CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR

Size: px
Start display at page:

Download "CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR"

Transcription

1 ANALELE STIINTIFICE ALE UNIVERSITATII AL. I. CUZA IASI Tomul II, s. Biofizică, Fizică medicală şi Fizica mediului 2006 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR Dan Mihailescu 1 KEYWORDS: IORT, Monte Carlo, BEAMnrc, dosimetry, electron beams. The electron beams produced by NOVAC7 IORT accelerator have been modelled with BEAMnrc, a general purpose Monte Carlo code for simulating radiotherapy beams from linear accelerators or 60 Co units. The realistic electron beams were stored in phase-space files which have been used as input in BEAMDP code to calculate energy, angular, fluence and mean energy distributions at the phantom surface. Due to the technical limitations, such beam characteristics are difficult or even impossible to be experimentally determined. In these conditions, the use of Monte Carlo method is the only way in which we can enhance our knowledge on many aspects of the clinical beams. 1. INTRODUCTION Knowledge of clinical beams is essential for dosimetry, treatment planning, quality assurance, and design of an accelerator. In the radiotherapy of cancer, the treatment plan can only be made correctly if the characteristics of the beam are known. The physical, chemical and radiobiological effects as well as the response of various radiation detectors also depend by the beam characteristics. Experimentally it is difficult to obtain full information about beam quality because of various limitations in the clinical environments and detectors. Moreover, it is not possible, using experimental methods, to distinguish between electrons which are scattered by different beam defining system (primary collimator, jaws, applicators, etc.). The beam quality is strongly influenced by these scattered electrons that may have a large contribution to the dose distributions in a patient (or phantom) [1]. The Monte Carlo method has been shown to be suitable for modelling realistic electron beams from medical linear accelerators, including those used in the Intraoperative Radiation Therapy (IORT) [2]. IORT refers to the delivery of a single high dose of radiation (usually more then 10 Gy) at the time of surgery when the tumour bed can be precisely defined and adjacent normal tissue maximally protected. An example could include a tumour, which is unresectable from critical normal tissue or surrounding tissue that may contain microscopic cancer cells. IORT machines require dedicated collimation systems that increase the number of scattered electrons in the clinical beams. The IORT electron beams will therefore have different characteristics compared to beams obtained from standard accelerators. This paper presents detailed information and characteristics of some electron beams produced by NOVAC7 IORT accelerator. The accuracy of the simulated clinical beams was previously demonstrated [3] by comparing the calculated and measured dose distributions in water phantoms. 1 The Al. I. Cuza University of Iasi, Faculty of Physics, Depart. of Medical Physics and Biophysics

2 D. MIHAILESCU MATERIALS AND METHODS Using the BEAMnrc [4] Monte Carlo code, we have simulated various beams produced by the NOVAC7 IORT accelerator. The NOVAC7 System (Hitesys SpA, Italy) [5] is a mobile electron linac for IORT that produces pulsed electron beams (2 9 cgy/pulse) with four different nominal energies: 3, 5, 7 and 9 MeV. It is equipped with an adjustable robot arm that can be focused on the operating field. The basic system includes four types of PMMA cylindrical applicators with inner diameters 4, 6, 8 and 10 cm, wall thickness 0.5 cm and lengths 69, 67, 67 and, respective, 87 cm. These applicators are available in two different forms: right (0 ) and bevelled (15, 22.5 and 45 ). The sourceto-surface distance is SSD = 80 cm, excepting the 10 cm diameter case in which SSD = 100 cm. Our simulation covers only electron beams obtained with right applicators. All nominal energies have been examined for the biggest applicator (10 cm diameter), while the 4, 6 and 8 cm diameter applicators have been investigated only for the higher nominal energies (7 and, especially, 9 MeV). BEAMnrc [4] is an EGSnrc [6] based general purpose Monte Carlo code originally developed for simulating radiotherapy beams from accelerators or 60 Co units. BEAMnrc models the therapy source with the z-axis taken as the beam-axis. The model consists of a series of component modules (CMs), each of them being contained between two planes which are perpendicular to the z-axis. There can be an arbitrary number of scoring planes which are at the back plane of a CM and thus perpendicular to the z-axis. The main output of BEAMnrc is a phase-space data file for every scoring plane. The phase-space files contain all the information about every particle that cross the appropriate scoring plane, i.e. charge (electron, photon or positron), energy, moving direction, and the entire history of that particle. The particle history is scored trough a special 28 bit variable named LATCH [4, 6]. The LATCH technique allows one, for instance, to separate the effects of primary and secondary electrons, or to identify those particles that have passed or interacted in certain components of the simulated system (accelerator, 60 Co machine or phantom). We have modelled the NOVAC7 accelerator as a series of simple BEAMnrc component modules with cylindrical symmetry centred on Z-axis (fig. 1). The accelerator head includes the exit window and a PVC structure that acts like a primary collimator. Inside of this structure there is a transmission monitor ion chamber. The PMMA cylindrical applicators are connected to the primary applicator by PMMA connectors. In BEAMnrc simulations we have used default values for EGSnrc particle s transport parameters, PRESTA-I for boundary crossing algorithm and PRESTA II as electron transport algorithm. Both photons and electrons are transported down to 10 kev kinetic energies (ECUT = MeV, PCUT = 0.01 MeV). The cross section data were created using PEGS4 [6] with AE = MeV and AP = 0.01 MeV including Sternheimer density effect corrections from ICRU 37 [7]. The number of histories was 10 x 10 6 for all the energies. The CPU time/history was in the interval 1.59 x x 10-3 s, depending on the nominal energy (smaller for lower energies) and applicator size. The scoring planes have been placed before and after IORT applicator (at the phantom surface). The phase space data files obtained at these scoring planes were used as input in BEAMDP code to calculate energy, angular, fluence and mean energy distributions.

3 105 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS Fig. 1- BEAM model used to simulate electron beams from NOVAC7 accelerator and the water phantom (not to scale). BEAMDP (BEAM Data Processor) [8] was developed to help the BEAMnrc [4] users to analyze the electron beam data obtained by the Monte Carlo simulation of the coupled transport of photons and electrons in different simulated systems. In order to calculate the energy spectra of simulated beams, the particles fluence (planar or actual) [8] is scored in a user-specified field vs. particles energy with energy bins of equal bin width within a specified spatial region. Fluence is normalized to the bin width and the number of incident particles. The angular distributions are calculated like the total number of particles scored in an angular bin of equal bin width within a specified spatial region. Fluence distribution means the total number of particles scored in spatial bins of equal area. Finally, the mean energy distribution is calculated as the ratio of the total particle energy to the total number of particles scored in a spatial bin of equal area. Full documentation (manuals and papers) can be found at the internet address the web site of The National Research Council of Canada.

4 D. MIHAILESCU RESULTS AND DISCUSSION Figure 1 shows the electron energy spectra after IORT applicator (at the phantom surface) calculated for 3, 5, 7 and 9 MeV nominal energies when a d = 10 cm diameter applicator (SSD = 100 cm) is used. All these spectra are planar fluence scored in a circular field with 10 cm diameter as a function of electron energy. For comparison, all four spectra contain the same number of electrons (i. e. the spectra are normalized to the same area). Similar calculations have been done for the 4, 6 and 8 cm applicators (9 MeV nominal energy), the parameters of all of the obtained spectra being shown in Table 1. Fig.1- Electron energy spectra at the phantom surface obtained for 10 cm IORT beams and 3, 5, 7, and 9 MeV nominal energies. The spectra are normalized to the same area. The energy bin size is MeV. Table 1: The parameter of the electron spectra obtained at the phantom surface for IORT beams under investigation; E max,0, E p,0 and E 0 are the maximum, the most probable and, respective, the mean energy of the electrons; Γ 0 is the full width at half maximum (FWHM). Nominal energy/ Type of applicator SSD (cm) E max,0 (MeV) E p,0 (MeV) E 0 Γ 0 (MeV) (MeV) 9MeV_d MeV_d MeV_d MeV_d MeV_d MeV_d MeV_d

5 107 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS The mean energy of the IORT electrons at the phantom surface increases with the decreasing of the field size. This result can be explained analysing the figure 2. The smaller diameter applicators will give rise to more degraded electron beams, but the electron spectra have different shapes: for smaller fields, the region of high energies is increased and that of low energies is decreased. It is interesting to note that spectral distributions of scattered electrons in the case of 10 and 8 cm applicators are very similar, but this is only an effect of their different length: the 8 cm applicator is 20 cm shorter, so the effect of smaller diameter is balanced by those of smaller length. For this reason, the comparison of the effects due to the applicators of different thickness could be irrelevant. Fig. 2- Electron energy spectra at the phantom surface obtained for 9 MeV nominal energy and 4, 6, 8 and 10 cm diameter applicator. The spectra are normalized to the same area. The energy bin size is MeV. Fig. 3- The electron energy distributions for the 9MeV_d4 IORT electron beam.

6 D. MIHAILESCU 108 More information about electron spectra can be obtained investigating the direct and scattered components contributions (see, for example, figure 3). The spectral distribution of the direct electrons has a prominent peak that practically gives the maximum and the most probable energy of the IORT electron energy spectra. Compared with the direct electrons, the scattered electrons are much more degraded, due to the interactions with the long IORT applicator. As a consequence, the scattered electrons energy distributions contain more electrons with low energies than those of the direct electrons. 3.2 Mean energy and fluence distributions Figures 4a and 4b show the electron mean energy distribution and the fluence distribution respectively, together with the contributions of direct and scattered electrons, calculated for the same nominal energy (9 MeV) and the same applicator (d = 10 cm, SSD = 100 cm). The direct electrons have a practically constant mean energy everywhere in the field, but its fluence decreases toward applicator wall. The mean energy of the electrons that have been scattered on IORT applicator increases slowly from the central zone to the edge of the field, but its fluence increases toward the wall (more scattered electrons are situated in the vicinity of the IORT applicator). (a) (b) Fig. 4 A comparison of the mean energy distributions (a) and fluence distributions (b) calculated for the IORT electron beam (labelled as total ) and his direct and scattered components at phantom surface (z = 0) in the case of 9 MeV nominal energy when an IORT 10 cm diameter applicator (SSD = 100 cm) is used. The mean energy distributions calculated for all IORT fields under investigation reveal an excellent uniformity: every IORT field have a circular central zone in which the medium energy remains constant in the limit of 1%. The diameters of these zones are situated in the interval cm. The smaller value is obtained for d = 4 cm applicator and the biggest one for d = 10 cm applicator.

7 109 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS In table 2 are shown the mean energies at the phantom surface (z = 0), for all electron IORT beams under investigation. To evaluate the dosimetric differences between the NOVAC7 IORT electron beams and the mono-energetic electron beams with the same R 50, we have compared the calculated mean energies with those obtained using the IAEA International Code of Practice TRS-381 [9]. According to this dosimetry protocol, the quality of a an electron beam is specified in terms of the mean electron energy at the phantom surface ( E 0 ) which is required to evaluate other quantities and parameters used in the dosimetric calculation formalism, mainly affecting the choice of water to air stopping power ratios, s w,air (see, for instance, the reference [10]). TRS-381 recommends the following empirical relationship to calculate E 0 : E ( ) 2 0 = R R 50 (1) where R 50 (the depth at which the dose falls to 50% of its maximum) is determined from the experimental depth dose curve [3]. Table 2: Comparison of the electron mean energies (in MeV) at phantom surface. The Monte Carlo values (MC) have been obtained from mean energies distributions like those illustrated in figure 4a, being calculated in small circular fields with diameter d f = 1.0 cm, centred on the z axis. The MC values are compared with those estimated using the IAEA International Code of Practice TRS-381 [9]. Δ = 100 x (MC- TRS)/TRS MC TRS-381 Δ (%) 9MeV_d MeV_d MeV_d MeV_d MeV_d MeV_d MeV_d All Monte Carlo values are lower (up to ~ 7.2 %) than those obtained using the TRS-381 protocol, due to the influence of the long PMMA IORT applicators. However, as we shown elsewhere [10], these large differences between monoenergetic (TRS-381) and clinical (realistic) beams have only a relative small influence (< 1.5 %) on the stopping-power ratios (s w,air ) values Angular distributions Figure 5 shows the angular distributions of the NOVAC7 IORT electrons at the phantom surface for three particular cases: (a) the highest nominal energy - the biggest applicator (9MeV_d10), (b) the highest nominal energy the smallest applicator (9MeV_d4) and (c) the lowest nominal energy the biggest applicator

8 D. MIHAILESCU 110 (3MeV_d10). The angular distributions of the direct and scattered electrons are also represented in the same graphs. A comparison of the scattering angle parameters for all eight beams studied in this work is given in table 3. Fig. 5- Comparison of angular distributions of the IORT electrons for: (a) 9 MeV_d10, (b) 9 MeV_d4, (c) 3 MeV_d10. The angular bin size is 0.2.

9 111 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS Table 3: Scattering angles (mean and most probable) at the phantom surface for different groups of electrons (all the electrons from IORT beams, direct electrons and those scattered on IORT applicator). Γ is the full width at half of maximum (FWHM). All values are expressed in degrees. IORT ( total ) Direct Scattered θ m θ p Γ θ m θ p Γ θ m θ p Γ 9MeV_d MeV_d MeV_d MeV_d MeV_d MeV_d MeV_d The angular distributions of the IORT electrons have well defined peaks at small angles, the most probable values, θ p, being between 2.3 and 4.3, and long tails that arrives until a maximum scattering angle θ max with values situated in the interval [61 79 ] (not seen in figure 5). This shape is a result of the different contributions of the principal two groups of electrons: (a) the direct electrons, with θ p [ ], θ max [10 19 ] and (b) the scattered electrons with bigger scattering angles: θ p [ ], θ max [61 79 ]. The scattered electrons have always larger Γ > Γ. The minimum distribution than those of direct electrons: ( ) ( ) p scattered p direct above values have been obtained for 9MeV_d4 IORT beam, while the maximum values characterises the 3 MeV_d10 beam, showing a dependence on the initial electrons energy spectra and applicator s size. Analysing the data from table 3, more information about this dependence can be obtained. For lower nominal energies, θ p, θ m and Γ have bigger values for all three IORT, direct and scattered electrons distributions, since the mass-scattering powers increases with decreasing energy [7]. In other words, at lower energies, the scattering angles have bigger values and the distributions become larger. The angular distributions are also strongly influenced by the applicator s diameter. For smaller diameters, θ p, θ m and Γ have smaller values, i. e. the scattering angles have smaller values and the distributions becomes sharper (the electrons become more forward directed). These results are similar with those obtained by Bjork et al for a treatment machine Philips/Elekta SL25 adapted for IORT [2]. The influence of the IORT applicators on electron scattering angles can be analysed comparing the angular distributions before and after long PMMA applicator (figure 6). The direct electrons after IORT applicator (figure 5) have sharper distributions. It means that only the electrons from the central part of the beam (that leave the accelerator head with small scattering angles) have the chance to reach the phantom surface without any interaction with the IORT applicator. The rest of them are absorbed or scattered on the applicator wall. As a consequence, the angular distributions of the IORT electrons at the phantom surface (figure 6) become sharper compared with those before applicator, but in the meantime they contain a greater amount of electrons with larger scattering angles, due to the scattered component.

10 D. MIHAILESCU 112 Fig. 6- The angular distributions before and after IORT applicators (at the phantom surface) for: (a) 9 MeV_d10, (b) 9 MeV_d4 and (c) 3 MeV_d10. For comparison, every pair of angular distributions contains the same number of electrons.

11 113 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS Fig. 7- The angular distribution at the phantom surface of the NOVAC7 IORT electron beam 5MeV_d10 compared with that calculated by Bjork et al for an IORT beam produced by Philips/Elekta SL25 machine equipped with a 9 cm IORT cone for 6 MeV nominal energy (see Figure 6 a, from [2]). In the figure 7 is shown a comparison between the angular distributions at the phantom surface obtained for the NOVAC7 IORT electron beam 5MeV_d10 (5 MeV nominal energy, 10 cm diameter, SSD = 100 cm) and the angular distribution of an electron beam produced by a Philips/Elekta SL25 machine equipped with a 9 cm IORT cone for 6 MeV nominal energy [2]. The NOVAC7 beam has a sharper angular distribution, due to the absence of the scattering foils and to the longer IORT applicator. 4. CONCLUSIONS The realistic electron beams produced by NOVAC7 IORT accelerator have been modeled using the EGSnrc based general purpose Monte Carlo code, BEAMnrc [4] developed by Rogers et al from the National Research Council of Canada. The accuracy of the simulated clinical beams was previously demonstrated [3] by comparing the calculated and measured dose distributions in water phantoms. Important beam characteristics, such as the energy, angular, fluence and mean energy distributions of electrons at the phantom surface, have been than calculated with BEAMDP (BEAM Data Processor) code. Our investigation demonstrates the utility of the Monte Carlo simulation method to obtain detailed information of clinical electron beams. This information is important for further improving of electron beam dosimetry and treatment planning in radiotherapy.

12 D. MIHAILESCU 114 REFERENCES 1. G.X. Ding, D.W.O. Rogers, Energy spectra, angular spread, and dose distributions of electron beams from various accelerators used in radiotherapy, National Research Council of Canada Report PIRS 439 (Ottawa,). 2. P. Bjork, P. Nillson and T. Knoos, Dosimetry characteristics of degraded electron beams investigated by Monte Carlo calculations in a setup for intraoperative radiation therapy, Phys. Med. Biol D. Mihailescu, M. Pimpinella, A.S. Guerra, R.F. Laitano, Comparison of measured and Monte Carlo calculated dose distributions for the NOVAC7 linear accelerator Rom. J. Phys., 51 Nos 7-8, D.W.O. Rogers, B. Walters and I. Kawrakow, BEAMnrc Users Manual, National Research Council of Canada Report PIRS (Ottawa: NRC) I. Kawrakow and D.W.O. Rogers, The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport, National Research Council of Canada Report PIRS -701(Ottawa: NRC). 7. International Commission on Radiation Units and Measurements, 1984, Stopping Powers for Electrons and Positrons, Rep. 37, ICRU, Bethesda, MD. 8. C.-M. Ma and D.W.O. Rogers BEAMDP Users Manual, National Research Council of Canada Report PIRS -0509(C)revA (Ottawa: NRC). 9 International Atomic Energy Agency (IAEA), 1997, The use of plane parallel ionization chambers in high energy electron and photon beams: An international code of practice for dosimetry, Technical Reports Series No. 381, IAEA, Vienna. 10 D. Mihailescu, M. Pimpinella, A.S. Guerra, R.F. Laitano, 2006, Monte Carlo calculation of stoppingpower ratios for clinical electron beams produced by a LINAC for IORT, Rom. J. Phys., 51 Nos 5-6, 547.

Heuijin Lim, Manwoo Lee, Jungyu Yi, Sang Koo Kang, Me Young Kim, Dong Hyeok Jeong

Heuijin Lim, Manwoo Lee, Jungyu Yi, Sang Koo Kang, Me Young Kim, Dong Hyeok Jeong Original Article PMP Progress in Medical Physics 28(2), June 2017 https://doi.org/10.14316/pmp.2017.28.2.49 pissn 2508-4445, eissn 2508-4453 Electron Energy Distribution for a Research Electron LINAC Heuijin

More information

BEAMnrc: a code to simulate radiotherapy external beam sources

BEAMnrc: a code to simulate radiotherapy external beam sources BEAMnrc: a code to simulate radiotherapy external beam sources D.W.O. Rogers Carleton Laboratory for Radiotherapy Physics. Physics Dept, Carleton University Ottawa, Canada http://www.physics.carleton.ca/~drogers

More information

Dosimetric Properties of the Field Sizes of 12MV Photon Beams: A Monte Carlo Study

Dosimetric Properties of the Field Sizes of 12MV Photon Beams: A Monte Carlo Study Journal of Nuclear and Particle Physics 2015, 5(3): 52-57 DOI: 10.5923/j.jnpp.20150503.02 Dosimetric Properties of the Field Sizes of 12MV Photon Beams: A Monte Carlo Study Maged Mohammed 1,2,*, E. Chakir

More information

U.P.B. Sci. Bull., Series A, Vol. 74, Iss. 4, 2012 ISSN

U.P.B. Sci. Bull., Series A, Vol. 74, Iss. 4, 2012 ISSN U.P.B. Sci. Bull., Series, Vol. 74, Iss. 4, 2012 ISSN 1223-7027 MONTE CRLO INVESTIGTION OF THE INFLUENCE OF INITIL ELECTRON BEM CHRCTERISTICS ON THE BSORBED DOSE DISTRIBUTIONS OBTINED WITH 9 MEV IORT CCELERTOR

More information

STANDARD WATER PHANTOM BACKSCATTER FACTORS FOR MEDIUM ENERGY X-RAYS

STANDARD WATER PHANTOM BACKSCATTER FACTORS FOR MEDIUM ENERGY X-RAYS STANDARD WATER PHANTOM BACKSCATTER FACTORS FOR MEDIUM ENERGY X-RAYS M.A. HASSAN*, M.H. GABER**, E. ESMAT*, H.I. FARAG***, H.M. EISSA* *National Institute for Standards (NIS), Giza, Egypt **Biophysics Department,

More information

Comparison between TG-51 and TRS-398: Electron Contamination Effect on Photon Beam Quality Specification.

Comparison between TG-51 and TRS-398: Electron Contamination Effect on Photon Beam Quality Specification. Comparison between TG-51 and TRS-398: Electron Contamination Effect on Photon Beam Quality Specification. Antonio Lopez Medina, Antonio Teijeiro, Daniela Medal, Francisco Salvador, Julio Vazquez, Manuel

More information

Radiation exposure of personnel during IORT: radiation protection aspects.

Radiation exposure of personnel during IORT: radiation protection aspects. Radiation exposure of personnel during IORT: radiation protection aspects. L. Strigari 1, V. Bruzzaniti 1, V. Landoni 1, A. Soriani 1, S.Teodoli 1, M. Benassi 1 1 Lab. Fisica Medica e Sistemi Esperti,

More information

7. a XV-2 high spatial resolution lm detector (Kodak). Important parameters of these detectors are given in Table1. The ionization chambers and the di

7. a XV-2 high spatial resolution lm detector (Kodak). Important parameters of these detectors are given in Table1. The ionization chambers and the di Proceedings of the Second International Workshop on EGS, 8.-12. August 2000, Tsukuba, Japan KEK Proceedings 200-20, pp.264-271 Variation of Dose Distribution by Detectors for Narrow Beam T. Fujisaki, H.

More information

Radiation Protection Dosimetry (2006), Vol. 118, No. 3, pp Advance Access publication 6 October 2005

Radiation Protection Dosimetry (2006), Vol. 118, No. 3, pp Advance Access publication 6 October 2005 Radiation Protection Dosimetry (2006), Vol. 118, No. 3, pp. 233 237 Advance Access publication 6 October 2005 doi:10.1093/rpd/nci353 DOSE BUILD UP CORRECTION FOR RADIATION MONITORS IN HIGH-ENERGY BREMSSTRAHLUNG

More information

Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications

Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications Christopher T. Myers 1 Georgia Institute of Technology Bernadette L. Kirk 2 Luiz C. Leal 2 Oak Ridge

More information

1 Introduction. A Monte Carlo study

1 Introduction. A Monte Carlo study Current Directions in Biomedical Engineering 2017; 3(2): 281 285 Sebastian Richter*, Stefan Pojtinger, David Mönnich, Oliver S. Dohm, and Daniela Thorwarth Influence of a transverse magnetic field on the

More information

Monte Carlo commissioning of photon beams in medical LINACS using wide-field profiles in a water phantom

Monte Carlo commissioning of photon beams in medical LINACS using wide-field profiles in a water phantom Monte Carlo commissioning of photon beams in medical LINACS using wide-field profiles in a water phantom F.Gómez 1, L. Franco 1, A. Iglesias 1, J. Pardo 1, J. Pena 1, A. Rodríguez 1, R.Lobato 2, J. Mosquera

More information

Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations

Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations Rowen

More information

Limitations and benchmarks of EGSnrc

Limitations and benchmarks of EGSnrc Limitations and benchmarks of EGSnrc D. W. O. Rogers, Carleton Laboratory for Radiotherapy Physics, Physics Dept, Carleton University, Ottawa http://www.physics.carleton.ca/~drogers AIFM Workshop, Rome,

More information

ABSORBED DOSE BEAM QUALITY FACTORS FOR CYLINDRICAL ION CHAMBERS: EXPERIMENTAL DETERMINATION AT 6 AND 15 MV PHOTON BEAMS

ABSORBED DOSE BEAM QUALITY FACTORS FOR CYLINDRICAL ION CHAMBERS: EXPERIMENTAL DETERMINATION AT 6 AND 15 MV PHOTON BEAMS ABSORBED DOSE BEAM QUALITY FACTORS FOR CYLINDRICAL ION CHAMBERS: EXPERIMENTAL DETERMINATION AT 6 AND 15 MV PHOTON BEAMS C. CAPORALI, AS. GUERRA, R.F. LAITANO, M. PIMPINELLA ENEA-Casaccia, Departimento

More information

The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1

The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1 The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1 1 Medical Radiation Physics Group, University of Oldenburg and Pius

More information

Electron Impact Ionization in EGSnrc

Electron Impact Ionization in EGSnrc Electron Impact Ionization in EGSnrc by Leila Lukhumaidze A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science

More information

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT Proceedings of the Eleventh EGS4 Users' Meeting in Japan, KEK Proceedings 2003-15, p.107-113 ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT K. Noto and

More information

Ranges of Electrons for Human Body Substances

Ranges of Electrons for Human Body Substances Abstract Research Journal of Chemical Sciences ISSN 2231-606X Ranges of Electrons for Human Body Substances Singh Hemlata 1, Rathi S.K. 1,2 and Verma A.S. 3 1 Department of physics, B. S. A. College, Mathura

More information

DOI /

DOI / Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Accounting for the fringe magnetic field from the bending magnet

More information

Dosimetry: Electron Beams

Dosimetry: Electron Beams ICTP SChool On MEdical PHysics For RAdiation THerapy: DOsimetry And TReatment PLanning For BAsic And ADvanced APplications 13-24 April 2015 Miramare, Trieste, Italy Dosimetry: Electron Beams G. Hartmann

More information

Ionizing Radiation Dosimetry and Medical Physics

Ionizing Radiation Dosimetry and Medical Physics Ionizing Radiation Dosimetry and Medical Physics D.W.O. Rogers Ionizing Radiation Standards, Institute for National Measurement Standards NRC, Ottawa, K1A OR6 Present e-mail: drogers at physics.carleton.ca

More information

PHYS 5020 Computation and Image Processing

PHYS 5020 Computation and Image Processing PHYS 5020 and Image Processing : Monte Carlo Thursday 2 August 2012 Monte Carlo (MC) is a numerical method that uses random sampling of probability distributions to simulate stochastic processes in nature,

More information

Secondary Particles Produced by Hadron Therapy

Secondary Particles Produced by Hadron Therapy Iranian Journal of Medical Physics Vol. 12, No. 2, Spring 2015, 1-8 Received: March 10, 2015; Accepted: July 07, 2015 Original Article Secondary Particles Produced by Hadron Therapy Abdolkazem Ansarinejad

More information

Efficiencies of Some Spherical Ion Chambers in Continuous and Pulsed Radiation: A Numerical Evaluation

Efficiencies of Some Spherical Ion Chambers in Continuous and Pulsed Radiation: A Numerical Evaluation Signature: Pol J Radiol, 05; 80: 55-5 DOI: 0.659/PJR.89450 ORIGINAL ARTICLE Received: 05.03.7 Accepted: 05.06.9 Published: 05..5 Authors Contribution: A Study Design B Data Collection C Statistical Analysis

More information

The effect of dose calculation uncertainty on the evaluation of radiotherapy plans

The effect of dose calculation uncertainty on the evaluation of radiotherapy plans The effect of dose calculation uncertainty on the evaluation of radiotherapy plans P. J. Keall a) and J. V. Siebers Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth

More information

Reference Dosimetry for Megavoltage Therapy Beams: Electrons

Reference Dosimetry for Megavoltage Therapy Beams: Electrons Reference Dosimetry for Megavoltage Therapy Beams: Electrons David Followill Ph.D Radiological Physics Center UT M.D.Anderson Cancer Center Houston TX Protocol for Clinical Reference Dosimetry of High-Energy

More information

Chapter 8 Electron Beams: Physical and Clinical Aspects

Chapter 8 Electron Beams: Physical and Clinical Aspects 1 Chapter 8 Electron Beams: Physical and Clinical Aspects This set of 91 slides is based on Chapter 8 authored by W. Strydom, W. Parker, and M. Olivares of the IAEA publication (ISBN 92-0-107304-6): Radiation

More information

Implementation of the IAEA-AAPM Code of Practice for the dosimetry of small static fields used in external beam radiotherapy

Implementation of the IAEA-AAPM Code of Practice for the dosimetry of small static fields used in external beam radiotherapy Implementation of the IAEA-AAPM Code of Practice for the dosimetry of small static fields used in external beam radiotherapy M. Saiful Huq, PhD, FAAPM, FInstP Dept. of Radiation Oncology, University of

More information

Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials*

Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials* SLAC-PUB-70 Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials* J. C. Liu, K. R. Kase, X. S. Mao, W. R. Nelson, J. H. Kleck, and S. Johnson ) Stanford Linear

More information

ABSORBED DOSE TO WATER MEASUREMENTS IN HIGH ENERGY ELECTRON BEAMS USING DIFFERENT PLANE PARALLEL CHAMBERS *

ABSORBED DOSE TO WATER MEASUREMENTS IN HIGH ENERGY ELECTRON BEAMS USING DIFFERENT PLANE PARALLEL CHAMBERS * Romanian Reports in Physics, Vol. 67, No. 3, P. 1152 1158, 2015 ABSORBED DOSE TO WATER MEASUREMENTS IN HIGH ENERGY ELECTRON BEAMS USING DIFFERENT PLANE PARALLEL CHAMBERS * ELENA STANCU 1,2, CATALIN VANCEA

More information

Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters

Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters Daryoush Sheikh-Bagheri a) and D. W. O. Rogers b) Ionizing Radiation Standards, National Research Council

More information

Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators

Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 4, NUMBER 3, SUMMER 2003 Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators David S. Followill,*

More information

Published text: Institute of Cancer Research Repository Please direct all s to:

Published text: Institute of Cancer Research Repository   Please direct all  s to: This is an author produced version of an article that appears in: MEDICAL PHYSICS The internet address for this paper is: https://publications.icr.ac.uk/375/ Copyright information: http://www.aip.org/pubservs/web_posting_guidelines.html

More information

ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER

ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER M. Bovi (1), R.F. Laitano (1), M. Pimpinella (1), M. P. Toni (1), K. Casarin(2), E. Quai(2), G. Tromba(2), A. Vascotto(2),

More information

Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling.

Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling. Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling. 5 Sergei Zavgorodni 1,2, Eyad Alhakeem 2,1 and Reid Townson 2,1 1 Department of

More information

Simulation Modeling in Dosimetry

Simulation Modeling in Dosimetry Simulation Modeling in Dosimetry Aleksei Zhdanov Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russian Federation jjj1994@yandex.ru Leonid Dorosinskiy

More information

Current and Recent ICRU Activities in Radiation Protection Dosimetry and Measurements

Current and Recent ICRU Activities in Radiation Protection Dosimetry and Measurements Current and Recent ICRU Activities in Radiation Protection Dosimetry and Measurements Hans-Georg Menzel International Commission on Radiation Units and Measurements (ICRU) The principal objective of ICRU

More information

Determination of Ambient Dose Equivalent at INFLPR 7 MeV Linear Accelerator

Determination of Ambient Dose Equivalent at INFLPR 7 MeV Linear Accelerator Determination of Ambient Dose quivalent at INFLPR 7 MeV Linear Accelerator F. Scarlat, A. Scarisoreanu, M. Oane,. Badita,. Mitru National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest-Magurele,

More information

Calculation of photon energy deposition kernels and electron dose point kernels in water

Calculation of photon energy deposition kernels and electron dose point kernels in water Calculation of photon energy deposition kernels and electron dose point kernels in water Ernesto Mainegra-Hing a Ionizing Radiation Standards, National Research Council of Canada, Ottawa K1A OR6, Canada

More information

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved Assessment Of The Effectiveness Of Collimation Of Cs 137 Panoramic Beam On Tld Calibration Using A Constructed Lead Block Collimator And An ICRU Slab Phantom At SSDL In Ghana. C.C. Arwui 1, P. Deatanyah

More information

Composite field dosimetry

Composite field dosimetry Composite field dosimetry Hugo Bouchard, PhD, MCCPM Senior Research Scientist Radiation dosimetry group National Physical Laboratory May 2014 Overview 1. Introduction Dosimetry protocols IAEA formalism

More information

BRACHYTHERAPY SOURCE USING THE EGSNRC MONTE CARLO CODE

BRACHYTHERAPY SOURCE USING THE EGSNRC MONTE CARLO CODE Bangladesh Journal of Physics, 12, 61-75, 2012 DOSIMETRIC STUDIES OF THE 192 IR-MICROSELECTRON V2 HDR BRACHYTHERAPY SOURCE USING THE EGSNRC MONTE CARLO CODE L. HONG 1, G. A. ZAKARIA 1,2,* AND G. H. HARTMANN

More information

) for Varian TrueBeam high-dose-rate therapy beams

) for Varian TrueBeam high-dose-rate therapy beams JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 13, NUMBER 6, 2012 Ion recombination correction factors (P ion ) for Varian TrueBeam high-dose-rate therapy beams Stephen F. Kry, 1a Richard Popple,

More information

Outline. Indrin J. Chetty, AAPM 2006 Monte Carlo CE course. Indrin J. Chetty Henry Ford Hospital. David W. O. Rogers Carleton University

Outline. Indrin J. Chetty, AAPM 2006 Monte Carlo CE course. Indrin J. Chetty Henry Ford Hospital. David W. O. Rogers Carleton University AAPM Task Group Report No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning Indrin J. Chetty Henry Ford Hospital David W. O.

More information

Towards efficient and accurate particle transport simulation in medical applications

Towards efficient and accurate particle transport simulation in medical applications Towards efficient and accurate particle transport simulation in medical applications L. Grzanka1,2, M. Kłodowska1, N. Mojżeszek1, N. Bassler3 1 Cyclotron Centre Bronowice, Institute of Nuclear Physics

More information

Laser-Accelerated protons for radiation therapy

Laser-Accelerated protons for radiation therapy Laser-Accelerated protons for radiation therapy E Fourkal, I Velchev,, J Fan, J Li, T Lin, C Ma Fox Chase Cancer Center, Philadelphia, PA Motivation Proton beams provide better conformity to the treatment

More information

Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements

Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements Radiation Measurements 43 (2008) 1258 1264 www.elsevier.com/locate/radmeas Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements R.F. Hill a,b,, S. Brown a,c,

More information

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators N. Golnik 1, P. Kamiński 1, M. Zielczyński 2 1 Institute of Precision and Biomedical Engineering,

More information

Investigation of the standard temperature- pressure correction factor at low x-ray energies

Investigation of the standard temperature- pressure correction factor at low x-ray energies Investigation of the standard temperaturepressure correction factor at low x-ray energies D. J. La Russa, M. R. McEwen and D. W. O. Rogers Carleton Laboratory for Radiotherapy Physics. Physics Dept, Carleton

More information

Radiation protection issues in proton therapy

Radiation protection issues in proton therapy Protons IMRT Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland Overview of presentation 1. Proton therapy: An overview 2. Radiation protection issues: Staff 3. Radiation

More information

Electron therapy Class 2: Review questions

Electron therapy Class 2: Review questions Electron therapy Class 2: Review questions 1 Raphex Question: T63, 2002 In what situation is electron backscatter likely to be a problem? A. Using 1cm of tissue equivalent bolus on the skin. B. Using a

More information

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy Journal of Magnetics 19(1), 15-19 (2014) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2014.19.1.015 A Study on Effective Source-Skin Distance using Phantom in Electron

More information

Monitor Unit Calculations for Photon and Electrons. AAMD Meeting Raleigh, NC October 3, John P. Gibbons Chief of Clinical Physics

Monitor Unit Calculations for Photon and Electrons. AAMD Meeting Raleigh, NC October 3, John P. Gibbons Chief of Clinical Physics Monitor Unit Calculations for Photon and Electrons AAMD Meeting Raleigh, NC October 3, 2014 John P. Gibbons Chief of Clinical Physics Outline I. TG71 Formation and Charge II. Photon Calculations III. Electron

More information

Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp Advance Access publication 11 May 2007

Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp Advance Access publication 11 May 2007 Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp. 229 233 Advance Access publication 11 May 2007 doi:10.1093/rpd/ncm047 CHARACTERIZATION AND UTILIZATION OF A BONNER SPHERE SET BASED ON GOLD

More information

Progress in Nuclear Science and Technology, Volume 6,

Progress in Nuclear Science and Technology, Volume 6, DOI: 1.15669/pnst.6 Progress in Nuclear Science and Technology Volume 6 (19) pp. 1-16 ARTICLE A study on calculation method of duct streaming from medical linac rooms Takuma Noto * Kazuaki Kosako and Takashi

More information

arxiv: v2 [physics.med-ph] 29 May 2015

arxiv: v2 [physics.med-ph] 29 May 2015 The Proton Therapy Nozzles at Samsung Medical Center: A Monte Carlo Simulation Study using TOPAS Kwangzoo Chung, Jinsung Kim, Dae-Hyun Kim, Sunghwan Ahn, and Youngyih Han Department of Radiation Oncology,

More information

Monte Carlo calculations of the absorbed dose and energy dependence of plastic scintillators

Monte Carlo calculations of the absorbed dose and energy dependence of plastic scintillators Monte Carlo calculations of the absorbed dose and energy dependence of plastic scintillators A. Sam Beddar, a Tina Marie Briere, Firas A. Mourtada, Oleg N. Vassiliev, H. Helen Liu, and Radhe Mohan Department

More information

TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137

TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137 TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137 AUTHORS: J. Cardoso, L. Santos, C. Oliveira ADRESS: Instituto Tecnológico e Nuclear Estrada Nacional 10; 2686-953 Sacavém;

More information

Monte Carlo simulation with Geant4 for verification of rotational total skin electron therapy (TSET)

Monte Carlo simulation with Geant4 for verification of rotational total skin electron therapy (TSET) Monte Carlo simulation with Geant4 for verification of rotational total skin electron therapy (TSET) Christina Jarlskog Department of Radiation Physics Lund University, Malmö University Hospital (UMAS)

More information

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in.

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in. A Monte Carlo Study of the Relationship between the Time Structures of Prompt Gammas and in vivo Radiation Dose in Proton Therapy Wook-Geun Shin and Chul Hee Min* Department of Radiation Convergence Engineering,

More information

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.83-87 (2) ARTICLE Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Toshioh FUJIBUCHI,2,*, Satoshi

More information

Use of a radioactive check device for redundancy check of ionization chambers

Use of a radioactive check device for redundancy check of ionization chambers JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 1, NUMBER 4, FALL 2000 Use of a radioactive check device for redundancy check of ionization chambers N. P. S. Sidhu,* Alkis Rouvas, and Patrick Cadman

More information

Progress in calculations of k Q for TG-51

Progress in calculations of k Q for TG-51 1 Progress in calculations of k Q for TG-51 D. W. O. Rogers Carleton Laboratory for Radiotherapy Physics, Physics Dept, Carleton University Ottawa http://www.physics.carleton.ca/~drogers AAPM Charlotte,NC,

More information

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Physics of particles H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Introduction Dose The ideal dose distribution ideal Dose: Energy deposited Energy/Mass Depth [J/kg] [Gy] Introduction

More information

Radiation shielding for undulator beamline in Indus-2 synchrotron radiation source

Radiation shielding for undulator beamline in Indus-2 synchrotron radiation source Radiation shielding for undulator beamline in Indus-2 synchrotron radiation source P. K. Sahani 1,5, A. K. Das 2, Haridas G. 3, A. K. Sinha 4,5, B. N. Rajasekhar 2,5, T. A. Puntambekar 1 and N K Sahoo

More information

THE mono-energetic hadron beam such as heavy-ions or

THE mono-energetic hadron beam such as heavy-ions or Verification of the Dose Distributions with GEANT4 Simulation for Proton Therapy T.Aso, A.Kimura, S.Tanaka, H.Yoshida, N.Kanematsu, T.Sasaki, T.Akagi Abstract The GEANT4 based simulation of an irradiation

More information

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter Charge Particle Interaction Energetic charged particles interact with matter by electrical forces and lose kinetic energy

More information

Transport under magnetic fields with the EGSnrc simulation toolkit

Transport under magnetic fields with the EGSnrc simulation toolkit Transport under magnetic fields with the EGSnrc simulation toolkit Ernesto Mainegra-Hing, Frédéric Tessier, Blake Walters Measurement Science and Standards, National Research Council Canada Hugo Bouchard

More information

Indrin J. Chetty, AAPM 2006 Monte Carlo CE course

Indrin J. Chetty, AAPM 2006 Monte Carlo CE course Beam commissioning for clinical Monte Carlo dose calculation: AAPM TG-157 Indrin J. Chetty Henry Ford Hospital, Detroit MI AAPM Task Group Report No. 157: Source modeling and beam commissioning for Monte

More information

Small Field Dosimetric Measurements with TLD-100, Alanine, and Ionization Chambers

Small Field Dosimetric Measurements with TLD-100, Alanine, and Ionization Chambers Small Field Dosimetric Measurements with TLD-1, Alanine, and Ionization Chambers S. Junell a, L. DeWerd a, M. Saiful Huq b, J. Novotny Jr. b, M. uader b, M.F. Desrosiers c, G. Bednarz b a Department of

More information

NACP-02 perturbation correction factors for the NPL primary standard of absorbed dose to water in high energy electron beams

NACP-02 perturbation correction factors for the NPL primary standard of absorbed dose to water in high energy electron beams NACP-02 perturbation correction factors for the NPL primary standard of absorbed dose to water in high energy electron beams E. Chin 1, J. Seuntjens 1, H. Palmans 2, A. DuSautoy 2, D. Shipley 2, M. Bailey

More information

Shielding design for a laser-accelerated proton therapy system

Shielding design for a laser-accelerated proton therapy system IOP PUBLISHING Phys. Med. Biol. 52 (2007) 3913 3930 PHYSICS IN MEDICINE AND BIOLOGY doi:10.1088/0031-9155/52/13/017 Shielding design for a laser-accelerated proton therapy system J Fan, W Luo, E Fourkal,

More information

VERIFICATION OF DOSE CALCULATION ACCURACY OF RTP SYSTEMS BY MONTE CARLO SIMULATION

VERIFICATION OF DOSE CALCULATION ACCURACY OF RTP SYSTEMS BY MONTE CARLO SIMULATION Proceedings of the Eleventh EGS4 Users' Meeting in Japan, KEK Proceedings 2003-15, p.74-80 VERIFICATION OF DOSE CALCULATION ACCURACY OF RTP SYSTEMS BY MONTE CARLO SIMULATION Y. Taahashi, A. Ito, M. Yoshioa

More information

Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems

Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems INSTITUTE OF PHYSICS PUBLISHING Phys. Med. Biol. 49 (2004) 571 582 PHYSICS IN MEDICINE AND BIOLOGY PII: S0031-9155(04)69196-2 Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments

More information

Instrumentation for Verification of Dose

Instrumentation for Verification of Dose Instrumentation for Verification of Dose MedAustron GmbH, Wiener Neustadt, Austria Presented to: Educational Workshop PTCOG 52 Essen, Germany, May 3 5, 2013 Consistent and harmonized dosimetry guidelines

More information

I. INTRODUCTION EXPERIMENTAL

I. INTRODUCTION EXPERIMENTAL International Journal of Computational Engineering Research Vol, 04 Issue, 4 Simulation of Photon and Electron dose distributions by 5 code for the treatment area using the linear electron accelerator

More information

8/2/2012 UPDATING TG-51. When will it end? Part 1 - photon addendum. What are these updates? Photons: Electrons: More widespread revision required

8/2/2012 UPDATING TG-51. When will it end? Part 1 - photon addendum. What are these updates? Photons: Electrons: More widespread revision required UPDATING TG-51 When will it end? Malcolm McEwen Ionizing Radiation Standards National Research Council, Canada AAPM Annual Meeting, Charlotte, 2012 What are these updates? Working Group review recommends:

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy Original Article PROGRESS in MEDICAL PHYSICS 27(3), Sept. 2016 http://dx.doi.org/10.14316/pmp.2016.27.3.162 pissn 2508-4445, eissn 2508-4453 Secondary Neutron Dose Measurement for Proton Line Scanning

More information

Clinical Implementation of the IPEM 2003 Code of Practice for Electron Dosimetry

Clinical Implementation of the IPEM 2003 Code of Practice for Electron Dosimetry Clinical Implementation of the IPEM 2003 Code of Practice for Electron Dosimetry TJ JORDAN Royal Surrey County Hospital IPEM Electron Dosimetry Working Party: + DI Thwaites, AR DuSautoy, MR McEwen, AE

More information

Optimization of hadron therapy proton beam using Monte Carlo code on GPU

Optimization of hadron therapy proton beam using Monte Carlo code on GPU Dottorato in Fisica degli Acceleratori, XXIX ciclo Optimization of hadron therapy proton beam using Monte Carlo code on GPU Candidata: Martina Senzacqua N matricola: 1163436 Supervisor: Prof. Vincenzo

More information

Plastic Scintillation Detectors: Principle and Application to Radiosurgery

Plastic Scintillation Detectors: Principle and Application to Radiosurgery Plastic Scintillation Detectors: Principle and Application to Radiosurgery Luc Beaulieu Professor, Department of Physics, Université Laval Medical Physicist and Head of Research, Department of Radiation

More information

Updating reference dosimetry a decade after TG-51

Updating reference dosimetry a decade after TG-51 Updating reference dosimetry a decade after TG-51 Malcolm McEwen Ionizing Radiation Standards Institute for National Measurement Standards National Research Council, Canada CE Presentation at AAPM Annual

More information

Chapter V: Cavity theories

Chapter V: Cavity theories Chapter V: Cavity theories 1 Introduction Goal of radiation dosimetry: measure of the dose absorbed inside a medium (often assimilated to water in calculations) A detector (dosimeter) never measures directly

More information

Monte Carlo Simulation concerning Particle Therapy

Monte Carlo Simulation concerning Particle Therapy Monte Carlo Simulation concerning Particle Therapy Masaaki Takashina Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan INTRODUCTION It is well known that the particle therapy has some

More information

Till min älskade familj

Till min älskade familj Till min älskade familj List of Publications This thesis is based on the following papers, which are referred to in the text by their Roman numerals. Reprints were made with permission from the respective

More information

Evaluation of an electron Monte Carlo dose calculation algorithm for electron beams

Evaluation of an electron Monte Carlo dose calculation algorithm for electron beams JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 9, NUMBER 3, SUMMER 2008 Evaluation of an electron Monte Carlo dose calculation algorithm for electron beams Ye Angela Hu, 1,a Haijun Song, 2 Zhe Chen,

More information

Shielding of Ionising Radiation with the Dosimetry & Shielding Module

Shielding of Ionising Radiation with the Dosimetry & Shielding Module Shielding of Ionising Radiation with the Dosimetry & Shielding Module J. Magill Overview Biological Effects of Ionising Radiation - Absorber dose, Quality or Weighting Factor, Equivalent Dose Attenuation

More information

Towards Proton Computed Tomography

Towards Proton Computed Tomography SCIPP Towards Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Cruz Institute for Particle Physics, UC Santa Cruz, CA 95064 V.

More information

Estimating proton beam energy spread using Bragg peak measurement

Estimating proton beam energy spread using Bragg peak measurement Estimating proton beam energy spread using Bragg peak measurement V. Anferov 1, V. Derenchuk, R. Moore, A. Schreuder ProNova Solutions LLC, Knoxville, TN. 1. Introduction ProNova is installing and commissioning

More information

Comparison of the air kerma standards for 137 Cs and 60 Co gamma-ray beams between the IAEA and the NIST. Ronaldo Minniti 1 and Ladislav Czap 2

Comparison of the air kerma standards for 137 Cs and 60 Co gamma-ray beams between the IAEA and the NIST. Ronaldo Minniti 1 and Ladislav Czap 2 Comparison of the air kerma standards for 137 Cs and 60 Co gamma-ray beams between the IAEA and the NIST Ronaldo Minniti 1 and Ladislav Czap 2 1 National Institute of Standards and Technology (NIST), Gaithersburg,

More information

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions Interactions of Particulate Radiation with Matter George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To describe the various mechanisms by which particulate

More information

Laboratoire National Henri Becquerel (CEA/LIST/LNHB), France (2) ENEA-Radiation Protection Institute, Bologna, Italy (3)

Laboratoire National Henri Becquerel (CEA/LIST/LNHB), France (2) ENEA-Radiation Protection Institute, Bologna, Italy (3) PROPOSAL FOR EYE-LENS DOSEMETER CALIBRATION AND TYPE TESTING ORAMED WP2 J.-M. Bordy (1), J. Daures (1), M. Denozière (1), G. Gualdrini (2), M. Guijaume (3), E. Carinou (4),F. Vanhavere (5) (1) Laboratoire

More information

Biological Dose Calculations for Particle Therapy in FLUKA

Biological Dose Calculations for Particle Therapy in FLUKA U N I V E R S I T Y O F B E R G E N Department of Physics and Technology Biological Dose Calculations for Particle Therapy in FLUKA Tordis J. Dahle May 2016 Introduction About half of all cancer patients

More information

Neutron Metrology Activities at CIAE (2009~2010)

Neutron Metrology Activities at CIAE (2009~2010) Neutron Metrology Activities at CIAE (2009~2010) Ionizing Radiation Metrology Division China Institute of Atomic Energy (P.O.Box 275(20), Beijing 102413, China) 1. Neutron calibration fields So far the

More information

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS Leonardo de Holanda Mencarini 1,2, Claudio A. Federico 1,2 and Linda V. E. Caldas 1 1 Instituto de Pesquisas Energéticas e Nucleares IPEN,

More information

Geant4 and Fano cavity : where are we?

Geant4 and Fano cavity : where are we? Geant4 and Fano cavity : where are we? S. Elles, V. Ivanchenko, M. Maire, L. Urban To cite this version: S. Elles, V. Ivanchenko, M. Maire, L. Urban. Geant4 and Fano cavity : where are we?. Third McGill

More information

Instrumentation for Verification of Dose

Instrumentation for Verification of Dose Instrumentation for Verification of Dose S. Vatnitsky MedAustron GmbH, Wiener Neustadt, Austria Presented to: Educational Workshop PTCOG 53 Shanghai, China, June 9-11, 2014 Consistent and harmonized dosimetry

More information

Chapter 9: Calibration of Photon and Electron Beams

Chapter 9: Calibration of Photon and Electron Beams Chapter 9: Calibration of Photon and Electron Beams Set of 189 slides based on the chapter authored by P. Andreo, J.P. Seuntjens, and E.B. Podgorsak of the IAEA publication (ISBN 92-0-107304-6): Radiation

More information