Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Size: px
Start display at page:

Download "Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter"

Transcription

1 Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter

2 Charge Particle Interaction Energetic charged particles interact with matter by electrical forces and lose kinetic energy via: Excitation Ionization Radiative losses (Bremsstrahlung Production) ~ 70% of charged particle energy deposition leads to non-ionizing excitation

3 Specific Ionization Number of primary and secondary ion pairs produced per unit length of charged particle s path is called specific ionization Expressed in ion pairs (IP)/mm Increases with electrical charge of particle (more for alpha as compare to electron) Decreases with incident particle velocity

4 Linear Energy Transfer (Stopping Power of The Medium) Amount of energy deposited per unit path length (ev/cm) is called the linear energy transfer (LET) and is also known as stopping power of the medium LET of a charged particle is proportional to the square of the charge and inversely proportional to its kinetic energy High LET radiations (alpha particles, protons, etc.) are more damaging to tissue than low LET radiations (electrons, gamma and x-rays)

5 Electron Interaction As an energetic electron traverses matter, it undergoes Coulomb interactions with absorber atoms, i.e., with: Atomic orbital electrons Atomic nuclei Through these collisions the electrons may: Lose their kinetic energy (collision and radiation loss). Change direction of motion (scattering).

6 Energy losses are described by stopping power (LET). Scattering is described by angular scattering power. Collision between the incident electron and an absorber atom may be: Elastic Inelastic

7 In elastic collision the incident electron is deflected from its original path but no energy loss occurs. In an inelastic collision with orbital electron the incident electron is deflected from its original path and loses part of its kinetic energy (collisional loss). In an inelastic collision with nucleus the incident electron is deflected from its original path and loses part of its kinetic energy in the form of bremsstrahlung (radiative loss)

8 The energy loss by incident electron through inelastic collisions is described by the total linear stopping power S tot which represents the kinetic energy E K loss by the electron per unit path length x: S tot =de K /dx MeV/cm

9 Mass Stopping Power Total mass stopping power is defined as the linear stopping power divided by the density of the absorbing medium. It has two parts, collisional and radiative

10 Electrons traversing an absorber lose their kinetic energy through ionization collisions and radiation collisions. The rate of energy loss per gram and per cm 2 is called the mass stopping power and it is a sum of two components: Mass collision stopping power Mass radiation stopping power The rate of energy loss for a therapy electron beam in water and water-like tissues, averaged over the electron s range, is about 2 MeV/cm.

11 Photon Interactions Probability chance of event happening can be mathematically expressed example: The probability of a woman experiencing breast cancer in her lifetime is 1:9 x-ray interactions are chance events relative predictions can be made energy of the photons type of matter the x rays are passing through cannot predict how one photon will interact

12 Photon Interactions Probability of photon interaction depends on Energy of Incident Photon The type of traversing matter

13 Photon Interactions Transmitted through matter (unchanged) Change direction with no energy loss 1.Classical Scattering (Coherent Scattering) Change direction and lose energy 2.Compton Scattering Deposit all energy in the matter 3.Photoelectric Effect 4.Pair Production 5.Photodisintegration

14 Classical Scattering (Coherent or Elastic) Occurs at low energy (< 10 kev) Atom first excited by photon Then releases (radiates) photon of same kev & New photon travels in different direction from original photon but usually forward (small scatter angle) Coherent Scattering is further classified as Rayleigh Scattering If interaction occurs with whole atom Thompson Scattering If interaction occurs with shell e -

15 Photoelectric Effect (Complete absorption) The orbital electron is ejected from the atom with kinetic energy E K =hν-e B where E B is the binding energy of the orbital electron. The ejected orbital electron is called a photoelectron. When the photon energy hν exceeds the K-shell binding energy E B of the absorber atom, the photoelectric effect is most likely to occur with a K-shell electron in comparison with higher shell electrons.

16 Photoelectric Effect Electrons in higher energy shells cascade down to fill energy void of inner shell Characteristic radiation

17 Photoelectric interaction probability inversely proportional to cube of photon energy low energy event proportional to cube of atomic number P.E ~ Z 3 /E 3 More likely with inner (higher) shells tightly bound electrons Interaction much more likely for low energy photons high atomic number elements

18 Photon Energy Threshold binding energy of orbital electron binding energy depends on atomic number higher for increasing atomic number shell lower for higher (outer) shells most likely to occur when photon energy & electron binding energy are nearly the same

19 Photoelectric interactions decrease with increasing photon energy BUT When photon energies just reaches binding energy of next (inner) shell, photoelectric interaction now possible with that shell shell offers new candidate target electrons Causes step increases in interaction probability as photon energy exceeds shell binding energies

20 Interaction Probability L-shell binding energy K-shell binding energy L-shell interactions possible K-shell interactions possible Photon Energy

21 Compton Scattering Source of virtually all scattered radiation Process incident photon (relatively high energy) interacts with free (loosely bound) electron some energy transferred to recoil electron electron liberated from atom (ionization) emerging photon has less energy than incident new direction - Electron out (recoil electron) Photon in Photon out

22 What is a free electron? low binding energy outer shells for high Z materials all shells for low Z materials - Electron out (recoil electron) Photon in Photon out

23 Incident photon energy split between electron & emerging photon Fraction of energy carried by emerging photon depends on incident photon energy angle of deflection similar principle to billiard ball collision

24 higher incident energy = less photon deflection high energy (1MeV) photons primarily scatter forward diagnostic energy photons scatter fairly uniformly forward & backward at diagnostic energy photons lose very little energy during Compton Scattering At therapy energy level, photons lose most of energy through Compton scattering higher deflection = less energy retained - Electron out (recoil electron) deflection angle Photon in Photon out

25 h ' 1 cos mc e λ is wavelength of scattered photon and λ is the wavelength of incident photon Ee max hf (E e ) Max is maximum energy transfer to recoil electron and α=hf/m e c 2 (rest mass energy of electron

26 Interaction Probability is independent of atomic number (except for hydrogen) Proportional to electron density (electrons/gram) fairly equal for all elements except hydrogen (~ double)

27 Interaction Probability decreases with increasing photon energy decrease much less pronounced than for photoelectric effect Interaction Probability Compton Photoelectric Photon Energy

28 Pair Production (Complete absorption) Exist at high photon energy Ei > MeV (e- rest mass energy =.511 MeV) Photon interacts with nuclear force field uses MeV to produce pair of electron like particles e+ (positron) & e- (negatron) Photon ceases to exist E = MeV + E e+ke + E e-ke

29 Photon Interaction Probabilities 100 Photoelectric Pair Production Z COMPTON Energy (MeV)

30 Linear Attenuation Coefficient The most important parameter used for characterization of x-ray or gamma ray penetration into absorbing media is the linear attenuation coefficient μ The linear attenuation coefficient depends upon: Energy of the photon beam Atomic number Z of the absorber The linear attenuation coefficient may be described as the probability per unit path length that a photon will have an interaction with the absorber This interaction may be any one of the interactions discussed so for (PE,CS PP etc.)

31 For collimated beam of monoenergetic photons, the intensity of photon beam after passing through thickness x of some homogenous medium is

32 Several thicknesses of special interest are defined as parameters for mono-energetic photon beam characterization in narrow beam geometry: Half-value layer (HVL1 or x1/2) Absorber thickness that attenuates the original intensity to 50%. Mean free path (MFP ) Absorber thickness which attenuates the beam intensity to 1/e = 36.8%. Tenth-value layer (TVL or x1/10) Absorber thickness which attenuates the beam intensity to 10%.

33 In medical physics photon interactions fall into four groups: Interactions of major importance Photoelectric effect Compton scattering by free electron Pair production (including triplet production) Interactions of moderate importance Rayleigh scattering Thomson scattering by free electron Interactions of minor importance Photonuclear reactions Negligible interactions Thomson and Compton scattering by the nucleus

34 For a given hν and Z: Linear attenuation coefficient μ is sum of all interaction probabilities, mostly μ = PE Cross-section + Scattering Crosssection + PP Cross-section

Interactions with Matter Photons, Electrons and Neutrons

Interactions with Matter Photons, Electrons and Neutrons Interactions with Matter Photons, Electrons and Neutrons Ionizing Interactions Jason Matney, MS, PhD Interactions of Ionizing Radiation 1. Photon Interactions Indirectly Ionizing 2. Charge Particle Interactions

More information

INTERACTIONS OF RADIATION WITH MATTER

INTERACTIONS OF RADIATION WITH MATTER INTERACTIONS OF RADIATION WITH MATTER Renée Dickinson, MS, DABR Medical Physicist University of Washington Medical Center Department of Radiology Diagnostic Physics Section Outline Describe the various

More information

CHAPTER 2 RADIATION INTERACTIONS WITH MATTER HDR 112 RADIATION BIOLOGY AND RADIATION PROTECTION MR KAMARUL AMIN BIN ABDULLAH

CHAPTER 2 RADIATION INTERACTIONS WITH MATTER HDR 112 RADIATION BIOLOGY AND RADIATION PROTECTION MR KAMARUL AMIN BIN ABDULLAH HDR 112 RADIATION BIOLOGY AND RADIATION PROTECTION CHAPTER 2 RADIATION INTERACTIONS WITH MATTER PREPARED BY: MR KAMARUL AMIN BIN ABDULLAH SCHOOL OF MEDICAL IMAGING FACULTY OF HEALTH SCIENCE Interactions

More information

Shell Atomic Model and Energy Levels

Shell Atomic Model and Energy Levels Shell Atomic Model and Energy Levels (higher energy, deeper excitation) - Radio waves: Not absorbed and pass through tissue un-attenuated - Microwaves : Energies of Photos enough to cause molecular rotation

More information

Chapter Four (Interaction of Radiation with Matter)

Chapter Four (Interaction of Radiation with Matter) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Four (Interaction of Radiation with Matter) Different types of radiation interact

More information

Interaction of charged particles and photons with matter

Interaction of charged particles and photons with matter Interaction of charged particles and photons with matter Robert Miyaoka, Ph.D. Old Fisheries Center, Room 200 rmiyaoka@u.washington.edu Passage of radiation through matter depends on Type of radiation

More information

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther

More information

Possible Interactions. Possible Interactions. X-ray Interaction (Part I) Possible Interactions. Possible Interactions. section

Possible Interactions. Possible Interactions. X-ray Interaction (Part I) Possible Interactions. Possible Interactions. section Possible Interactions X-ray Interaction (Part I) Three types of interaction 1. Scattering Interaction with an atom Deflected May or may not loss of energy 1 Possible Interactions Three types of interaction

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

For the next several lectures, we will be looking at specific photon interactions with matter. In today s lecture, we begin with the photoelectric

For the next several lectures, we will be looking at specific photon interactions with matter. In today s lecture, we begin with the photoelectric For the next several lectures, we will be looking at specific photon interactions with matter. In today s lecture, we begin with the photoelectric effect. 1 The objectives of today s lecture are to identify

More information

Interaction of Particles and Matter

Interaction of Particles and Matter MORE CHAPTER 11, #7 Interaction of Particles and Matter In this More section we will discuss briefly the main interactions of charged particles, neutrons, and photons with matter. Understanding these interactions

More information

X-ray Interaction with Matter

X-ray Interaction with Matter X-ray Interaction with Matter 10-526-197 Rhodes Module 2 Interaction with Matter kv & mas Peak kilovoltage (kvp) controls Quality, or penetrating power, Limited effects on quantity or number of photons

More information

EEE4101F / EEE4103F Radiation Interactions & Detection

EEE4101F / EEE4103F Radiation Interactions & Detection EEE4101F / EEE4103F Radiation Interactions & Detection 1. Interaction of Radiation with Matter Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za March

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH

LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH Lesson Objectives At the end of the lesson, student should able to: Define attenuation Explain interactions between x-rays and matter in

More information

Physics of Radiography

Physics of Radiography Physics of Radiography Yao Wang Polytechnic Institute of NYU Brooklyn, NY 11201 Based on J L Prince and J M Links Medical Imaging Signals and Based on J. L. Prince and J. M. Links, Medical Imaging Signals

More information

CHAPTER 4 RADIATION ATTENUATION

CHAPTER 4 RADIATION ATTENUATION HDR202 PHYSICS FOR RADIOGRAPHERS 2 CHAPTER 4 RADIATION ATTENUATION PREPARED BY: MR KAMARUL AMIN BIN ABDULLAH SCHOOL OF MEDICAL IMAGING FACULTY OF HEALTH SCIENCES Learning Objectives At the end of the lesson,

More information

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions Interactions of Particulate Radiation with Matter George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To describe the various mechanisms by which particulate

More information

Interactions of Radiation with Matter

Interactions of Radiation with Matter Main points from last week's lecture: Decay of Radioactivity Mathematics description nly yields probabilities and averages Interactions of Radiation with Matter William Hunter, PhD" Decay equation: N(t)

More information

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1 Outline Radiation Interactions Introduction Interaction of Heavy Charged Particles Interaction of Fast Electrons Interaction of Gamma Rays Interactions of Neutrons Radiation Exposure & Dose Sources of

More information

Rad T 290 Worksheet 2

Rad T 290 Worksheet 2 Class: Date: Rad T 290 Worksheet 2 1. Projectile electrons travel from a. anode to cathode. c. target to patient. b. cathode to anode. d. inner shell to outer shell. 2. At the target, the projectile electrons

More information

Physics of Radiography

Physics of Radiography EL-GY 6813 / BE-GY 6203 / G16.4426 Medical Imaging Physics of Radiography Jonathan Mamou and Yao Wang Polytechnic School of Engineering New York University, Brooklyn, NY 11201 Based on Prince and Links,

More information

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School Physics of Particle Beams Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School PTCOG 53 Education Session, Shanghai, 2014 Dose External

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

11/19/2014. Chapter 3: Interaction of Radiation with Matter in Radiology and Nuclear Medicine. Nuclide Families. Family Nuclides with Same: Example

11/19/2014. Chapter 3: Interaction of Radiation with Matter in Radiology and Nuclear Medicine. Nuclide Families. Family Nuclides with Same: Example 2014-2015 Residents' Core Physics Lectures Mondays 7:00-8:00 am in VA Radiology and UCSDMC Lasser Conference Rooms Topic Chapters Date Faculty 1 Introduction and Basic Physics 1, 2 M 11/17 Andre 2 Interaction

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Physics of particles H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Introduction Dose The ideal dose distribution ideal Dose: Energy deposited Energy/Mass Depth [J/kg] [Gy] Introduction

More information

Particle Interactions in Detectors

Particle Interactions in Detectors Particle Interactions in Detectors Dr Peter R Hobson C.Phys M.Inst.P. Department of Electronic and Computer Engineering Brunel University, Uxbridge Peter.Hobson@brunel.ac.uk http://www.brunel.ac.uk/~eestprh/

More information

CHAPTER 2 INTERACTION OF RADIATION WITH MATTER

CHAPTER 2 INTERACTION OF RADIATION WITH MATTER CHAPTER 2 INTERACTION OF RADIATION WITH MATTER 2.1 Introduction When gamma radiation interacts with material, some of the radiation will be absorbed by the material. There are five mechanisms involve in

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

We have seen how the Brems and Characteristic interactions work when electrons are accelerated by kilovolts and the electrons impact on the target

We have seen how the Brems and Characteristic interactions work when electrons are accelerated by kilovolts and the electrons impact on the target We have seen how the Brems and Characteristic interactions work when electrons are accelerated by kilovolts and the electrons impact on the target focal spot. This discussion will center over how x-ray

More information

Ba (Z = 56) W (Z = 74) preferred target Mo (Z = 42) Pb (Z = 82) Pd (Z = 64)

Ba (Z = 56) W (Z = 74) preferred target Mo (Z = 42) Pb (Z = 82) Pd (Z = 64) Produced by accelerating electrons with high voltage and allowing them to collide with metal target (anode), e.g, Tungsten. Three Events (Two types of x-ray) a) Heat X-Ray Tube b) bremsstrahlung (braking

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Neutrino detection Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Sources of wild neutrinos The Big Bang The Atmosphere (cosmic rays) Super novae AGN's,

More information

DR KAZI SAZZAD MANIR

DR KAZI SAZZAD MANIR DR KAZI SAZZAD MANIR PHOTON BEAM MATTER ENERGY TRANSFER IONISATION EXCITATION ATTENUATION removal of photons from the beam by the matter. ABSORPTION SCATTERING TRANSMISSION Taking up the energy from the

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

Airo International Research Journal October, 2015 Volume VI, ISSN:

Airo International Research Journal October, 2015 Volume VI, ISSN: 1 INTERACTION BETWEEN CHARGED PARTICLE AND MATTER Kamaljeet Singh NET Qualified Declaration of Author: I hereby declare that the content of this research paper has been truly made by me including the title

More information

Photon Interactions in Matter

Photon Interactions in Matter Radiation Dosimetry Attix 7 Photon Interactions in Matter Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University References F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry,

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

Radiation Physics PHYS /251. Prof. Gocha Khelashvili Radiation Physics PHYS 571-051/251 Prof. Gocha Khelashvili Interaction of Radiation with Matter: Heavy Charged Particles Directly and Indirectly Ionizing Radiation Classification of Indirectly Ionizing

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 12 Radiation/Matter Interactions II 1 Neutron Flux The collisions of neutrons of all energies is given by FF = ΣΣ ii 0 EE φφ EE dddd All

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 3

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 3 Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics Lecture 3 Karsten Heeger heeger@wisc.edu Review of Last Lecture a colleague shows you this data... what type of reaction is this?

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

The next three lectures will address interactions of charged particles with matter. In today s lecture, we will talk about energy transfer through

The next three lectures will address interactions of charged particles with matter. In today s lecture, we will talk about energy transfer through The next three lectures will address interactions of charged particles with matter. In today s lecture, we will talk about energy transfer through the property known as stopping power. In the second lecture,

More information

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1 Decay Mechanisms 1. Alpha Decay An alpha particle is a helium-4 nucleus. This is a very stable entity and alpha emission was, historically, the first decay process to be studied in detail. Almost all naturally

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

Units and Definition

Units and Definition RADIATION SOURCES Units and Definition Activity (Radioactivity) Definition Activity: Rate of decay (transformation or disintegration) is described by its activity Activity = number of atoms that decay

More information

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 This is a closed book examination. Adequate information is provided you to solve all problems. Be sure to show all work, as partial credit

More information

Interaction of Radiation with Matter

Interaction of Radiation with Matter Bose Institute Interaction of Radiation with Matter Dhruba Gupta Department of Physics Bose Institute, Kolkata Winter School on Astroparticle Physics (WAPP 011) December 0-9, 9, 011 at Mayapuri,, Darjeeling

More information

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION Chapter NP-4 Nuclear Physics Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION 2.0 ALPHA PARTICLE INTERACTIONS 3.0 BETA INTERACTIONS 4.0 GAMMA INTERACTIONS

More information

Interaction theory Photons. Eirik Malinen

Interaction theory Photons. Eirik Malinen Interaction theory Photons Eirik Malinen Introduction Interaction theory Dosimetry Radiation source Ionizing radiation Atoms Ionizing radiation Matter - Photons - Charged particles - Neutrons Ionizing

More information

X-RAY PRODUCTION. Prepared by:- EN KAMARUL AMIN BIN ABDULLAH

X-RAY PRODUCTION. Prepared by:- EN KAMARUL AMIN BIN ABDULLAH X-RAY PRODUCTION Prepared by:- EN KAMARUL AMIN BIN ABDULLAH OBJECTIVES Discuss the process of x-ray being produced (conditions) Explain the principles of energy conversion in x-ray production (how energy

More information

6 Neutrons and Neutron Interactions

6 Neutrons and Neutron Interactions 6 Neutrons and Neutron Interactions A nuclear reactor will not operate without neutrons. Neutrons induce the fission reaction, which produces the heat in CANDU reactors, and fission creates more neutrons.

More information

3 Radioactivity - Spontaneous Nuclear Processes

3 Radioactivity - Spontaneous Nuclear Processes 3 Radioactivity - Spontaneous Nuclear Processes Becquerel was the first to detect radioactivity. In 1896 he was carrying out experiments with fluorescent salts (which contained uranium) and found that

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

PHYS 571 Radiation Physics

PHYS 571 Radiation Physics PHYS 571 Radiation Physics Prof. Gocha Khelashvili http://blackboard.iit.edu login Interaction of Electrons with Matter The Plan Interactions of Electrons with Matter Energy-Loss Mechanism Collisional

More information

BASIC RADIATION PHYSICS

BASIC RADIATION PHYSICS Review of Radiation Oncology Physics: A Handbook for Teachers and Students CHAPTER 1. BASIC RADIATION PHYSICS ERVIN B. PODGORSAK Department of Medical Physics McGill University Health Centre Montréal,

More information

At the conclusion of this lesson the trainee will be able to: a) Write a typical equation for the production of each type of radiation.

At the conclusion of this lesson the trainee will be able to: a) Write a typical equation for the production of each type of radiation. RADIOACTIVITY - SPONTANEOUS NUCLEAR PROCESSES OBJECTIVES At the conclusion of this lesson the trainee will be able to: 1. For~, p and 7 decays a) Write a typical equation for the production of each type

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly.

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly. Sample questions for Quiz 3, 22.101 (Fall 2006) Following questions were taken from quizzes given in previous years by S. Yip. They are meant to give you an idea of the kind of questions (what was expected

More information

LECTURE 6: INTERACTION OF RADIATION WITH MATTER

LECTURE 6: INTERACTION OF RADIATION WITH MATTER LCTUR 6: INTRACTION OF RADIATION WITH MATTR All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Interlude The concept of cross-section

More information

Physics 111 Homework Solutions Week #9 - Friday

Physics 111 Homework Solutions Week #9 - Friday Physics 111 Homework Solutions Week #9 - Friday Tuesday, March 1, 2011 Chapter 24 Questions 246 The Compton shift in wavelength for the proton and the electron are given by Δλ p = h ( 1 cosφ) and Δλ e

More information

RADIATION INTERACTION WITH CONDENSED MATTER

RADIATION INTERACTION WITH CONDENSED MATTER Chapter 2 RADIATION INTERACTION WITH CONDENSED MATTER Diana Adlienė Kaunas University of Technology, Physics Department, Studentų g. 50, LT-51368 Kaunas, Lithuania 1. INTRODUCTION Radiation processing

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

PHYS 5012 Radiation Physics and Dosimetry

PHYS 5012 Radiation Physics and Dosimetry Radiative PHYS 5012 Radiation Physics and Dosimetry Mean Tuesday 24 March 2009 Radiative Mean Radiative Mean Collisions between two particles involve a projectile and a target. Types of targets: whole

More information

In today s lecture, we want to see what happens when we hit the target.

In today s lecture, we want to see what happens when we hit the target. In the previous lecture, we identified three requirements for the production of x- rays. We need a source of electrons, we need something to accelerate electrons, and we need something to slow the electrons

More information

PHYS 5012 Radiation Physics and Dosimetry

PHYS 5012 Radiation Physics and Dosimetry PHYS 5012 Radiation Physics and Dosimetry Tuesday 17 March 2009 What are the dominant photon interactions? (cont.) Compton scattering, the photoelectric effect and pair production are the three main energy

More information

PHYS 5012 Radiation Physics and Dosimetry

PHYS 5012 Radiation Physics and Dosimetry PHYS 5012 Radiation Physics and Dosimetry Tuesday 12 March 2013 What are the dominant photon interactions? (cont.) Compton scattering, photoelectric absorption and pair production are the three main energy

More information

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate Basics of Radiation Dosimetry for the Physicist http://en.wikipedia.org/wiki/ionizing_radiation I. Ionizing radiation consists of subatomic particles or electromagnetic waves that ionize electrons along

More information

Chapter 2 Radiation-Matter Interactions

Chapter 2 Radiation-Matter Interactions Chapter 2 Radiation-Matter Interactions The behavior of radiation and matter as a function of energy governs the degradation of astrophysical information along the path and the characteristics of the detectors.

More information

DOE-HDBK Radiological Control Technician Interaction of Radiation with Matter Module Number: 1.07

DOE-HDBK Radiological Control Technician Interaction of Radiation with Matter Module Number: 1.07 Course Title: Radiological Control Technician Module Title: Interaction of Radiation with Matter Module Number: 1.07 Objectives: 1.07.01 Identify the definitions of the following terms: a. ionization b.

More information

RADIOCHEMICAL METHODS OF ANALYSIS

RADIOCHEMICAL METHODS OF ANALYSIS RADIOCHEMICAL METHODS OF ANALYSIS 1 Early Pioneers in Radioactivity Rutherfo rd: Discoverer Alpha and Beta rays 1897 Roentge n: Discoverer of X- rays 1895 The Curies: Discoverers of Radium and Polonium

More information

Introduction. X-Ray Production and Quality. Fluorescence Yield. Fluorescence X-Rays. Initiating event. Initiating event 3/18/2011

Introduction. X-Ray Production and Quality. Fluorescence Yield. Fluorescence X-Rays. Initiating event. Initiating event 3/18/2011 X-Ray Production and Quality Chapter 9 F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry Introduction Physics of x-ray generation Fluorescence x-rays Bremsstrahlung x-rays Beam quality

More information

INTERACTION OF RADIATION WITH MATTER RCT STUDY GUIDE Identify the definitions of the following terms:

INTERACTION OF RADIATION WITH MATTER RCT STUDY GUIDE Identify the definitions of the following terms: LEARNING OBJECTIVES: 1.07.01 Identify the definitions of the following terms: a. ionization b. excitation c. bremsstrahlung 1.07.02 Identify the definitions of the following terms: a. specific ionization

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Basic physics of nuclear medicine

Basic physics of nuclear medicine Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons

More information

Physics 663. Particle Physics Phenomenology. April 23, Physics 663, lecture 4 1

Physics 663. Particle Physics Phenomenology. April 23, Physics 663, lecture 4 1 Physics 663 Particle Physics Phenomenology April 23, 2002 Physics 663, lecture 4 1 Detectors Interaction of Charged Particles and Radiation with Matter Ionization loss of charged particles Coulomb scattering

More information

Introduction to Medical Imaging Chapter 1 Radiation and the Atom Chapter 2 Interaction of Radiation and Matter Chapter 3

Introduction to Medical Imaging Chapter 1 Radiation and the Atom Chapter 2 Interaction of Radiation and Matter Chapter 3 Introduction to Medical Imaging Chapter 1 Radiation and the Atom Chapter 2 Interaction of Radiation and Matter Chapter 3 Professor, Radiology and Medical Education Director, Diagnostic Physics a copy of

More information

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei.

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei. Motivation Spins and excited states of double-magic nucleus 16 O Decay spectra are caused by electro-magnetic transitions. g-spectroscopy deals with g-ray detection and is one of the most relevant methods

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 13 - Gamma Radiation Material For This Lecture Gamma decay: Definition Quantum interpretation Uses of gamma spectroscopy 2 Turn to γ decay

More information

Decay of Radioactivity

Decay of Radioactivity Decay of Radioactivity Robert Miyaoka, PhD rmiyaoka@u.washington.edu Nuclear Medicine Basic Science Lectures September 15, 2015 Review of last week: Introduction to Nuclear Physics and Nuclear Decay Nuclear

More information

Interaction of Electron and Photons with Matter

Interaction of Electron and Photons with Matter Interaction of Electron and Photons with Matter In addition to the references listed in the first lecture (of this part of the course) see also Calorimetry in High Energy Physics by Richard Wigmans. (Oxford

More information

Basic principles of x-ray production

Basic principles of x-ray production Production of X-Rays part 1 George Starkschall, Ph.D. Lecture Objectives Identify what is needed to produce x-rays Describe how a diagnostic x-ray tube produces x-rays Describe the types of interactions

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

University of Michigan Physics : Advanced Laboratory Notes on RADIOACTIVITY January 2007

University of Michigan Physics : Advanced Laboratory Notes on RADIOACTIVITY January 2007 University of Michigan Physics 441-442: Advanced Laboratory Notes on RADIOACTIVITY January 2007 1. As usual in the lab, you are forced to learn in several categories at the same time. Your goals in this

More information

neutrons in the few kev to several MeV Neutrons are generated over a wide range of energies by a variety of different processes.

neutrons in the few kev to several MeV Neutrons are generated over a wide range of energies by a variety of different processes. Neutrons 1932: Chadwick discovers the neutron 1935: Goldhaber discovers 10 B(n,α) 7 Li reaction 1936: Locher proposes boron neutron capture as a cancer therapy 1939: Nuclear fission in 235 U induced by

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Physics 3204 UNIT 3 Test Matter Energy Interface

Physics 3204 UNIT 3 Test Matter Energy Interface Physics 3204 UNIT 3 Test Matter Energy Interface 2005 2006 Time: 60 minutes Total Value: 33 Marks Formulae and Constants v = f λ E = hf h f = E k + W 0 E = m c 2 p = h λ 1 A= A T 0 2 t 1 2 E k = ½ mv 2

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

Paper 2. Section B : Atomic World

Paper 2. Section B : Atomic World Paper 2 Section B : Atomic World Q.2 Multiple-choice questions A B C D 2.1 25.19 15.78 9.18 49.68 2.2 25.79 20.39 41.97 11.72 2.3 18.35 9.76 48.84 22.65 2.4 9.27 18.87 27.90 43.50 2.5 63.47 4.28 10.99

More information

Classroom notes for: Radiation and Life Thomas M. Regan Pinanski 207 ext 3283

Classroom notes for: Radiation and Life Thomas M. Regan Pinanski 207 ext 3283 Classroom notes for: Radiation and Life 98.101.201 Thomas M. Regan Pinanski 207 ext 3283 1 Thus, after the directly ionizing radiation has lost its energy, it is no longer radiation; it simply becomes

More information

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Reading Assignment: LLE Radiological Controls Manual (LLEINST 6610) Part 1 UR Radiation Safety Training Manual

More information

Biophysics BIOP3302 Module D - EMR 2008 (5.1) (5.2) is the initial incident intensity at the surface of the material.

Biophysics BIOP3302 Module D - EMR 2008 (5.1) (5.2) is the initial incident intensity at the surface of the material. 5 Ionising Radiation Attenuation of Ionising Radiation Ionising electromagnetic radiation incident on a material is attenuated by that material. The attenuation is caused by the scattering and interaction

More information

Passage of particles through matter

Passage of particles through matter Passage of particles through matter Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University September 11, 2017 Delta rays During ionization, the energy is transferred to electrons

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture Nuclear Physics (PHY-31) Dr C. M. Cormack 11 Nuclear Physics This Lecture This Lecture We will discuss an important effect in nuclear spectroscopy The Mössbauer Effect and its applications in technology

More information