundary zone off Fukushima, Japan, derived from ocean bottom seismometer data Masanao Shinohara 1, Ryota Hino 2, Takashi Yoshizawa

More information

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate T. Sasatani, N. Takai, M. Shigefuji, and Y. Miyahara Hokkaido University, Sapporo, Japan W. Kawabata Electric Power Development

More information

Nobuo Hurukawa 1 and Tomoya Harada 2,3. Earth Planets Space, 65, , 2013

Nobuo Hurukawa 1 and Tomoya Harada 2,3. Earth Planets Space, 65, , 2013 Earth Planets Space, 65, 1441 1447, 2013 Fault plane of the 1964 Niigata earthquake, Japan, derived from relocation of the mainshock and aftershocks by using the modified joint hypocenter determination

More information

AFTERSHOCK DISTRIBUTION OF THE 1983 JAPAN SEA EARTHQUAKE AS DETERMINED FROM HELICOPTER-DISPATCHED OBS OBSERVATION

AFTERSHOCK DISTRIBUTION OF THE 1983 JAPAN SEA EARTHQUAKE AS DETERMINED FROM HELICOPTER-DISPATCHED OBS OBSERVATION 1 J. Phys. Earth, 33, 133-147, 1985 AFTERSHOCK DISTRIBUTION OF THE 1983 JAPAN SEA EARTHQUAKE AS DETERMINED FROM HELICOPTER-DISPATCHED OBS OBSERVATION Taku URABE,* Kiyoshi SUYEHIRO,**,1) Takaya IWASAKI,***

More information

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE GENERAL PERSPECTIVE The Highest Magnitude Ever Recorded The 2011 off the Pacific Coast of Tohoku Earthquake (hereafter, the 2011 Tohoku- Pacific Earthquake

More information

LETTER Earth Planets Space, 63, , 2011

LETTER Earth Planets Space, 63, , 2011 LETTER Earth Planets Space, 63, 1207 1211, 2011 Large intraslab earthquake (2011 April 7, M 7.1) after the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0): Coseismic fault model based on the dense

More information

overlie the seismogenic zone offshore Costa Rica, making the margin particularly well suited for combined land and ocean geophysical studies (Figure

overlie the seismogenic zone offshore Costa Rica, making the margin particularly well suited for combined land and ocean geophysical studies (Figure Chapter 1 Introduction Historically, highly destructive large magnitude (M w >7.0) underthrusting earthquakes nucleate along the shallow segment of subduction zone megathrust fault, and this region of

More information

A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 8 earthquakes surrounded by aseismic sliding

A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 8 earthquakes surrounded by aseismic sliding LETTER Earth Planets Space, 63, 773 777, 2011 A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 8 earthquakes surrounded by aseismic sliding Takane Hori 1 and Shin ichi

More information

X-2 HIKIMA AND KOKETSU: THE 2004 CHUETSU, JAPAN, EARTHQUAKE We relocated the hypocenters of the 2004 Chuetsu earthquake sequence, Niigata, Japan, usin

X-2 HIKIMA AND KOKETSU: THE 2004 CHUETSU, JAPAN, EARTHQUAKE We relocated the hypocenters of the 2004 Chuetsu earthquake sequence, Niigata, Japan, usin GEOPHYSICAL RESEARCH LETTERS, VOL. 32, XXXX, DOI:1029/2005GL023588, Rupture processes of the 2004 Chuetsu (mid-niigata prefecture) earthquake, Japan: A series of events in a complex fault system Kazuhito

More information

RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN

RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN K. Miyakoshi 1 and M. Horike 2 ABSTRACT : 1 Earthquake Engineering Group, Geo-Research Institute,

More information