Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp Advance Access publication 11 May 2007

Size: px
Start display at page:

Download "Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp Advance Access publication 11 May 2007"

Transcription

1 Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp Advance Access publication 11 May 2007 doi: /rpd/ncm047 CHARACTERIZATION AND UTILIZATION OF A BONNER SPHERE SET BASED ON GOLD ACTIVATION FOILS D. J. Thomas*, N. P. Hawkes, L. N. Jones, P. Kolkowski and N. J. Roberts Neutron Metrology Group, DQL, National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK Bonner sphere (BS) sets which use activation foils as the central thermal neutron sensor have advantages over active BS systems in certain environments, for example, pulsed fields, or fields with high photon components. In such environments, they may be the only type of neutron spectrometer which can be used. This paper describes work, using both measurements and calculations, to validate the response functions for a BS set based on gold activation foils. As an illustration of the use of such a system, a measurement is described of the contaminant neutron spectrum in the treatment room of a 21 MV hospital linear accelerator providing photon beams for radiotherapy. INTRODUCTION A measurement of the neutron spectrum in a mixed n/g field where the radiation is pulsed presents certain problems. This is particularly true if a measurement is required over an extensive range of neutron energies, from thermal to 20 MeV or higher, for example. Such measurements are often made with a Bonner sphere (BS) set using an activation material, for example gold or indium, as the central sensor. Gold is the most commonly used material, and this work describes the characterization of a BS set based on gold foils, and its use to measure the contaminant neutron spectrum in the vicinity of a hospital electron LinAc used for cancer therapy where the radiation field is pulsed, has an high photon component, and the neutron spectrum extends over a wide energy range. The paper describes a continuation of work with gold-foil-based BSs at NPL (1,2). It presents further validation of the response functions of the sphere set thus enabling other users to build and use BSs of the same design without the need for extensive characterization of response functions. THE GOLD-FOIL-BASED BONNER SPHERE SET The sphere set and how it is used The gold-foil-based BS set currently used at NPL consists of 10 spheres, of high density polyethylene (0.96gcm 23 ), with diameters of 2 00,2.5 00,3 00,3.5 00,4 00, 5 00,6 00,8 00,10 00 and (BSs are usually made to exact inch sizes, and the diameter in inches acts as a label for the sphere.) A small slot at the centre of each sphere accommodates the gold foil. Each foil is 4 cm 2 in area, 0.05 mm thick and weighs about 360 mg. *Corresponding author: david.thomas@npl.co.uk Activity is induced in the foils via 197 Au(n,g) 198 Au reactions. The induced activity is usually low, and so is determined by b-counting in a low-background 4p proportional counter which provides a counting efficiency of roughly 40% for foils of this thickness. b-counting efficiencies are determined by irradiating the foils in a reactor to sufficiently high activities that 4pb-g coincidence counting can be performed from which the efficiency can be determined (2). Values for the b-counting efficiencies of thin foils depend on the distribution of the activity with depth in the foils, and vary somewhat depending on the field in which they are irradiated. The neutron field at the centre of a BS is reasonably well thermalized, and b-counting efficiencies determined in a reactor are thus generally applicable. However, small corrections do need to be made for the small spheres where the field at the centre may be less well thermalized. Correction factors are available from measurements made in a high-energy neutron field at an intensity which was sufficiently high to allow 4pb-g counting of the foils. These corrections are small, with a maximum value of just over 2% for the 2 00 sphere. In high-intensity high-energy gamma-ray fields, gold can be activated via the 197 Au(g,n) reaction producing 196 Au. This isotope has a half-life of 6.2 d, and can be separated from the 2.7 d half-life 198 Au by measuring the count rate over several days and analysing the data assuming two components with different half lives. Derivation of the response functions Because the efficiency of this BS set is low, it is difficult to measure response functions using monoenergetic neutron calibration fields. The data for this set were therefore originally (2) derived primarily from calculations with the ANISN transport code (3). This code has the advantage that, when run in adjoint David Thomas, National Physical Laboratory. # Crown copyright Reproduced with the permission of the Controller of Her Majesty s Stationery Office.

2 mode, it can calculate complete response functions in a single, relatively short, computer run. From experience deriving BS response functions for spheres with a 3 He counter as the central sensor ANISN was expected to give good response function shapes for the gold foil BSs, particularly at high and intermediate energies, although some normalization is likely to be required (4), but the predictions are expected to be higher than measurements in the thermal region (5). Thus, the ANISN calculations were normalized using results from measurements with a high-output 252 Cf source. Furthermore, the responses in the thermal region were modified to agree with a limited number of MCNP (6) calculations. (The MCNP calculations were limited in number because they are performed at point energies, and at the time the response functions were originally derived, circa 1995, numerous lengthy MCNP runs took a prohibitively large amount of computer time.) For BS unfolding, the response functions are required in group format and the ANISN-based results, referred to as the Mk 1 response functions, are shown for two spheres as histograms in Figure 1. With present-day computing speeds, the extensive set of calculations required to calculate response functions with MCNP can readily be performed, D. J. THOMAS ET AL. and a full set of calculations was made for all the spheres for the mid point energies of the 52 bins used in the Mk 1 response functions. Neutrons were incident isotropically on the BSs. A type 4 tally was used, with the appropriate multiplier, to give the activity of the gold foil at saturation. These data are shown in Figure 1 for the 2 00 and 6 00 spheres. Except for some details of the shape in the region of 1 ev for the small spheres, the agreement with the Mk 1 response function is very good. To check the absolute values of the MCNP calculations, the response to a 252 Cf source was calculated, and in Figure 2(a) these values are compared with the experiment. The measurements were performed in the low-scatter facility at NPL. MCNP calculations were performed using the 252 Cf spectrum recommended by ISO (7). Also shown in Figure 2(a) is the values for the original, un-normalized, ANISN calculations derived by folding the calculated response functions with the spectrum. The error bars are the experimental standard uncertainties, combined in quadrature with the statistical uncertainties in the case of the Monte Carlo codes. Figure 1. Comparison of latest MCNP calculations with response functions reported in ref. 2. Figure 2. Comparison of experimental and calculated results for a 252 Cf source and for a thermal neutron beam. 230

3 From the evidence of the 252 Cf measurements, it is clear that MCNP is better at getting the values for the responses correct on an absolute scale, but even for this code there are some differences between experiment and calculation. Interestingly, the 252 Cf measurements indicate that both ANISN and MCNP overestimate the response for the smaller spheres, albeit by different amounts. The underestimation by both codes of the response of the 8 00 sphere suggests possible differences between the parameters used in the calculations and those applying to the actual sphere, a void in the polyethylene for example. Since the 252 Cf experimental data were used to normalize the Mk 1 response functions, the value of the experimentally measured response divided by the response predicted by folding the Mk 1 response functions with the 252 Cf spectrum is essentially unity for all spheres. The availability of reasonable thermal neutron fluence rates ( cm 22 s 21 )atnpl (8) meant that the response functions for the smaller spheres could be checked at thermal energies. Measurements were made in a thermal column beam, for spheres with diameters up to 6 00, with the spheres both bare and under 1 mm of cadmium. In this way the responses to sub-cadmium-cut-off neutrons were determined (5). The spectrum of these neutrons, at the measurement position in the beam, consists of a Maxwellian peak, at a temperature of 323 K, and a small 1/E contribution extending up to the cadmium cut-off energy of 0.5 ev. The experimental thermal responses are compared with MCNP calculations in Figure 2(b) by plotting the ratio of experiment/calculation. Although there is agreement for the 4 00,5 00 and 6 00 spheres, MCNP overestimates the responses of the smaller spheres, and the overestimation increases as the sphere size decreases reaching a value of 15% for the 2 00 sphere. Discrepancies of this order are much larger than any found when comparing 252 Cf experiments and MCNP. To investigate these discrepancies thermal response calculations were also performed with the MCBEND code (9). This is a general purpose 3-D Monte Carlo code which can calculate neutron, gamma and charged particle transport in sub-critical systems. It is one of a suite of programs available from the ANSWERS software service (9). The data are plotted in Figure 2(b) and it can be seen that there is very good agreement between the results of the two Monte Carlo codes. There is no obvious reason why these two codes should predict accurately the thermal responses of the 4 00 to 6 00 spheres, but not the responses for smaller spheres. The gold foils are 2.3 cm in diameter which means that the foil-plus-sphere combination is not truly spherically symmetric, and the responses of the spheres may vary with angle of incidence. This effect is likely to be most pronounced for the small spheres THE GOLD-FOIL-BASED BONNER SPHERE SET 231 where the foil radius is a significant fraction of the sphere radius. A set of calculations was performed with MCNP, of the responses for all the spheres for neutrons incident normal to the foil, and parallel to the foil, and these were compared with the calculations for isotropic incidence. The results are shown in Figure 3 for the 2 00 and 5 00 spheres. For the smaller spheres at low energies MCNP predicts a definite anisotropy although this effect becomes increasingly unimportant as sphere size and neutron energy increase. To check these calculations, a measurement was performed for the sphere in the NPL thermal column with the foil both normal and parallel to the beam. The measured value for parallel/normal responses was which compared well with the calculated value of Although anisotropy needs to be considered for the smaller spheres at thermal energies, it cannot explain the discrepancy between experiment and calculation for the four smallest spheres since the experiments and calculations were performed for the Figure 3. Responses for normal and parallel neutron incidence relative to the plane of the gold foil.

4 same orientation of the foil relative to the neutron beam. In the absence of an explanation for the discrepancies allowance is made when deriving spectra by increasing the uncertainties for the low-energy responses of the smallest spheres. The effect on a derived spectrum, and in particular on the dose derived from such a spectrum, is small. MEASUREMENTS AT WALSGRAVE HOSPITAL A neutron spectrum was measured at the Precise Electa Magnetron accelerator at Walsgrave Hospital, Coventry, UK. At this facility the electron beam is accelerated to 21 MeV, but an aluminium hardening plug in the primary collimator filters the lower energies from the target, giving the beam a depth dose profile corresponding to 25 MV. The treatment dose rate was 4 Gy min 21, with a field size of cm at the isocentre. Measurements were performed on the treatment couch at 1 m from the axis of the photon beam. The spheres were irradiated sequentially for a time corresponding to a treatment dose of 20 Gy. Foils were returned to NPL to determine the saturated 198 Au activities which ranged from 66 to 460 Bq mg 21. The 196 Au activities were negligible. The neutron spectrum was unfolded using the STAY SL code (10) and the result is shown in Figure 4 where it is compared with an earlier measurement (2) for the corresponding site on the treatment couch of a 15 MV Varian Clinac 2100C accelerator at St Bartholomew s Hospital, London. It is clear that despite the different electron beam energies, the spectra at the two facilities are similar in shape when normalized to unit fluence. As expected the energy of the peak is a little higher at Walsgrave, the overall mean energy being 318 kev Figure 4. Comparison of fluence spectra measured at 1 m from the beam axis at two different hospitals. D. J. THOMAS ET AL. 232 Table 1. Comparison of the neutron fluence and dose values at Walsgrave and St Bartholomew s hospitals. Hospital Total neutron fluence (cm 22 Gy 21 ) Total ambient dose equivalent (msv Gy 21 ) Total dose (ICRU muscle) (mgy Gy 21 ) Walsgrave St Barts Ratio compared to 216 kev at St Bartholomew s. At the higher energy facility, the neutron fluence and dose rate are, however, significantly higher as shown in Table 1. Nevertheless, the neutron dose is still smaller than 0.02% of the dose in the beam, the value recommended by the IEC (11) as a limit for the average neutron dose in the patient plane. CONCLUSIONS The response functions of the NPL gold foil BS set have been further validated. Although there remain some uncertainties for the small spheres at thermal energies, these do not prevent the system being used to provide valuable information about the spectra of neutrons around medical accelerators. ACKNOWLEDGEMENTS The authors would like to acknowledge the help provided by John Mills and Roger Aukett at Walsgrave Hospital. REFERENCES 1. Axton, E. J. and Bardell, A. G. Neutron production from electron accelerators used for medical purposes. NBS Special Publication, 554, (1979). 2. Thomas, D. J., Bardell, A. G. and Macaulay, E. M. Characterisation of a gold foil based Bonner sphere set and measurements of neutron spectra at a medical accelerator. Nucl. Instrum. Meth Phys. Res. A 476, (2002). 3. Engle, W. W. A user manual for ANISN. ORNL Report K-1693 (1967). 4. Alevra, A. V. and Thomas, D. J. Neutron spectrometry in mixed fields: multisphere spectrometers. Radiat. Prot. Dosim. 107, (2003). 5. Thomas, D. J., Alevra, A. V., Hunt, J. B. and Schraube, H. Experimental determination of the response of four Bonner sphere sets to thermal neutrons. Radiat. Prot. Dosim. 54, (1994). 6. Briesmeister, J. F. Ed. MCNP TM, Version 4C LA M (2000). 7. International Organization for Standardisation, Reference neutron radiations: calibration of area and personal

5 dosimeters and determination of their response as a function of energy and angle of incidence. International standard ISO (Geneva: ISO) (1998). 8. Ryves, T. B. and Paul, E. B. The construction and calibration of a standard thermal neutron flux facility at the National Physical Laboratory. J. Nucl. Energ. 22, (1968). 9. Cowan, P., Shuttleworth, E., Bird, A. and Cooper, A. The Launch of MCBEND 10. In: 10th International Conference on Radiation Shielding (ICRS-10) and 13th Topical Meeting on Radiation Protection and Shielding THE GOLD-FOIL-BASED BONNER SPHERE SET (RPS-2004), Funchal, Madeira, Portugal (May 2004), ANSWERS Service, ANSWERS/. 10. Perey, F. G. Least squares dosimetry unfolding: the program STAY SL. Oak Ridge National Laboratory Report ORNL/TM-6062, ENDF-254 (1977). 11. International Electrotechnical Commission. Medical electrical equipment Part 2.1 Specification for medical electron accelerators in the range 1 ev to 50 MeV. International Standard IEC (Geneva: ISO) (1998). 233

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators N. Golnik 1, P. Kamiński 1, M. Zielczyński 2 1 Institute of Precision and Biomedical Engineering,

More information

Bonner Sphere Spectrometer. Cruzate, J.A.; Carelli, J.L. and Gregori, B.N.

Bonner Sphere Spectrometer. Cruzate, J.A.; Carelli, J.L. and Gregori, B.N. Bonner Sphere Spectrometer Cruzate, J.A.; Carelli, J.L. and Gregori, B.N. Presentado en: Workshop on Uncertainty Assessment in Computational Dosimetry: a Comparison of Approaches. Bologna, Italia, 8-10

More information

Neutron Spectrometry in Mixed Fields: Characterisation of the RA-1 Reactor Workplace

Neutron Spectrometry in Mixed Fields: Characterisation of the RA-1 Reactor Workplace Neutron Spectrometry in Mixed Fields: Characterisation of the RA-1 Reactor Workplace Gregori, B.N.; Carelli, J.L; Cruzate, J.A.; Papadópulos, S. and Kunst, J.J. Presentado en: Second European of IRPA (International

More information

Recent Activities on Neutron Calibration Fields at FRS of JAERI

Recent Activities on Neutron Calibration Fields at FRS of JAERI Recent Activities on Neutron Calibration Fields at FRS of JAERI Michio Yoshizawa, Yoshihiko Tanimura, Jun Saegusa and Makoto Yoshida Department of Health Physics, Japan Atomic Energy Research Institute

More information

Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials*

Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials* SLAC-PUB-70 Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials* J. C. Liu, K. R. Kase, X. S. Mao, W. R. Nelson, J. H. Kleck, and S. Johnson ) Stanford Linear

More information

Characterization of the 3 MeV Neutron Field for the Monoenergetic Fast Neutron Fluence Standard at the National Metrology Institute of Japan

Characterization of the 3 MeV Neutron Field for the Monoenergetic Fast Neutron Fluence Standard at the National Metrology Institute of Japan Characterization of the 3 MeV Neutron Field for the Monoenergetic Fast Neutron Fluence Standard at the National Metrology Institute of Japan Hideki Harano * National Metrology Institute of Japan, National

More information

NPL REPORT DQL RN008. Thermal fluence and dose equivalent standards at NPL. David J. Thomas and Peter Kolkowski NOT RESTRICTED.

NPL REPORT DQL RN008. Thermal fluence and dose equivalent standards at NPL. David J. Thomas and Peter Kolkowski NOT RESTRICTED. NPL REPORT DQL RN8 Thermal fluence and dose equivalent standards at NPL David J. Thomas and Peter Kolkowski NOT RESTRICTED March 25 National Physical Laboratory Hampton Road Teddington Middlesex United

More information

Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators

Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 4, NUMBER 3, SUMMER 2003 Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators David S. Followill,*

More information

Recent Activities on Neutron Standardization at the Electrotechnical Laboratory

Recent Activities on Neutron Standardization at the Electrotechnical Laboratory Recent Activities on Neutron Standardization at the Electrotechnical Laboratory K. Kudo, N. Takeda, S. Koshikawa and A. Uritani Quantum Radiation Division, National Metrology Institute of Japan (NMIJ)

More information

Neutron Users Club Meeting

Neutron Users Club Meeting Neutron Users Club Meeting 20 October 2015 www.npl.co.uk Neutron Fluence and Dose Standards: Thermal www.npl.co.uk XXWell characterised thermal neutron fields are available at NPL for the calibration

More information

Energy Response Characteristics of Several Neutron Measuring Devices Determined By Using the Scattered Neutron Calibration Fields of KAERI

Energy Response Characteristics of Several Neutron Measuring Devices Determined By Using the Scattered Neutron Calibration Fields of KAERI Energy Response Characteristics of Several Neutron Measuring Devices Determined By Using the Scattered Neutron Calibration s of KAERI B.H. Kim 1, J.L. Kim 1, S.Y. Chang 1, J.K. Chang 1, G. Cho 2 1 Korea

More information

Measurements with the new PHE Neutron Survey Instrument

Measurements with the new PHE Neutron Survey Instrument Measurements with the new PHE Neutron Survey Instrument Neutron Users Club Meeting National Physical Laboratory 16 th October 2013 Jon Eakins, Rick Tanner and Luke Hager Centre for Radiation, Chemicals

More information

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS)

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS) Activities of the neutron standardization at the Korea Research Institute of Standards and Science (KRISS) I. Introduction The activities of neutron standardization in KRISS have been continued for last

More information

Neutron Fluence and Energy Spectra Around the Varian Clinac 2lOOC/23OOC Medical Accelerator

Neutron Fluence and Energy Spectra Around the Varian Clinac 2lOOC/23OOC Medical Accelerator SLAC-PUB-7 190 June 1996 Neutron Fluence and Energy Spectra Around the Varian Clinac 2lOOC/23OOC Medical Accelerator K. R. Kase, X. S. Mao, W. R. Nelson, J. C. Liu Stanford Linear Accelerator Center, Stanford

More information

Altitude Variation of cosmic-ray neutron energy spectrum and ambient dose equivalent at Mt.Fuji in Japan

Altitude Variation of cosmic-ray neutron energy spectrum and ambient dose equivalent at Mt.Fuji in Japan Altitude Variation of cosmic-ray neutron energy spectrum and ambient dose equivalent at Mt.Fuji in Japan M. Kowatari 1, K. Nagaoka 1, S Satoh 1,Y Ohta 1, J.Abukawa 1 1 Division of Radioactivity Analysis,

More information

Calibration of the GNU and HSREM neutron survey instruments

Calibration of the GNU and HSREM neutron survey instruments Calibration of the GNU and HSREM neutron survey instruments Neutron Users Club Meeting National Physical Laboratory 20 th October 2015 J. S. Eakins 1, L. G. Hager 1, J. W. Leake 2, R. S. Mason 2 and R.

More information

ERINDA PAC 1/4 Testing the UAB Extended Range Bonner Sphere Spectrometer for high energy neutrons UU-TSL, Uppsala, Sweden UAB Barcelona

ERINDA PAC 1/4 Testing the UAB Extended Range Bonner Sphere Spectrometer for high energy neutrons UU-TSL, Uppsala, Sweden UAB Barcelona ERINDA PAC 1/4 Testing the UAB Extended Range Bonner Sphere Spectrometer for high energy neutrons UU-TSL, Uppsala, Sweden UAB Barcelona ERINDA PAC 1/9 Measurement of the total neutron spectrum close to

More information

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.83-87 (2) ARTICLE Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Toshioh FUJIBUCHI,2,*, Satoshi

More information

Neutron Metrology Activities at CIAE (2009~2010)

Neutron Metrology Activities at CIAE (2009~2010) Neutron Metrology Activities at CIAE (2009~2010) Ionizing Radiation Metrology Division China Institute of Atomic Energy (P.O.Box 275(20), Beijing 102413, China) 1. Neutron calibration fields So far the

More information

TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137

TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137 TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137 AUTHORS: J. Cardoso, L. Santos, C. Oliveira ADRESS: Instituto Tecnológico e Nuclear Estrada Nacional 10; 2686-953 Sacavém;

More information

Progress in Nuclear Science and Technology, Volume 6,

Progress in Nuclear Science and Technology, Volume 6, DOI: 1.15669/pnst.6 Progress in Nuclear Science and Technology Volume 6 (19) pp. 1-16 ARTICLE A study on calculation method of duct streaming from medical linac rooms Takuma Noto * Kazuaki Kosako and Takashi

More information

Radiation protection issues in proton therapy

Radiation protection issues in proton therapy Protons IMRT Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland Overview of presentation 1. Proton therapy: An overview 2. Radiation protection issues: Staff 3. Radiation

More information

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved Assessment Of The Effectiveness Of Collimation Of Cs 137 Panoramic Beam On Tld Calibration Using A Constructed Lead Block Collimator And An ICRU Slab Phantom At SSDL In Ghana. C.C. Arwui 1, P. Deatanyah

More information

Problem P7. Stéphanie Ménard. Dosimetry Department Fontenay-aux FRANCE IRSN QUADOS IRSN

Problem P7. Stéphanie Ménard. Dosimetry Department Fontenay-aux FRANCE IRSN QUADOS IRSN Problem P7 Stéphanie Ménard Dosimetry Department 92262 Fontenay-aux aux-roses FRANCE What are the applications of Gamma-Ray Spectrometry in Radiological Protection and in Safety? In the environment: after

More information

THE ACTIVE PERSONNEL DOSIMETER - APFEL ENTERPRISES SUPERHEATED DROP DETECTOR*

THE ACTIVE PERSONNEL DOSIMETER - APFEL ENTERPRISES SUPERHEATED DROP DETECTOR* SLAC-PUB-5122 Rev March 1991 w THE ACTIVE PERSONNEL DOSIMETER - APFEL ENTERPRISES SUPERHEATED DROP DETECTOR* N. E. Ipe, R. J. Donahue, and D. D. Busick Stanford Linear Accelerator Center Stanford University,

More information

Laboratoire National Henri Becquerel (CEA/LIST/LNHB), France (2) ENEA-Radiation Protection Institute, Bologna, Italy (3)

Laboratoire National Henri Becquerel (CEA/LIST/LNHB), France (2) ENEA-Radiation Protection Institute, Bologna, Italy (3) PROPOSAL FOR EYE-LENS DOSEMETER CALIBRATION AND TYPE TESTING ORAMED WP2 J.-M. Bordy (1), J. Daures (1), M. Denozière (1), G. Gualdrini (2), M. Guijaume (3), E. Carinou (4),F. Vanhavere (5) (1) Laboratoire

More information

NEUTRON RADIATION FROM MEDICAL ELECTRON ACCELERATORS*

NEUTRON RADIATION FROM MEDICAL ELECTRON ACCELERATORS* SLAC-PUB-2739 May 1981 (A) NUTRON RADATON FROM MDCAL LCTRON ACCLRATORS* Richard C. McCall Stanford Linear Accelerator Center Stanford University, Stanford, California 9435 ntroduction lectron accelerators

More information

Recent activities in neutron standardization at NMIJ/AIST

Recent activities in neutron standardization at NMIJ/AIST Recent activities in neutron standardization at NMIJ/AIST Tetsuro Matsumoto, Hideki Harano, Akihiko Masuda Quantum Radiation Division, National Metrology Institute of Japan (NMIJ), National Institute of

More information

Characterization of an 241 AmBe neutron irradiation facility by different spectrometric techniques

Characterization of an 241 AmBe neutron irradiation facility by different spectrometric techniques Characterization of an 241 AmBe neutron irradiation facility by different spectrometric techniques E. Gallego *1, K. Amgarou 2, R. Bedogni 3, C. Domingo 2, A. Esposito 3, A.Lorente 1, R. Méndez 4, H.R.

More information

RESPONSE MATRIX OF A BSS/ 6 LiI(Eu) Hector Rene Vega-Carrillo, Eduardo Manzanares-Acuña. Mexico. Eduardo Gallego, Alfredo Lorente.

RESPONSE MATRIX OF A BSS/ 6 LiI(Eu) Hector Rene Vega-Carrillo, Eduardo Manzanares-Acuña. Mexico. Eduardo Gallego, Alfredo Lorente. RESPONSE MATRIX OF A BSS/ 6 LiI(Eu) Hector Rene Vega-Carrillo, Eduardo Manzanares-Acuña Unidad Academica de Estudios Nucleares de la Universidad Autonoma de Zacatecas Mexico Eduardo Gallego, Alfredo Lorente

More information

Recent developments in neutron metrology at the Institute for Radiological Protection and Nuclear Safety (IRSN)

Recent developments in neutron metrology at the Institute for Radiological Protection and Nuclear Safety (IRSN) Recent developments in neutron metrology at the Institute for Radiological Protection and Nuclear Safety (IRSN) V.Gressier, L. Van Ryckeghem, B. Asselineau, R. Babut, J.F. Guerre-Chaley, V. Lacoste, L.Lebreton,

More information

NEUTRON SPECTROMETRY AND DOSIMETRY WITH ANNs

NEUTRON SPECTROMETRY AND DOSIMETRY WITH ANNs NEUTRON SPECTROMETRY AND DOSIMETRY WITH ANNs Héctor René Vega-Carrillo, Víctor Martín Hernández-Dávila Unidad Académica de Estudios Nucleares Universidad Autónoma de Zacatecas C. Ciprés 10, Fracc. La Peñuela

More information

In our recent paper [1], applicability of the self-activation of an NaI scintillator has been studied for the photo-neutron monitoring around

In our recent paper [1], applicability of the self-activation of an NaI scintillator has been studied for the photo-neutron monitoring around Proc. Int. Symp. on Radiation Detectors and Their Uses (ISRD2016) https://doi.org/10.7566/jpscp.11.050002 High Sensitive Neutron-detection by using a Self-activation of Iodine-containing Scintillators

More information

Applications of MCBEND

Applications of MCBEND Serco Assurance Applications of MCBEND Presentation to NPL Workshop on Monte Carlo codes by Pat Cowan The ANSWERS Software Service Serco Assurance Overview The MCBEND Code Traditional Applications Industrial

More information

Validation of the UFS Bonner Sphere Spectrometer and Monte Carlo Methods at the CERN-EU high energy Reference Field (CERF)

Validation of the UFS Bonner Sphere Spectrometer and Monte Carlo Methods at the CERN-EU high energy Reference Field (CERF) Validation of the UFS Bonner Sphere Spectrometer and Monte Carlo Methods at the CERN-EU high energy Reference Field (CERF) T. Brall1, M. Dommert2, W. Rühm1, S. Trinkl3, M. Wielunski1, V. Mares1 1 Helmholtz

More information

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR ANALELE STIINTIFICE ALE UNIVERSITATII AL. I. CUZA IASI Tomul II, s. Biofizică, Fizică medicală şi Fizica mediului 2006 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR Dan

More information

Performance Test of the Electronic Personal Neutron Dosemeter in Neutron Fields Simulating Workplaces of MOX Fuel Fabrication Facilities

Performance Test of the Electronic Personal Neutron Dosemeter in Neutron Fields Simulating Workplaces of MOX Fuel Fabrication Facilities Performance Test of the Electronic Personal Neutron Dosemeter in Neutron Fields Simulating Workplaces of MOX Fuel Fabrication Facilities N. Tsujimura a*, T. Yoshida a, C. Takada a, T. Nunomiya b and K.

More information

Commissioning of the Beta Secondary Standard (BSS2)

Commissioning of the Beta Secondary Standard (BSS2) Commissioning of the Beta Secondary Standard (BSS2) Speaker / Author: R.W. Thoka* Co-author: S. Jozela* * National Metrology Institute of South Africa (NMISA), Private Bag X 34, Lynnwood Ridge, Pretoria,

More information

Monte Carlo Calculations Using MCNP4B for an Optimal Shielding Design. of a 14-MeV Neutron Source * James C. Liu and Tony T. Ng

Monte Carlo Calculations Using MCNP4B for an Optimal Shielding Design. of a 14-MeV Neutron Source * James C. Liu and Tony T. Ng SLAC-PUB-7785 November, 1998 Monte Carlo Calculations Using MCNP4B for an Optimal Shielding Design of a 14-MeV Neutron Source * James C. Liu and Tony T. Ng Stanford Linear Accelerator Center MS 48, P.O.

More information

Chapter 4. QUANTIFYING THE HAZARD II: DATA & ANALYSIS. The dose equivalents for spheres in air with 10 cm radius centred at a point in the

Chapter 4. QUANTIFYING THE HAZARD II: DATA & ANALYSIS. The dose equivalents for spheres in air with 10 cm radius centred at a point in the Chapter 4. QUANTIFYING THE HAZARD II: DATA & ANALYSIS Neutron Dose The dose equivalents for spheres in air with 10 cm radius centred at a point in the treatment room and at 9 points along the passage of

More information

Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS)

Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS) Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS) K. Garrow 1, B.J. Lewis 2, L.G.I. Bennett 2, M.B. Smith, 1 H. Ing, 1 R. Nolte, 3 S. Röttger, R 3 R. Smit 4

More information

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 3 Ver. II (May. - Jun. 2015), PP 80-85 www.iosrjournals.org A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron

More information

PECULIARITIES OF FORMING THE RADIATION SITUATION AT AN AREA OF NSC KIPT ACCELERATORS LOCATION

PECULIARITIES OF FORMING THE RADIATION SITUATION AT AN AREA OF NSC KIPT ACCELERATORS LOCATION PECULIARITIES OF FORMING THE RADIATION SITUATION AT AN AREA OF NSC KIPT ACCELERATORS LOCATION A.N. Dovbnya, A.V. Mazilov, M.V. Sosipatrov National Science Center Kharkov Institute of Physics and Technology,

More information

NEUTRON SPECTROMETRY WITH BUBBLE DETECTORS

NEUTRON SPECTROMETRY WITH BUBBLE DETECTORS 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 NEUTRON SPECTROMETRY

More information

Neutron and/or photon response of a TLD-albedo personal dosemeter on an ISO slab phantom

Neutron and/or photon response of a TLD-albedo personal dosemeter on an ISO slab phantom Neutron and/or photon response of a TLD-albedo personal dosemeter on an ISO slab phantom Problem P4 Rick J Tanner National Radiological Protection Board Chilton, Didcot, Oxon OX11 0RQ, United Kingdom Intercomparison

More information

Michael Dunn Nuclear Data Group Leader Nuclear Science & Technology Division Medical Physics Working Group Meeting October 26, 2005

Michael Dunn Nuclear Data Group Leader Nuclear Science & Technology Division Medical Physics Working Group Meeting October 26, 2005 Nuclear Data Michael Dunn Nuclear Data Group Leader Nuclear Science & Technology Division Medical Physics Working Group Meeting October 26, 2005 ORELA LANSCE 0.1 00 Data Analyses ORELA data 0.0 75 Basic

More information

Diamond detectors in Bonner Spheres A Novel Approach for Real-time Neutron Spectroscopy

Diamond detectors in Bonner Spheres A Novel Approach for Real-time Neutron Spectroscopy Università degli studi di Roma Tor Vergata Dottorato di Ricerca in Ingegneria dei Microsistemi XXIV ciclo Diamond detectors in Bonner Spheres A Novel Approach for Real-time Neutron Spectroscopy Candidate:

More information

Radiation Protection Dosimetry (2006), Vol. 118, No. 3, pp Advance Access publication 6 October 2005

Radiation Protection Dosimetry (2006), Vol. 118, No. 3, pp Advance Access publication 6 October 2005 Radiation Protection Dosimetry (2006), Vol. 118, No. 3, pp. 233 237 Advance Access publication 6 October 2005 doi:10.1093/rpd/nci353 DOSE BUILD UP CORRECTION FOR RADIATION MONITORS IN HIGH-ENERGY BREMSSTRAHLUNG

More information

Neutron Spectrum Measurement in a Medical Cyclotron

Neutron Spectrum Measurement in a Medical Cyclotron Neutron Spectrum Measurement in a Medical Cyclotron V. Sathian 1, Deepa. S. 2, U.V. Phadnis 1, P.S. Soni 3 and D.N. Sharma 1 1 Radiation Safety Systems Division, 2 Radiological Physics and Advisory Division

More information

Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators

Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators Rebecca M. Howell a and Stephen F. Kry Department of Radiation Physics, The University of Texas M. D.

More information

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter Energy response for high-energy neutrons of multi-functional electronic personal dosemeter T. Nunomiya 1, T. Ishikura 1, O. Ueda 1, N. Tsujimura 2,, M. Sasaki 2,, T. Nakamura 1,2 1 Fuji Electric Systems

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 308 Angular dependence of 662 kev multiple backscattered gamma photons in Aluminium Ravindraswami K a, Kiran K U b, Eshwarappa K M b and Somashekarappa H M c* a St Aloysius College (Autonomous), Mangalore

More information

Neutron dosimetry and microdosimetry with track etch based LET spectrometer

Neutron dosimetry and microdosimetry with track etch based LET spectrometer Neutron dosimetry and microdosimetry with track etch based LET spectrometer František Spurný*, Kateřina Brabcová and Iva Jadrníčková Nuclear Physics Institute, Czech Academy of Sciences, Na Truhlářce,

More information

Measurement of induced radioactivity in air and water for medical accelerators

Measurement of induced radioactivity in air and water for medical accelerators Measurement of induced radioactivity in air and water for medical accelerators K. Masumoto 1, K. Takahashi 1, H. Nakamura 1, A. Toyoda 1, K. Iijima 1, K. Kosako 2, K. Oishi 2, F. Nobuhara 1 High Energy

More information

Radiation exposure of personnel during IORT: radiation protection aspects.

Radiation exposure of personnel during IORT: radiation protection aspects. Radiation exposure of personnel during IORT: radiation protection aspects. L. Strigari 1, V. Bruzzaniti 1, V. Landoni 1, A. Soriani 1, S.Teodoli 1, M. Benassi 1 1 Lab. Fisica Medica e Sistemi Esperti,

More information

Measurement of the energy spectrum from the neutron source planned for IGISOL

Measurement of the energy spectrum from the neutron source planned for IGISOL Measurement of the energy spectrum from the neutron source planned for IGISOL A. Mattera 1, R. Bedogni 2, V. Rakopoulos 1, M. Lantz 1, S. Pomp 1, A. Solders 1, A. Al-Adili 1, P. Andersson 1, A. Hjalmarsson

More information

COMPARISON OF COMPUTER CODES APPLICABILITY IN SHIELDING DESIGN FOR HADRON THERAPY FACILITIES *

COMPARISON OF COMPUTER CODES APPLICABILITY IN SHIELDING DESIGN FOR HADRON THERAPY FACILITIES * Romanian Reports in Physics, Vol. 66, No. 1, P. 142 147, 2014 COMPARISON OF COMPUTER CODES APPLICABILITY IN SHIELDING DESIGN FOR HADRON THERAPY FACILITIES * D. SARDARI, M. HAMEDINEJAD Islamic Azad University,

More information

DETERMINATION OF CORRECTION FACTORS RELATED TO THE MANGANESE SULPHATE BATH TECHNIQUE

DETERMINATION OF CORRECTION FACTORS RELATED TO THE MANGANESE SULPHATE BATH TECHNIQUE DETERMINATION OF CORRECTION FACTORS RELATED TO THE MANGANESE SULPHATE BATH TECHNIQUE Ján Haščík, Branislav Vrban, Jakub Lüley, Štefan Čerba, Filip Osuský, Vladimír Nečas Slovak University of Technology

More information

The Neutron Diagnostic Experiment for Alcator C-Mod

The Neutron Diagnostic Experiment for Alcator C-Mod PFC/JA-9-16 The Neutron Diagnostic Experiment for Alcator C-Mod C. L. Fiore, R. S. Granetz Plasma Fusion Center Massachusetts Institute of Technology -Cambridge, MA 2139 May, 199 To be published in Review

More information

Design, construction and characterization of a portable irradiator to calibrate installed ambient dose equivalent monitors

Design, construction and characterization of a portable irradiator to calibrate installed ambient dose equivalent monitors 6 th International Congress of Metrology, 05004 (203) DOI: 0.05/ metrology/20305004 C Owned by the authors, published by EDP Sciences, 203 Design, construction and characterization of a portable irradiator

More information

A new neutron monitor for pulsed fields at high-energy accelerators

A new neutron monitor for pulsed fields at high-energy accelerators A new neutron monitor for pulsed fields at high-energy accelerators Marlies Luszik-Bhadra *, Eike Hohmann Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116, Braunschweig, Germany. Abstract.

More information

Heuijin Lim, Manwoo Lee, Jungyu Yi, Sang Koo Kang, Me Young Kim, Dong Hyeok Jeong

Heuijin Lim, Manwoo Lee, Jungyu Yi, Sang Koo Kang, Me Young Kim, Dong Hyeok Jeong Original Article PMP Progress in Medical Physics 28(2), June 2017 https://doi.org/10.14316/pmp.2017.28.2.49 pissn 2508-4445, eissn 2508-4453 Electron Energy Distribution for a Research Electron LINAC Heuijin

More information

Activation of Air and Concrete in Medical Isotope Production Cyclotron Facilities

Activation of Air and Concrete in Medical Isotope Production Cyclotron Facilities Activation of Air and Concrete in Medical Isotope Production Cyclotron Facilities CRPA 2016, Toronto Adam Dodd Senior Project Officer Accelerators and Class II Prescribed Equipment Division (613) 993-7930

More information

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS Leonardo de Holanda Mencarini 1,2, Claudio A. Federico 1,2 and Linda V. E. Caldas 1 1 Instituto de Pesquisas Energéticas e Nucleares IPEN,

More information

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose Introduction to Radiological Sciences Neutron Detectors Neutron counting Theory of operation Slow neutrons Fast neutrons Types of detectors Source calibration Survey for Dose 2 Neutrons, what are they?

More information

Neutron Skyshine Calculations with the Integral Line-Beam Method

Neutron Skyshine Calculations with the Integral Line-Beam Method NUCLEAR SCIENCE AND ENGINEERING: 127, 230 237 ~1997! Technical Note Neutron Skyshine Calculations with the Integral Line-Beam Method Ah Auu Gui, J. Kenneth Shultis,* and Richard E. Faw Kansas State University,

More information

High-Energy Photon Beam Therapy Dosimetry with Ionisation Chambers

High-Energy Photon Beam Therapy Dosimetry with Ionisation Chambers Schweizerische Gesellschaft für Strahlenbiologie und Medizinische Physik Société Suisse de Radiobiologie et de Physique Médicale Società Svizzera di Radiobiologia e di Fisica Medica Swiss Society of Radiobiology

More information

Calibration of Radioprotection Instruments and Calibrated Irradiation: Characterization of Gamma Beam of 137 Cs and 60 Co

Calibration of Radioprotection Instruments and Calibrated Irradiation: Characterization of Gamma Beam of 137 Cs and 60 Co Calibration of Radioprotection Instruments and Calibrated Irradiation: Characterization of Gamma Beam of 137 Cs and 60 Co Pirchio Rosana a*, Lindner Carlos a, Molina Laura a and Vallejos Matías a. a Comisión

More information

Induced photonuclear interaction by Rhodotron-TT MeV electron beam

Induced photonuclear interaction by Rhodotron-TT MeV electron beam PRAMANA c Indian Academy of Sciences Vol. 78, No. 2 journal of February 2012 physics pp. 257 264 Induced photonuclear interaction by Rhodotron-TT200 10 MeV electron beam FARSHID TABBAKH 1,, MOJTABA MOSTAJAB

More information

Secondary Particles Produced by Hadron Therapy

Secondary Particles Produced by Hadron Therapy Iranian Journal of Medical Physics Vol. 12, No. 2, Spring 2015, 1-8 Received: March 10, 2015; Accepted: July 07, 2015 Original Article Secondary Particles Produced by Hadron Therapy Abdolkazem Ansarinejad

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 316 Effective atomic number of composite materials by Compton scattering - nondestructive evaluation method Kiran K U a, Ravindraswami K b, Eshwarappa K M a and Somashekarappa H M c* a Government Science

More information

Application of a Laser-Wakefield Driven Monochromatic Photon Source to Nuclear Resonance Fluorescence

Application of a Laser-Wakefield Driven Monochromatic Photon Source to Nuclear Resonance Fluorescence 2009 IEEE Nuclear Science Symposium Conference Record N04-4 Application of a Laser-Wakefield Driven Monochromatic Photon Source to Nuclear Resonance Fluorescence W.J. Walsh, S.D. Clarke, S.A. Pozzi, IEEE

More information

Fast-Neutron Production via Break-Up of Deuterons and Fast-Neutron Dosimetry

Fast-Neutron Production via Break-Up of Deuterons and Fast-Neutron Dosimetry Fast-Neutron Production via Break-Up of Deuterons and Fast-Neutron Dosimetry F. Gutermuth *, S. Beceiro, H. Emling, G. Fehrenbacher, E. Kozlova, T. Radon, T. Aumann, T. Le Bleis, K. Boretzky, H. Johansson,

More information

Dosimetric Quantities and Neutron Spectra Outside the Shielding of Electron Accelerators

Dosimetric Quantities and Neutron Spectra Outside the Shielding of Electron Accelerators SLAC-PUB-15257 Dosimetric Quantities and Neutron Spectra Outside the Shielding of Electron Accelerators Alberto Fassò a,b, James C. Liu a and Sayed H. Rokni a* a SLAC National Accelerator Laboratory, 2575

More information

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT Proceedings of the Eleventh EGS4 Users' Meeting in Japan, KEK Proceedings 2003-15, p.107-113 ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT K. Noto and

More information

Response characteristics of neutron survey instruments. Rick Tanner and David Bartlett, NRPB Hamid Tagziria and David Thomas, NPL

Response characteristics of neutron survey instruments. Rick Tanner and David Bartlett, NRPB Hamid Tagziria and David Thomas, NPL Response characteristics of neutron survey instruments Rick Tanner and David Bartlett, NRPB Hamid Tagziria and David Thomas, NPL DTI National Measurement System Policy Unit Project 3.6.1 Provision of reliable

More information

VERIFICATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL CHANNELS OF THE TRIGA MARK II REACTOR, LJUBLJANA

VERIFICATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL CHANNELS OF THE TRIGA MARK II REACTOR, LJUBLJANA International Conference Nuclear Energy for New Europe 2002 Kranjska Gora, Slovenia, September 9-12, 2002 www.drustvo-js.si/gora2002 VERIFATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL

More information

Magnetic removal of electron contamination in radiotherapy x-ray beams

Magnetic removal of electron contamination in radiotherapy x-ray beams University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2006 Magnetic removal of electron contamination in radiotherapy

More information

Comparison with simulations to experimental data for photoneutron reactions using SPring-8 Injector

Comparison with simulations to experimental data for photoneutron reactions using SPring-8 Injector Comparison with simulations to experimental data for photoneutron reactions using SPring-8 Injector Yoshihiro Asano 1,* 1 XFEL/SPring-8 Center, RIKEN 1-1 Koto Sayo Hyogo 679-5148, Japan Abstract. Simulations

More information

Monte Carlo simulation for the estimation of iron in human whole blood and comparison with experimental data

Monte Carlo simulation for the estimation of iron in human whole blood and comparison with experimental data Pramana J. Phys. (2017) 88: 49 DOI 10.1007/s12043-016-1344-1 c Indian Academy of Sciences Monte Carlo simulation for the estimation of iron in human whole blood and comparison with experimental data M

More information

Neutron Sources in the Varian Clinac 2100~2300C Medical Accelerator Calculated by the EGS4 Code

Neutron Sources in the Varian Clinac 2100~2300C Medical Accelerator Calculated by the EGS4 Code SLAC-PUB-7077 June 1996 Neutron Sources in the Varian Clinac 2100~2300C Medical Accelerator Calculated by the EGS4 Code X. S. Mao, K.R.Kase,J. C. Liu and W. R. Nelson Stanford Linear Accelerator Center

More information

Introduction to neutron sources

Introduction to neutron sources LA-UR-15-28281 Introduction to neutron sources Tom McLean, LANL CSU neutron class Fort Collins, CO Oct. 27-29 2015 Introduction: talk outline Preamble Discussion (brief) of neutron source types: Spontaneous

More information

Georgia Institute of Technology. Radiation Detection & Protection (Day 3)

Georgia Institute of Technology. Radiation Detection & Protection (Day 3) Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program Ph.D. Qualifier Exam Spring Semester 2009 Your ID Code

More information

Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems

Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems INSTITUTE OF PHYSICS PUBLISHING Phys. Med. Biol. 49 (2004) 571 582 PHYSICS IN MEDICINE AND BIOLOGY PII: S0031-9155(04)69196-2 Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments

More information

Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement Journal of Physics: Conference Series PAPER OPEN ACCESS Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement To cite this article: K

More information

Determination of Ambient Dose Equivalent at INFLPR 7 MeV Linear Accelerator

Determination of Ambient Dose Equivalent at INFLPR 7 MeV Linear Accelerator Determination of Ambient Dose quivalent at INFLPR 7 MeV Linear Accelerator F. Scarlat, A. Scarisoreanu, M. Oane,. Badita,. Mitru National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest-Magurele,

More information

Introduction. Neutron Effects NSEU. Neutron Testing Basics User Requirements Conclusions

Introduction. Neutron Effects NSEU. Neutron Testing Basics User Requirements Conclusions Introduction Neutron Effects Displacement Damage NSEU Total Ionizing Dose Neutron Testing Basics User Requirements Conclusions 1 Neutron Effects: Displacement Damage Neutrons lose their energy in semiconducting

More information

Multisphere Neutron Spectrometric System with Thermoluminescent Dosemeters: Sensitive Improvement

Multisphere Neutron Spectrometric System with Thermoluminescent Dosemeters: Sensitive Improvement Multisphere Neutron Spectrometric System with Thermoluminescent Dosemeters: Sensitive Improvement Gregori, B.N.; Papadópulos, S.B.; Cruzate, J.A. and Kunst, J.J. Presentado en el 13 th International Conference

More information

CALIBRATION OF SCINTILLATION DETECTORS USING A DT GENERATOR Jarrod D. Edwards, Sara A. Pozzi, and John T. Mihalczo

CALIBRATION OF SCINTILLATION DETECTORS USING A DT GENERATOR Jarrod D. Edwards, Sara A. Pozzi, and John T. Mihalczo CALIBRATION OF SCINTILLATION DETECTORS USING A DT GENERATOR Jarrod D. Edwards, Sara A. Pozzi, and John T. Mihalczo Oak Ridge National Laboratory Oak Ridge, TN 37831-6010 PO Box 2008 Ms6010 ABSTRACT The

More information

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments 2010-08-16 Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments Fujio Hiraga, Takanori Okazaki and Yoshiaki Kiyanagi Hokkaido University 1 Technical

More information

M [scale units/s] of the system

M [scale units/s] of the system APPENDIX TO IAEA CALIBRATION CERTIFICATE RADIATION PROTECTION IONIZATION CHAMBER CALIBRATION PROCEDURES AT THE IAEA DOSIMETRY LABORATORY 1. INTRODUCTION 1.1 General Ionization chambers and electrometers

More information

New Neutron-Induced Cross-Section Measurements for Weak s-process Studies

New Neutron-Induced Cross-Section Measurements for Weak s-process Studies New Neutron-Induced Cross-Section Measurements for Weak s-process Studies Klaus H. Guber 1, D. Wiarda, L. C. Leal, H. Derrien, C. Ausmus, D. R. Brashear, J. A. White Nuclear Science and Technology Division,

More information

Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp Advance Access publication 23 May 2007

Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp Advance Access publication 23 May 2007 Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp. 278 283 Advance Access publication 23 May 2007 doi:10.1093/rpd/ncm058 NOVEL Al 2 O 3 :C,Mg FLUORESCENT NUCLEAR TRACK DETECTORS FOR PASSIVE

More information

REALISTIC NEUTRON SPECTRA FOR RADIATION PROTECTION AND OTHER APPLICATIONS AT AERI, BUDAPEST

REALISTIC NEUTRON SPECTRA FOR RADIATION PROTECTION AND OTHER APPLICATIONS AT AERI, BUDAPEST 1 Reference number: 067 REALISTIC NEUTRON SPECTRA FOR RADIATION PROTECTION AND OTHER APPLICATIONS AT AERI, BUDAPEST J. Pálfalvi 1), L. Sajó -Bohus 2) and M. Balaskó 1) 1) Atomic Energy Research Inst. P.O.B.

More information

Unfolding of neutron spectra with an experimentally determined diamond detector response function

Unfolding of neutron spectra with an experimentally determined diamond detector response function Unfolding of neutron spectra with an experimentally determined diamond detector response function Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig, Germany E-mails: Andreas.Zimbal@ptb.de, Marcel.Reginatto@ptb.de,

More information

Available online at ScienceDirect. Physics Procedia 69 (2015 )

Available online at  ScienceDirect. Physics Procedia 69 (2015 ) Available online at www.sciencedirect.com ScienceDirect Physics Procedia 69 (2015 ) 392 398 10 World Conference on Neutron Radiography 5-10 October 2014 Au Foil Activation Measurement and Simulation of

More information

Units S H I E L D I N H = D Q. H: Dose equivalent (Sv) D: Dose (Gy) Q: Quality Factor. 1Sv = 1 J/Kg. 1Gy = 1 J/Kg

Units S H I E L D I N H = D Q. H: Dose equivalent (Sv) D: Dose (Gy) Q: Quality Factor. 1Sv = 1 J/Kg. 1Gy = 1 J/Kg S H I E L D I N G H = D Q Units H: Dose equivalent (Sv) D: Dose (Gy) Q: Quality Factor 1Sv = 1 J/Kg 1Gy = 1 J/Kg if dose is expressed in units of cgy (rad) then dose equivalent is expressed in units of

More information

5. Gamma and neutron shielding characteristics of concretes containing different colemanite proportions

5. Gamma and neutron shielding characteristics of concretes containing different colemanite proportions Transworld Research Network 37/661 (2), Fort P.O. Trivandrum-695 023 Kerala, India Nuclear Science and Technology, 2012: 41-49 ISBN: 978-81-7895-546-9 Editor: Turgay Korkut 5. Gamma and neutron shielding

More information

Evaluation of the Nonlinear Response Function and Efficiency of a Scintillation Detector Using Monte Carlo and Analytical Methods

Evaluation of the Nonlinear Response Function and Efficiency of a Scintillation Detector Using Monte Carlo and Analytical Methods Asian J. Exp. Sci., Vol. 28, No. 2, 2014; 23-31 Evaluation of the Nonlinear Response Function and Efficiency of a Scintillation Detector Using Monte Carlo and Analytical Methods Rahim Khabaz, Farhad Yaghobi

More information

Radioactivity & Radiation Protection *

Radioactivity & Radiation Protection * SLAC PUB 10787 October 2004 Radioactivity & Radiation Protection * R.J. Donahue Lawrence Berkeley National Laboratory Berkeley, CA 94720 A. Fasso Stanford Linear Accelerator Center, Stanford University,

More information