NACP-02 perturbation correction factors for the NPL primary standard of absorbed dose to water in high energy electron beams

Size: px
Start display at page:

Download "NACP-02 perturbation correction factors for the NPL primary standard of absorbed dose to water in high energy electron beams"

Transcription

1 NACP-02 perturbation correction factors for the NPL primary standard of absorbed dose to water in high energy electron beams E. Chin 1, J. Seuntjens 1, H. Palmans 2, A. DuSautoy 2, D. Shipley 2, M. Bailey 2, F. Verhaegen 1 Paris 9-11, May

2 Outline 1. Calibration procedure at NPL 2. Model of ion chamber for MC simulations 3. Validation of MC model with backscatter simulations and measurements 4. Perturbation correction factors in water 5. Perturbation correction factors in graphite 6. Implications for the NPL electron beam calibration

3 NPL Calibration Procedure: high energy electrons (1) Define reference depth in water dw = 0.6R50, w 0. 1cm (2) Use range scaling to get depth in graphite d g = dw R50, g R50, w (3) Calibrate chamber against the calorimeter, in graphite, at the NPL N D, ref, g = M D g ref, g (McEwen et al 1998)

4 NPL Calibration Procedure: high energy electrons Calorimeter for high energy electrons

5 NPL Calibration Procedure: high energy electrons (4) Theoretical conversion of graphite to water N D, ref, w = N D, ref, g p p ref ref, w, g s s w, air g, air (5) Compare user and reference chambers at d w in water, at NPL N D, user, w = N D, ref, w M M ref, w user, w (McEwen et al 1998)

6 Current Protocols: electron perturbation correction factors For well guarded plane parallel plate ion chambers p = Q p cav p wall p cav p wall =1 =1 A plane parallel chamber with adequately large guard ring can eliminate the in- scattering effects Scarce amount of data available at the time and large uncertainties

7 Monte Carlo model of NACP ion chamber NACP-02 plane parallel ion chamber (NPL report CIRM13)

8 Monte Carlo model of NACP ion chamber

9 Monte Carlo model of NACP ion chamber rexolite graphite mylar air MC NACP model for DOSRZnrc and CAVRZnrc (not to scale)

10 Monte Carlo model of linacs Primary electron beam Primary collimator (CONESTACK) Primary electron beam Scattering foil (SLAB) Window (SLABS) Upper foil (SLABS) Lower foil (FLATFILT) Monitor Chamber (SLABS) Lead and (CIRCAPP) Steel collimator Monitor ion chamber (CONS3R) Mirror (MIRROR) Shield (CONESTACK) Upper and lower jaws (JAWS) NPL Linac (SSD 2m) Reticle (SLABS) Applicator (APPLICAT) Varian Linac (SSD 1m)

11 Linac electron energies a) CL2300 energies 6, 9, 12, 15, 18 MeV (tuned within 1.5%) b) CL21A energy 4MeV (buildup tuned within 3%, tail within 2%) c) NPL linac energies 4, 6, 8, 10, 12, 16, 19MeV (R. Zakikhani) 4MeV PDD CL21A 6MeV PDD CL pdd Measured MC 4.12MeV PDD measured MC 6.85MeV cm cm

12 Validation of MC: Backscatter experiments and simulations Backscatter factors wrt air for NACP-02: Water Graphite Aluminum Copper t d max NACP Backscatter plate Phantom Phantom material: PMMA (4-12 MeV) Solid water (15 & 18MeV) Electron Beam experimental setup Applicator

13 Backscatter Experimental Setup NACP-02 chamber is flush with phantom surface

14 Backscatter Experimental Setup Backscatter setup with aluminum plate covering NACP-02

15 Backscatter Experimental Setup Backscatter setup with water phantom on top of NACP-02

16 Tuning NACP-02 parameters 1. Varied graphite density ( g/cm 3 ) 2. All options turned on (bound compton scattering, PE angular sampling, Rayleigh scattering, atomic relaxation) 3. Different beam sources (pt src vs. parallel src) 4. Varied window thickness NACP-02 chamber

17 Backscatter Results: water CL2300 water BSF MeV 12MeV BSF measured Monte Carlo MeV thickness (cm) CL2300 water BSF BSF MeV 15MeV measured Monte Carlo thickness (cm)

18 Backscatter Results: graphite CL2300 graphite BSF BSF MeV 12MeV 18MeV measured Monte Carlo thickness (cm) CL2300 graphite BSF MeV 15MeV BSF measured Monte Carlo thickness (cm)

19 Backscatter Results: aluminum CL2300 aluminum BSF BSF MeV 12MeV measured Monte Carlo 18MeV thickness (cm) CL2300 aluminum BSF BSF thickness (cm) 9MeV 15MeV measured Monte Carlo

20 Backscatter Results: copper CL2300 copper BSF BSF 1.3 6MeV MeV MeV thickness (cm) measured Monte Carlo BSF CL2300 copper BSF 9MeV 15MeV measured Monte Carlo thickness (cm)

21 Backscatter Results Monte Carlo model based on manufacturer s specs resulted in BSF that were systematically 1-2% greater than measured Making the front window of the NACP chamber slightly thicker improved the match between measured and simulated BSF Conclude that tuning the chamber model is an important step in the calculation of chamber perturbation correction factors.

22 Calculating Electron Perturbations Correction Factors: in water p ) = cav p = wall ( sw, air D D b p ) = Q ( sw, air c D D D D a c a b (Verhaegen et al 2006)

23 Electron Perturbation Correction factors: water d ref NPL p wall : > 1 by 2.3% for 4MeV (a) p wall NPL > 1 by ~1% for other energies p cav : < 1 by ~1% for all energies Perturbation Fact p Q p cav, Ma-Nahum p cav p Q : > 1 by (1.5% for 4MeV, 0.4% for 19MeV) R 50 (cm) NACP chamber (Verhaegen et al 2006)

24 Electron Perturbation Correction factors: water d ref CL2300 p wall : > > 1 greatest for 6MeV (1.014) p cav : < 1 for all energies Perturbation Fact (b) p wall p Q p cav CL2300 p Q : > 1 for all energies R 50 (cm) NACP chamber (Verhaegen et al 2006)

25 Perturbation Fact Electron Perturbation Correction factors: water CL MeV Cl2300 z ref p cav, Ma-Nahum p Q p wall p cav R 50 Perturbation Fact MeV Cl2300 z ref p Q p wall p cav R 50 Perturbation Fact Depth in water (cm) MeV Cl2300 z ref p Q p wall p cav Perturbation Fact Depth in water (cm) MeV Cl2300 p Q 1.04 p wall 1.03 z ref p cav Depth in water (cm) R NACP chamber (Verhaegen et al 2006) Depth in water (cm) R 50

26 Including p Q when converting PDI to PDD leads to a correction as large as 10% of local dose around R 50 for 6MeV. However, the change in R 50 is less than 1mm. R 50 Electron Perturbation Correction factors: water (Verhaegen et al 2006)

27 Electron Perturbation Correction factors: water k = Q, Q ( s w, air ) 0 ( s ) w, air Q Q 0 p p Q Q 0 p = Q p cav p wall kq,q cl2300 NPL TRS-398 Sempau et al R 50 (cm) Comparison of calculated k Q,Qo values with Verhaegen et al (2006). TRS-398 (Andreo et al 2000) and Sempau et al (2004).

28 Electron Perturbation Correction factors: water p wall Verhaegen et al 2006, Buckley et al for the lowest to highest beam energies (4MeV NPL 21MeV Siemens) McEwen et al 2006 p rearwall For lowest to highest E: (McEwen et al 2006) (McEwen et al 2006)

29 Electron Perturbation Correction perturbation factor factors: graphite d ref NPL NPL graphite electron perturbation factors at dref for NACP cham ber beam quality R50 (cm) pcav pwall pq Energy R50 (cm) pcav SDOM (±%)( pwall SDOM (±%)( pq SDOM (±%)( % % % % % % % % % % % % % % % % % %

30 Electron Perturbation Correction factors: graphite d ref CL2300 perturbation factor CL2300 g raphite electron perturbation factors at dref for NACP chamber Beam Quality R50 (cm ) pcav pwall pq Energy R50 (cm) pcav SDOM (±%)( pwall SDOM (±%)( pq SDOM (±%)( % simulations in progress % % % % % % % % % % % % % % %

31 Implications for the NPL electron beam calibration N D, ref, w = N D, ref, g p p ref, w ref, g s s w, air g, air Energy R50 (cm) p ref,w /p ref,g ref,g SDOM (±%)( % % % % % %

32 Preliminary results from ongoing investigations pcav CL2300 graphite pcav for NACP chamber 6MeV 12MeV 18MeV pwall CL2300 graphite pwall for NACP chamber 6MeV 12MeV 18MeV depth (cm) depth (cm) CL2300 graphite pq for NACP chamber pq depth (cm) 6MeV 12MeV 18MeV

33 Conclusion 1. Validating Monte Carlo ion chamber model with measurements is important 2. Electron perturbation factors for plane-parallel parallel ionization chambers are not equal to unity. 3. Perturbation factors are greatest for lowest energies. 4. Perturbation factors increase with depth and are very sensitive to chamber model at depths away from d ref 5. NPL calibration procedure may need to be updated to include non-unity perturbation factors (simulations for better statistics in progress)

Updating reference dosimetry a decade after TG-51

Updating reference dosimetry a decade after TG-51 Updating reference dosimetry a decade after TG-51 Malcolm McEwen Ionizing Radiation Standards Institute for National Measurement Standards National Research Council, Canada CE Presentation at AAPM Annual

More information

Clinical Implementation of the IPEM 2003 Code of Practice for Electron Dosimetry

Clinical Implementation of the IPEM 2003 Code of Practice for Electron Dosimetry Clinical Implementation of the IPEM 2003 Code of Practice for Electron Dosimetry TJ JORDAN Royal Surrey County Hospital IPEM Electron Dosimetry Working Party: + DI Thwaites, AR DuSautoy, MR McEwen, AE

More information

NPL s progress towards absorbed dose standards for proton beams

NPL s progress towards absorbed dose standards for proton beams NPL s rogress towards absorbed dose standards for roton beams H. Palmans 1 R. Thomas 1 D. Shiley 1 A. Kacerek 2 1 National Physical Laboratory Teddington United Kingdom 2 Clatterbridge Centre of Oncology

More information

Dosimetry: Electron Beams

Dosimetry: Electron Beams ICTP SChool On MEdical PHysics For RAdiation THerapy: DOsimetry And TReatment PLanning For BAsic And ADvanced APplications 13-24 April 2015 Miramare, Trieste, Italy Dosimetry: Electron Beams G. Hartmann

More information

8/2/2012 UPDATING TG-51. When will it end? Part 1 - photon addendum. What are these updates? Photons: Electrons: More widespread revision required

8/2/2012 UPDATING TG-51. When will it end? Part 1 - photon addendum. What are these updates? Photons: Electrons: More widespread revision required UPDATING TG-51 When will it end? Malcolm McEwen Ionizing Radiation Standards National Research Council, Canada AAPM Annual Meeting, Charlotte, 2012 What are these updates? Working Group review recommends:

More information

Reference Dosimetry for Megavoltage Therapy Beams: Electrons

Reference Dosimetry for Megavoltage Therapy Beams: Electrons Reference Dosimetry for Megavoltage Therapy Beams: Electrons David Followill Ph.D Radiological Physics Center UT M.D.Anderson Cancer Center Houston TX Protocol for Clinical Reference Dosimetry of High-Energy

More information

Electron beam water calorimetry measurements to obtain beam quality conversion factors

Electron beam water calorimetry measurements to obtain beam quality conversion factors Electron beam water calorimetry measurements to obtain beam quality conversion factors Bryan R. Muir, a) Claudiu D. Cojocaru, Malcolm R. McEwen, and Carl K. Ross Measurement Science and Standards, National

More information

Monte Carlo commissioning of photon beams in medical LINACS using wide-field profiles in a water phantom

Monte Carlo commissioning of photon beams in medical LINACS using wide-field profiles in a water phantom Monte Carlo commissioning of photon beams in medical LINACS using wide-field profiles in a water phantom F.Gómez 1, L. Franco 1, A. Iglesias 1, J. Pardo 1, J. Pena 1, A. Rodríguez 1, R.Lobato 2, J. Mosquera

More information

Gerhard Stucki, Sandor VörösV

Gerhard Stucki, Sandor VörösV idgenössisches Justiz- und Polizeidepartement JPD Bundesamt für Metrologie MTAS xperimental k Q,Q0 lectron Beam Quality Correction Factors for the Types NACP02 and PTW34001 Plane-parallel Chambers Gerhard

More information

Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin

Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin Larry A. DeWerd, PhD, FAAPM UW ADCL & Dept. Medical Physics University of Wisconsin NCCAAPM meeting April 17, 2015 Larry DeWerd has partial interest in Standard Imaging Inc. Determination of your uncertainty

More information

Small Field Dosimetric Measurements with TLD-100, Alanine, and Ionization Chambers

Small Field Dosimetric Measurements with TLD-100, Alanine, and Ionization Chambers Small Field Dosimetric Measurements with TLD-1, Alanine, and Ionization Chambers S. Junell a, L. DeWerd a, M. Saiful Huq b, J. Novotny Jr. b, M. uader b, M.F. Desrosiers c, G. Bednarz b a Department of

More information

N. E. Ipe*, K. E. Rosser, C. J. Moretti, J. W. Manning and M. J. Palmer

N. E. Ipe*, K. E. Rosser, C. J. Moretti, J. W. Manning and M. J. Palmer SLAC-PUB-8099 July 1999 Air Kerma Calibration Factors and k ch Values for PTW Soft X-ray, NACP and Roos Ionization Chambers at Very Low X-ray Energies (0.035 mm - 1.0 mm Al HVL) N. E. Ipe*, K. E. Rosser,

More information

Instrumentation for Verification of Dose

Instrumentation for Verification of Dose Instrumentation for Verification of Dose MedAustron GmbH, Wiener Neustadt, Austria Presented to: Educational Workshop PTCOG 52 Essen, Germany, May 3 5, 2013 Consistent and harmonized dosimetry guidelines

More information

Instrumentation for Verification of Dose

Instrumentation for Verification of Dose Instrumentation for Verification of Dose S. Vatnitsky MedAustron GmbH, Wiener Neustadt, Austria Presented to: Educational Workshop PTCOG 53 Shanghai, China, June 9-11, 2014 Consistent and harmonized dosimetry

More information

PRIMARY STANDARDS of AIR KERMA for 60 CO and X-RAYS & ABSORBED DOSE in PHOTON and ELECTRON BEAMS. Malcolm McEwen

PRIMARY STANDARDS of AIR KERMA for 60 CO and X-RAYS & ABSORBED DOSE in PHOTON and ELECTRON BEAMS. Malcolm McEwen PRIMARY STANDARDS of AIR KERMA for 60 CO and X-RAYS & ABSORBED DOSE in PHOTON and ELECTRON BEAMS Malcolm McEwen Definitions: Standard instrument/measurement/artifact intended to define, realize, conserve

More information

Composite field dosimetry

Composite field dosimetry Composite field dosimetry Hugo Bouchard, PhD, MCCPM Senior Research Scientist Radiation dosimetry group National Physical Laboratory May 2014 Overview 1. Introduction Dosimetry protocols IAEA formalism

More information

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR ANALELE STIINTIFICE ALE UNIVERSITATII AL. I. CUZA IASI Tomul II, s. Biofizică, Fizică medicală şi Fizica mediului 2006 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR Dan

More information

STANDARD WATER PHANTOM BACKSCATTER FACTORS FOR MEDIUM ENERGY X-RAYS

STANDARD WATER PHANTOM BACKSCATTER FACTORS FOR MEDIUM ENERGY X-RAYS STANDARD WATER PHANTOM BACKSCATTER FACTORS FOR MEDIUM ENERGY X-RAYS M.A. HASSAN*, M.H. GABER**, E. ESMAT*, H.I. FARAG***, H.M. EISSA* *National Institute for Standards (NIS), Giza, Egypt **Biophysics Department,

More information

ABSORBED DOSE TO WATER MEASUREMENTS IN HIGH ENERGY ELECTRON BEAMS USING DIFFERENT PLANE PARALLEL CHAMBERS *

ABSORBED DOSE TO WATER MEASUREMENTS IN HIGH ENERGY ELECTRON BEAMS USING DIFFERENT PLANE PARALLEL CHAMBERS * Romanian Reports in Physics, Vol. 67, No. 3, P. 1152 1158, 2015 ABSORBED DOSE TO WATER MEASUREMENTS IN HIGH ENERGY ELECTRON BEAMS USING DIFFERENT PLANE PARALLEL CHAMBERS * ELENA STANCU 1,2, CATALIN VANCEA

More information

Monte Carlo Simulation concerning Particle Therapy

Monte Carlo Simulation concerning Particle Therapy Monte Carlo Simulation concerning Particle Therapy Masaaki Takashina Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan INTRODUCTION It is well known that the particle therapy has some

More information

Improvements to the UK Primary Standard Therapy Level Electron Beam Calorimeter

Improvements to the UK Primary Standard Therapy Level Electron Beam Calorimeter Radiotherapy Standards Users Group meeting NPL, 5 th June 2007 Improvements to the UK Primary Standard Therapy Level Electron Beam Calorimeter Mark Bailey, G A Bass, N D Lee, G A Mapp Contents 1. History

More information

An introduction to IAEA TRS-483

An introduction to IAEA TRS-483 An introduction to IAEA TRS-483 P Andreo, Professor of Medical Radiation Physics Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden Journées Scientifiques de la SFPM Toulouse 2018

More information

Study of the influence of phantom material and size on the calibration of ionization chambers in terms of absorbed dose to water

Study of the influence of phantom material and size on the calibration of ionization chambers in terms of absorbed dose to water JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 3, SUMMER 2006 Study of the influence of phantom material and size on the calibration of ionization chambers in terms of absorbed dose to water

More information

Progress in calculations of k Q for TG-51

Progress in calculations of k Q for TG-51 1 Progress in calculations of k Q for TG-51 D. W. O. Rogers Carleton Laboratory for Radiotherapy Physics, Physics Dept, Carleton University Ottawa http://www.physics.carleton.ca/~drogers AAPM Charlotte,NC,

More information

Limitations and benchmarks of EGSnrc

Limitations and benchmarks of EGSnrc Limitations and benchmarks of EGSnrc D. W. O. Rogers, Carleton Laboratory for Radiotherapy Physics, Physics Dept, Carleton University, Ottawa http://www.physics.carleton.ca/~drogers AIFM Workshop, Rome,

More information

Implementation of the IAEA-AAPM Code of Practice for the dosimetry of small static fields used in external beam radiotherapy

Implementation of the IAEA-AAPM Code of Practice for the dosimetry of small static fields used in external beam radiotherapy Implementation of the IAEA-AAPM Code of Practice for the dosimetry of small static fields used in external beam radiotherapy M. Saiful Huq, PhD, FAAPM, FInstP Dept. of Radiation Oncology, University of

More information

Investigation of the standard temperature- pressure correction factor at low x-ray energies

Investigation of the standard temperature- pressure correction factor at low x-ray energies Investigation of the standard temperaturepressure correction factor at low x-ray energies D. J. La Russa, M. R. McEwen and D. W. O. Rogers Carleton Laboratory for Radiotherapy Physics. Physics Dept, Carleton

More information

FOREWORD In 1987 the IAEA published a Code of Practice entitled Absorbed Dose Determination in Photon and Electron Beams: An International Code of

FOREWORD In 1987 the IAEA published a Code of Practice entitled Absorbed Dose Determination in Photon and Electron Beams: An International Code of IAEA-TECDOC-1173 Review of data and methods recommended in the international code of practice for dosimetry IAEA Technical Reports Series No. 381, The Use of Plane Parallel Ionization Chambers in High

More information

Comparison between TG-51 and TRS-398: Electron Contamination Effect on Photon Beam Quality Specification.

Comparison between TG-51 and TRS-398: Electron Contamination Effect on Photon Beam Quality Specification. Comparison between TG-51 and TRS-398: Electron Contamination Effect on Photon Beam Quality Specification. Antonio Lopez Medina, Antonio Teijeiro, Daniela Medal, Francisco Salvador, Julio Vazquez, Manuel

More information

Code of Practice for the Absorbed Dose Determination in High Energy Photon and Electron Beams

Code of Practice for the Absorbed Dose Determination in High Energy Photon and Electron Beams Code of Practice for the Absorbed Dose Determination in High Energy Photon and Electron Beams NEDERLANDSE COMMISSIE VOOR STRALINGSDOSIMETRIE Report 18 of the Netherlands Commission on Radiation Dosimetry

More information

BEAMnrc: a code to simulate radiotherapy external beam sources

BEAMnrc: a code to simulate radiotherapy external beam sources BEAMnrc: a code to simulate radiotherapy external beam sources D.W.O. Rogers Carleton Laboratory for Radiotherapy Physics. Physics Dept, Carleton University Ottawa, Canada http://www.physics.carleton.ca/~drogers

More information

7. a XV-2 high spatial resolution lm detector (Kodak). Important parameters of these detectors are given in Table1. The ionization chambers and the di

7. a XV-2 high spatial resolution lm detector (Kodak). Important parameters of these detectors are given in Table1. The ionization chambers and the di Proceedings of the Second International Workshop on EGS, 8.-12. August 2000, Tsukuba, Japan KEK Proceedings 200-20, pp.264-271 Variation of Dose Distribution by Detectors for Narrow Beam T. Fujisaki, H.

More information

Monitor Unit Calculations for Photon and Electrons. AAMD Meeting Raleigh, NC October 3, John P. Gibbons Chief of Clinical Physics

Monitor Unit Calculations for Photon and Electrons. AAMD Meeting Raleigh, NC October 3, John P. Gibbons Chief of Clinical Physics Monitor Unit Calculations for Photon and Electrons AAMD Meeting Raleigh, NC October 3, 2014 John P. Gibbons Chief of Clinical Physics Outline I. TG71 Formation and Charge II. Photon Calculations III. Electron

More information

The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1

The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1 The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1 1 Medical Radiation Physics Group, University of Oldenburg and Pius

More information

Dosimetry and beam calibration

Dosimetry and beam calibration Dosimetry and beam calibration Hugo Palmans 1,2 and Stanislav Vatnitksy 1 1 EBG MedAustron GmbH, Wiener Neustadt, Austria 2 National Physical Laboratory, Teddington, UK 1 Overview - Learning objectives

More information

factors for NE2561 ionization chambers in 3 cm x 3 cm beams of 6 MV and 10 MV photons

factors for NE2561 ionization chambers in 3 cm x 3 cm beams of 6 MV and 10 MV photons Calorimetric determination of k Q factors for NE2561 ionization chambers in 3 cm x 3 cm beams of 6 MV and 10 MV photons PTB s water calorimeter in front of Elekta Precise medical linac Calorimetric determination

More information

COMPARISON OF ABSORBED DOSE TO AIR CALIBRATION FACTORS FOR A PARALLEL PLATE IONIZATION CHAMBER*

COMPARISON OF ABSORBED DOSE TO AIR CALIBRATION FACTORS FOR A PARALLEL PLATE IONIZATION CHAMBER* Original Article COMPARISON OF ABSORBED DOSE TO AIR CALIBRATION FACTORS FOR A PARALLEL PLATE IONIZATION CHAMBER* Roseli T. Bulla 1, Linda V.E. Caldas 2 * Study developed at Instituto de Pesquisas Energéticas

More information

ELECTRON INTERACTIONS

ELECTRON INTERACTIONS Applications of Electron beam therapy: The principal applications are (a) the treatment of skin and lip cancers, (b) chest wall irradiation for breast cancer, (c) administering boost dose to nodes, and

More information

Chapter 9: Calibration of Photon and Electron Beams

Chapter 9: Calibration of Photon and Electron Beams Chapter 9: Calibration of Photon and Electron Beams Set of 189 slides based on the chapter authored by P. Andreo, J.P. Seuntjens, and E.B. Podgorsak of the IAEA publication (ISBN 92-0-107304-6): Radiation

More information

ERRATA LIST AND UPDATES TO IAEA TRS-398 (2000) 1

ERRATA LIST AND UPDATES TO IAEA TRS-398 (2000) 1 ERRATA LIST AND UPDATES TO IAEA TRS-398 (2000) 1 1. page 034 Table 3 (cont) Chambers SNC 100730 and 100740 are replaced, respectively, by model numbers SNC 100700-0 and 100700-1. Their radii are changed

More information

Small Field Dosimetry and IAEA/AAPM Protocol

Small Field Dosimetry and IAEA/AAPM Protocol Small Field Dosimetry and IAEA/AAPM Protocol Thomas Rockwell Mackie Director of Medical Devices Morgridge Institute for Research and Emeritus Professor, Department of Medical Physics University of Wisconsin

More information

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved Assessment Of The Effectiveness Of Collimation Of Cs 137 Panoramic Beam On Tld Calibration Using A Constructed Lead Block Collimator And An ICRU Slab Phantom At SSDL In Ghana. C.C. Arwui 1, P. Deatanyah

More information

Comparison of Primary Doses Obtained in Three 6 MV Photon Beams Using a Small Attenuator

Comparison of Primary Doses Obtained in Three 6 MV Photon Beams Using a Small Attenuator Comparison of Primary Doses Obtained in Three 6 MV Photon Beams Using a Small Attenuator Christoph Trauernicht Groote Schuur Hospital & University of Cape Town Method is based on: Background A method of

More information

DOI /

DOI / Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Accounting for the fringe magnetic field from the bending magnet

More information

Determination of absorbed dose to water for 60Co by the scaling theorem. M. Boutillon and A.-M. Perroche (1)

Determination of absorbed dose to water for 60Co by the scaling theorem. M. Boutillon and A.-M. Perroche (1) Rapport BIPM92/1 Determination of absorbed dose to water for 60Co by the scaling theorem M. Boutillon and A.M. Perroche (1) Bureau International des Poids et Mesures, F92312 Sevres Cedex Abstract A simple

More information

ABSTRACT. Keywords: Megavoltage, dosimetry, TG51 protocol, TG21 protocol, parallel-plate chambers, crosscomparison. INTRODUCTION

ABSTRACT. Keywords: Megavoltage, dosimetry, TG51 protocol, TG21 protocol, parallel-plate chambers, crosscomparison. INTRODUCTION CALCULATED TG51 TO TG21 ABSORBED-DOSE RATIOS FOR MOST WIDELY USED CYLINDRICAL AND PARALLEL-PLATE ION CHAMBERS OVER A RANGE OF PHOTON AND ELECTRON ENERGIES R.C. Tailor, and W.F. Hanson ABSTRACT The change

More information

BIPM Key Comparison BIPM.RI(I)-K6 PROTOCOL 3.0 CCRI(I) 6 November 2017

BIPM Key Comparison BIPM.RI(I)-K6 PROTOCOL 3.0 CCRI(I) 6 November 2017 COMPARISON OF ABSORBED DOSE TO WATER AT HIGH PHOTON ENERGIES AT A REFERENCE FACILITY BIPM Key Comparison BIPM.RI(I)-K6 PROTOCOL 3.0 CCRI(I) 6 November 2017 Bureau International des Poids et Mesures Pavillon

More information

Referensdosimetri. Crister Ceberg Medical Radiation Physics Lund University Sweden

Referensdosimetri. Crister Ceberg Medical Radiation Physics Lund University Sweden Referensdosimetri Crister Ceberg Medical Radiation Physics Lund University Sweden Reference dosimetry Determination of absorbed dose to water under reference conditions Not accounting for uncertainties

More information

Status of PRad Experiment

Status of PRad Experiment Status of PRad Experiment Chao Gu Duke University For PRad Collaboration Outline The Proton Charge Radius Experiment Setup Analysis Status and Preliminary Results 2 The Proton Charge Radius Puzzle Proton

More information

Determination of Absolute Neutron Fluence to sub-0.1% uncertainty (and better)

Determination of Absolute Neutron Fluence to sub-0.1% uncertainty (and better) Determination of Absolute Neutron Fluence to sub-0.1% uncertainty (and better) Andrew Yue University of Maryland / NIST for the Alpha-Gamma Collaboration NIST-ILL-Sussex neutron lifetime experiments Neutron

More information

Heuijin Lim, Manwoo Lee, Jungyu Yi, Sang Koo Kang, Me Young Kim, Dong Hyeok Jeong

Heuijin Lim, Manwoo Lee, Jungyu Yi, Sang Koo Kang, Me Young Kim, Dong Hyeok Jeong Original Article PMP Progress in Medical Physics 28(2), June 2017 https://doi.org/10.14316/pmp.2017.28.2.49 pissn 2508-4445, eissn 2508-4453 Electron Energy Distribution for a Research Electron LINAC Heuijin

More information

Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling.

Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling. Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling. 5 Sergei Zavgorodni 1,2, Eyad Alhakeem 2,1 and Reid Townson 2,1 1 Department of

More information

Geant4 and Fano cavity : where are we?

Geant4 and Fano cavity : where are we? Geant4 and Fano cavity : where are we? S. Elles, V. Ivanchenko, M. Maire, L. Urban To cite this version: S. Elles, V. Ivanchenko, M. Maire, L. Urban. Geant4 and Fano cavity : where are we?. Third McGill

More information

PTRAN. McPTRAN.MEDIA, McPTRAN.CAVITY & McPTRAN.RZ. Hugo Palmans

PTRAN. McPTRAN.MEDIA, McPTRAN.CAVITY & McPTRAN.RZ. Hugo Palmans PTRAN McPTRAN.MEDIA, McPTRAN.CAVITY & McPTRAN.RZ Hugo Palmans Centre for Acoustics & Ionising Radiation, National Physical Laboratory, Teddington, Middlesex, UK Louvain-la-Neuve 1994 Why PTRAN? 1.07 1.06

More information

CHAPTER 5 EFFECTIVE ATOMIC NUMBER OF SELECTED POLYMERS BY GAMMA BACKSCATTERING TECHNIQUE

CHAPTER 5 EFFECTIVE ATOMIC NUMBER OF SELECTED POLYMERS BY GAMMA BACKSCATTERING TECHNIQUE CHAPTER 5 EFFECTIVE ATOMIC NUMBER OF SELECTED POLYMERS BY GAMMA BACKSCATTERING TECHNIQUE Page no. 5.1 Introduction 132 5.2 Methods and measurements 132 5.3 Saturation thickness of elements and polymers

More information

) for Varian TrueBeam high-dose-rate therapy beams

) for Varian TrueBeam high-dose-rate therapy beams JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 13, NUMBER 6, 2012 Ion recombination correction factors (P ion ) for Varian TrueBeam high-dose-rate therapy beams Stephen F. Kry, 1a Richard Popple,

More information

Estimating proton beam energy spread using Bragg peak measurement

Estimating proton beam energy spread using Bragg peak measurement Estimating proton beam energy spread using Bragg peak measurement V. Anferov 1, V. Derenchuk, R. Moore, A. Schreuder ProNova Solutions LLC, Knoxville, TN. 1. Introduction ProNova is installing and commissioning

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 308 Angular dependence of 662 kev multiple backscattered gamma photons in Aluminium Ravindraswami K a, Kiran K U b, Eshwarappa K M b and Somashekarappa H M c* a St Aloysius College (Autonomous), Mangalore

More information

Simulation Modeling in Dosimetry

Simulation Modeling in Dosimetry Simulation Modeling in Dosimetry Aleksei Zhdanov Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russian Federation jjj1994@yandex.ru Leonid Dorosinskiy

More information

General characteristics of radiation dosimeters

General characteristics of radiation dosimeters General characteristics of radiation dosimeters and a terminology to describe them D. W. O. Rogers, Carleton Laboratory for Radiotherapy Physics, Physics Dept, Carleton University, Ottawa http://www.physics.carleton.ca/~drogers

More information

Outline. Indrin J. Chetty, AAPM 2006 Monte Carlo CE course. Indrin J. Chetty Henry Ford Hospital. David W. O. Rogers Carleton University

Outline. Indrin J. Chetty, AAPM 2006 Monte Carlo CE course. Indrin J. Chetty Henry Ford Hospital. David W. O. Rogers Carleton University AAPM Task Group Report No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning Indrin J. Chetty Henry Ford Hospital David W. O.

More information

AIRFLY: Measurement of the Air Fluorescence induced by electrons

AIRFLY: Measurement of the Air Fluorescence induced by electrons AIRFLY: Measurement of the Air Fluorescence induced by electrons Valerio Verzi INFN Sezione di Roma II For the Airfly collaboration 9 th Topical Seminar on Innovative Particle and Radiation Detectors 23-26

More information

ABSORBED DOSE BEAM QUALITY FACTORS FOR CYLINDRICAL ION CHAMBERS: EXPERIMENTAL DETERMINATION AT 6 AND 15 MV PHOTON BEAMS

ABSORBED DOSE BEAM QUALITY FACTORS FOR CYLINDRICAL ION CHAMBERS: EXPERIMENTAL DETERMINATION AT 6 AND 15 MV PHOTON BEAMS ABSORBED DOSE BEAM QUALITY FACTORS FOR CYLINDRICAL ION CHAMBERS: EXPERIMENTAL DETERMINATION AT 6 AND 15 MV PHOTON BEAMS C. CAPORALI, AS. GUERRA, R.F. LAITANO, M. PIMPINELLA ENEA-Casaccia, Departimento

More information

Comments on ICRU Report 64: Dosimetry of High-Energy Photon Beams based on Standards of Absorbed Dose to Water

Comments on ICRU Report 64: Dosimetry of High-Energy Photon Beams based on Standards of Absorbed Dose to Water Comments on ICRU Report 64: Dosimetry of High-Energy Photon Beams based on Standards of Absorbed Dose to Water D.W.O. Rogers Ionizing Radiation Standards National Research Council of Canada Ottawa, K1A

More information

FLUKA simulations of selected topics regarding proton pencil beam scanning

FLUKA simulations of selected topics regarding proton pencil beam scanning FLUKA simulations of selected topics regarding proton pencil beam scanning C. Bäumer, J. Farr, J. Lambert and B. Mukherjee Westdeutsches Protonentherapiezentrum Essen, Germany T. Mertens, and B. Marchand

More information

PHITS calculation of the radiation field in HIMAC BIO

PHITS calculation of the radiation field in HIMAC BIO PHITS calculation of the radiation field in HIMAC BIO Ondřej Ploc, Yukio Uchihori, Hisashi Kitamura, Lembit Sihver National Institute of Radiological Sciences, Chiba, Japan Nuclear Physics Institute, Prague,

More information

Electron therapy Class 2: Review questions

Electron therapy Class 2: Review questions Electron therapy Class 2: Review questions 1 Raphex Question: T63, 2002 In what situation is electron backscatter likely to be a problem? A. Using 1cm of tissue equivalent bolus on the skin. B. Using a

More information

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in.

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in. A Monte Carlo Study of the Relationship between the Time Structures of Prompt Gammas and in vivo Radiation Dose in Proton Therapy Wook-Geun Shin and Chul Hee Min* Department of Radiation Convergence Engineering,

More information

Neutron Structure Function from BoNuS

Neutron Structure Function from BoNuS Neutron Structure Function from BoNuS Stephen BültmannB Old Dominion University for the CLAS Collaboration The Structure of the Neutron at Large x The BoNuS Experiment in 005 First Results from the BoNuS

More information

Chapter 8 Electron Beams: Physical and Clinical Aspects

Chapter 8 Electron Beams: Physical and Clinical Aspects 1 Chapter 8 Electron Beams: Physical and Clinical Aspects This set of 91 slides is based on Chapter 8 authored by W. Strydom, W. Parker, and M. Olivares of the IAEA publication (ISBN 92-0-107304-6): Radiation

More information

Calorimetry for Absorbed-dose Measurements at BNM-LNHB

Calorimetry for Absorbed-dose Measurements at BNM-LNHB Calorimetry for Absorbed-dose Measurements at BNM-LNHB J. Daures, A. Ostrowsky, P. Gross J.P. Jeannot and J.Gouriou BNM-LNHB, CEA/Saclay, Bat 534, F-91191 Gif-sur-Yvette Cedex Abstract At BNM-LNHB, the

More information

Recent Activities on Neutron Calibration Fields at FRS of JAERI

Recent Activities on Neutron Calibration Fields at FRS of JAERI Recent Activities on Neutron Calibration Fields at FRS of JAERI Michio Yoshizawa, Yoshihiko Tanimura, Jun Saegusa and Makoto Yoshida Department of Health Physics, Japan Atomic Energy Research Institute

More information

Monte Carlo modeling of an electronic brachytherapy source using MCNP5 and EGSnrc

Monte Carlo modeling of an electronic brachytherapy source using MCNP5 and EGSnrc Monte Carlo modeling of an electronic brachytherapy source using MCNP5 and EGSnrc Stephen D. Davis and Larry A. DeWerd University of Wisconsin, Madison, WI 13 th UK Monte Carlo User Group meeting March

More information

Design, construction and characterization of a portable irradiator to calibrate installed ambient dose equivalent monitors

Design, construction and characterization of a portable irradiator to calibrate installed ambient dose equivalent monitors 6 th International Congress of Metrology, 05004 (203) DOI: 0.05/ metrology/20305004 C Owned by the authors, published by EDP Sciences, 203 Design, construction and characterization of a portable irradiator

More information

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.83-87 (2) ARTICLE Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Toshioh FUJIBUCHI,2,*, Satoshi

More information

PREX Simulation Update

PREX Simulation Update PREX Simulation Update Rakitha Beminiwattha Syracuse University rakithab@jlab.org 1 Outline PREX-II Collimator Plastic Shielding for Neutrons PREX-II Background Radiation Effects of Septum Magnet Fringe

More information

BEAM LOSS DUE TO FOIL SCATTERING IN THE SNS ACCUMULATOR RING*

BEAM LOSS DUE TO FOIL SCATTERING IN THE SNS ACCUMULATOR RING* BEAM LOSS DUE TO FOIL SCATTERING IN THE SNS ACCUMULATOR RING* J.A. Holmes and M.A. Plum, ORNL, Oak Ridge, TN, 37831, USA* Abstract In order to better understand the contribution of from the primary stripper

More information

Preliminary Uncertainty Analysis at ANL

Preliminary Uncertainty Analysis at ANL Preliminary Uncertainty Analysis at ANL OECD/NEA WPEC Subgroup 33 Meeting November 30, 2010 Paris, France W. S. Yang, G. Aliberti, R. D. McKnight Nuclear Engineering Division Argonne National Laboratory

More information

Georgia Institute of Technology. Radiation Detection & Protection (Day 3)

Georgia Institute of Technology. Radiation Detection & Protection (Day 3) Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program Ph.D. Qualifier Exam Spring Semester 2009 Your ID Code

More information

Published text: Institute of Cancer Research Repository Please direct all s to:

Published text: Institute of Cancer Research Repository   Please direct all  s to: This is an author produced version of an article that appears in: MEDICAL PHYSICS The internet address for this paper is: https://publications.icr.ac.uk/375/ Copyright information: http://www.aip.org/pubservs/web_posting_guidelines.html

More information

Air Kerma Primary Standard: Experimental and. Simulation Studies on Cs-137. J. Cardoso, L. Santos, C. Oliveira

Air Kerma Primary Standard: Experimental and. Simulation Studies on Cs-137. J. Cardoso, L. Santos, C. Oliveira Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137 J. Cardoso, L. Santos, C. Oliveira SUMMARY: i. The primary standard ii. The irradiation room iii. Experimental results iv. Simulation

More information

IAEA TRS May 2001 (V.10A) PUBLISHED BY THE IAEA ON BEHALF OF IAEA, WHO, PAHO, AND ESTRO INTERNATIONAL ATOMIC ENERGY AGENCY IAEA

IAEA TRS May 2001 (V.10A) PUBLISHED BY THE IAEA ON BEHALF OF IAEA, WHO, PAHO, AND ESTRO INTERNATIONAL ATOMIC ENERGY AGENCY IAEA IAEA TRS-398 Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water Pedro Andreo, Dosimetry and Medical

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 316 Effective atomic number of composite materials by Compton scattering - nondestructive evaluation method Kiran K U a, Ravindraswami K b, Eshwarappa K M a and Somashekarappa H M c* a Government Science

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

Development of a water calorimeter for medium energy x-rays

Development of a water calorimeter for medium energy x-rays Development of a water calorimeter for medium energy x-rays Leon de Prez Eduard van Dijk Patricia Damen Nederlands Meetinstituut Introduction Introduction Design and construction Measurement assembly Correction

More information

APPLIED RADIATION PHYSICS

APPLIED RADIATION PHYSICS A PRIMER IN APPLIED RADIATION PHYSICS F A SMITH Queen Mary & Westfield College, London fe World Scientific m Singapore * New Jersey London Hong Kong CONTENTS CHAPTER 1 : SOURCES of RADIATION 1.1 Introduction

More information

LXe (part B) Giovanni Signorelli. Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica and Scuola Normale Superiore, Pisa (Italy)

LXe (part B) Giovanni Signorelli. Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica and Scuola Normale Superiore, Pisa (Italy) LXe (part B) Giovanni Signorelli Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica and Scuola Normale Superiore, Pisa (Italy) PSI, February 2003 1 MEG internal meeting 2 MC: Outline shape-qe

More information

Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charg

Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charg Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charge Radius Puzzle refers to 7 σ discrepancy between the

More information

Direct measurement of the 17 O(p,α) 14 N reaction at energies of astrophysical interest at LUNA

Direct measurement of the 17 O(p,α) 14 N reaction at energies of astrophysical interest at LUNA Direct measurement of the 17 O(p,α) 14 N reaction at energies of astrophysical interest at LUNA SUPA, School of Physics and Astronomy, the University of Edinburgh E-mail: carlo.bruno@ed.ac.uk LUNA collaboration

More information

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research Prompt gamma measurements for the verification of dose deposition in proton therapy Two Proton Beam Facilities for Therapy and Research Ion Beam Facilities in Korea 1. Proton therapy facility at National

More information

TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137

TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137 TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137 AUTHORS: J. Cardoso, L. Santos, C. Oliveira ADRESS: Instituto Tecnológico e Nuclear Estrada Nacional 10; 2686-953 Sacavém;

More information

Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations

Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations Rowen

More information

Andrew D. Kent. 1 Introduction. p 1

Andrew D. Kent. 1 Introduction. p 1 Compton Effect Andrew D. Kent Introduction One of the most important experiments in the early days of quantum mechanics (93) studied the interaction between light and matter; it determined the change in

More information

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy Journal of Magnetics 19(1), 15-19 (2014) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2014.19.1.015 A Study on Effective Source-Skin Distance using Phantom in Electron

More information

Measurement of the e + e - π 0 γ cross section at SND

Measurement of the e + e - π 0 γ cross section at SND Measurement of the e + e - π 0 γ cross section at SND L.Kardapoltsev (for SND collaboration) Budker Institute of Nuclear Physics, Novosibirsk state university PhiPsi 2017, Mainz, Germany June 2017 Outline

More information

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators N. Golnik 1, P. Kamiński 1, M. Zielczyński 2 1 Institute of Precision and Biomedical Engineering,

More information

Il picco di Bragg. G. Battistoni INFN Milano. 08/06/2015 G. Battistoni

Il picco di Bragg. G. Battistoni INFN Milano. 08/06/2015 G. Battistoni Il picco di Bragg G. Battistoni INFN Milano 08/06/015 G. Battistoni 1 Φ(z) The physics of Bragg Peak 180 MeV proton in water Longitudinal profile: Transversel profile: Φ(z,x) dominated by interaction with

More information

Comparison of FLUKA and STAC8 for shielding calculations of the hard X-ray line of the LCLS

Comparison of FLUKA and STAC8 for shielding calculations of the hard X-ray line of the LCLS SLAC RADIATION PHYSICS NOTE RP-08-11 September 23, 2008 Comparison of FLUKA and STAC8 for shielding calculations of the hard X-ray line of the LCLS J. Vollaire, A. Prinz Radiation Protection Department,

More information

I. INTRODUCTION EXPERIMENTAL

I. INTRODUCTION EXPERIMENTAL International Journal of Computational Engineering Research Vol, 04 Issue, 4 Simulation of Photon and Electron dose distributions by 5 code for the treatment area using the linear electron accelerator

More information

High dose-per-pulse electron beam dosimetry A model to correct for the ion recombination in the Advanced Markus ionization chamber

High dose-per-pulse electron beam dosimetry A model to correct for the ion recombination in the Advanced Markus ionization chamber High dose-per-pulse electron beam dosimetry A model to correct for the ion recombination in the Advanced Markus ionization chamber Kristoffer Petersson, a) Maud Jaccard, Jean-Francßois Germond, Thierry

More information