VORTEX A NEW HIGH PERFORMANCE SILICON DRIFT DETECTOR FOR XRD AND XRF APPLICATIONS

Size: px
Start display at page:

Download "VORTEX A NEW HIGH PERFORMANCE SILICON DRIFT DETECTOR FOR XRD AND XRF APPLICATIONS"

Transcription

1 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume VORTEX A NEW HIGH PERFORMANCE SILICON DRIFT DETECTOR FOR XRD AND XRF APPLICATIONS Shaul Barkan, Jan S. Iwanczyk, Bradley E. Patt, Liangyuan Feng, and Carolyn R. Tull Photon Imaging, Inc., Business Center Drive, Suite # 8, Northridge, CA ABSTRACT A new class of silicon drift detectors (SDD), called Vortex, with a large active area (~ 0.5 cm 2 ), high-energy resolution (<150 ev FWHM) and high-count rate capability (>1 Mcps) has been developed for X-ray diffraction (XRD) and X-ray fluorescence (XRF) applications. The Vortex design allows for a relatively large active area while still maintaining a very low anode capacitance (~ 60 ff). This very small detector capacitance results in a reduction of the seriesnoise component and hence a reduction of the overall inherent electronic noise. The Vortex detector utilizes novel patent pending structures that have produced very low dark current (both bulk silicon dark current and surface dark current), high electric field, uniform charge collection, low noise and high-sensitivity to low energy X-rays. An energy resolution of 143 ev FWHM was measured at 5.9 kev, 6 µs peaking time; < 250 ev FWHM was achieved at 250 ns with commensurate output count rates of greater than 400 Kcps. The details of the detector performance as a function of amplifier peaking time and input count rates, and as compared to a comparable Si(Li) detector, are discussed. INTRODUCTION The development of charge coupled devices (CCD's) for light-signal imaging, utilizing extremely low capacitance of the detector and readout circuitry, opened up a new chapter in possible nuclear detector designs. This also started a vigorous effort to develop silicon drift detectors for high-energy physics applications [1, 2]. Interest in the development of new structures for X-ray spectroscopy followed [3-6, 12-16]. The beauty of the drift detector design in this regard, is that, unlike traditional planar detectors, the SDD allows for a relatively large active area while still maintaining a very low capacitance (~60 ff) to achieve low noise. In order to take advantage of the low capacitance of the drift detector, the detector must be matched to a low capacitance input transistor. State-of-the-art low noise FETs (field effect transistors) for spectroscopy generally have a capacitance much larger than is optimal for use with the drift detector. In addition, standard techniques for coupling the FET to the drift detector anode typically add stray capacitance. Therefore, one approach has been to design low noise FETs, which can be integrated, or processed, directly on the detector substrate, thereby reducing the overall system capacitance [7-10]. However, it is difficult to achieve high a transconductance internal FET and anecdotal reports from several users of these detectors suggest that the preamplifier involving use of the internal FET may cause severe instability with count rate. Thus we have developed new patent pending techniques for the Vortex technology using highly optimized coupling of an external FET.

2 This document was presented at the Denver X-ray Conference (DXC) on Applications of X-ray Analysis. Sponsored by the International Centre for Diffraction Data (ICDD). This document is provided by ICDD in cooperation with the authors and presenters of the DXC for the express purpose of educating the scientific community. All copyrights for the document are retained by ICDD. Usage is restricted for the purposes of education and scientific research. DXC Website ICDD Website -

3 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume VORTEX DETECTOR The electrical and mechanical packaging for the Vortex detector was designed to accommodate the detector, Peltier cooler platforms, heat exchange assemblies and utilized vertical assembly techniques for interconnecting the detector with the electronics to ensure minimum microphonics and noise. The Vortex detector housing is shown in Figure 1. Figure 1. A Photo of the outer housing of the Vortex detector. The coin in front of the detector window is a quarter. The detector is optimally coupled to a special low noise FET and a custom-designed low noise preamplifier. Tennelec TC 244 and Canberra 2026X amplifiers, a Nucleus PCA multi-channel analyzer, and XIA DXP-X10P were used to characterize the detector response to various radioisotope sources. Spectral Response An 55 Fe spectrum, obtained with the Vortex SDD detector is shown in Figure 2. An energy resolution of 143 ev FWHM was obtained for the 5.9 kev photopeak, at an amplifier peaking time of 6 µs.

4 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume mm 2 SDD - Fe 55 Spectrum, 143eV 10,000 1,000 Counts Chanel Figure 2. An 55 Fe spectrum obtained with a 0.5 cm 2 Vortex SDD at 6 µs peaking time. Count Rate Performance Energy resolution as a function of amplifier peaking time for both a cryogenically cooled 30 mm 2 Si(Li) detector and the Vortex detector is shown in Figure 3. The rapid degradation in resolution for the Si(Li) detector at shorter peaking times is due to the larger capacitance of the Si(Li) detector compared with the SDD detector. Fe 55 FWHM of 30mm 2 Si(Li) and 50mm 2 SDD FWHM mm2 Si(Li) mm2 SDD Peaking Time [microsec] Figure 3. Comparison of the energy resolution as a function of amplifier peaking time, for a 30 mm 2 Si(Li) and the 0.5 cm 2 SDD Vortex detector, in response to 55 Fe. Figures 4 and 5 show Cu spectra from a Vortex SDD and the Si(Li) detector, respectively collected at 1 µs peaking time. The resolution advantage of the SDD at the short time constant is clearly apparent.

5 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume Figure 4. Cu spectrum from a 50 mm 2 SDD at 1 µs peaking time, with 60% dead time; Cu K α line is 200 ev FWHM (linear scale). Figure 5. Cu spectrum from a 30 mm 2 Si(Li) detector, at 1 µs peaking time, with 50% dead time; Cu K α line is 340 ev FWHM (linear scale). Using an X-ray tube excitation makes it possible to test the performance of this special detection unit (Vortex SDD plus DPP MCA) under very severe count rate conditions. In particular, we were most concerned about the throughput, resolution and peak shift performances. In the test we used a Cu foil sample irradiated with varying X-ray fluxes. Spectra were acquired at different peaking times under various input count rates (ICR) and output count rates (OCR). Table 1 shows the results obtained. Table 1. Cu Kα Resolution, Peak Shift vs. Throughput PeakingTime ICR DT OCR CuKα FWHM CuKα Peak Pos. [µs] [KCPS] [%] [KCPS] [ev] [KeV] Note: The peak position and resolution were determined using Gaussian Peak Fitting method. Background correction was applied for resolution calculations.

6 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume CONCLUSIONS The Vortex SDD has superior performance characteristics at high count rates and short amplifier shaping times compared with traditional Si(Li) and Ge detectors, and can be operated using only thermoelectric cooling, which enables compact and portable instrumentation. Energy resolutions of 143 ev FWHM at 6 µs peaking time and 250 ev FWHM at 250 ns peaking time (at 5.9 kev) makes the instrument ideal over a wide range of count rates for X-ray spectroscopy applications. The Vortex SDD package, as shown in Fig. 1 can be used for both XRD and XRF applications. The Vortex SDD can be mounted into the vacuum chamber of a scanning electron microscope or transmission electron microscope for standard chemical analysis or fast X-ray mapping applications [11]. In the very high count rate (> 1 Mcps) regime, with associated good energy resolution (<300 ev FWHM at Cu K α 8.4 kev), the Vortex SDD is also ideal for X-ray diffraction applications. ACKNOWLEDGEMENTS This work was sponsored in part by the DOE SBIR #DE-FG03-97ER82450, DOE SBIR #DE- FG03-99ER82853 and NIH SBIR #1R44-RR REFERENCES [1] E. Gatti & P. Rehak, Semiconductor Drift Chamber An Application of a Novel Charge Transport Scheme, Nucl. Instr. And Meth. In Phys. Res. 225 (1984) 608. [2] W. Chen, H. Kraner, Z. Li, P. Rehak, E. Gatti, A. Longni, M. Sampietro, P. Holl, J. Kemmer, U. Faschingbauer, B. Schmitt, A. Woner and J.P. Wurm, "Large Area Cylindrical Silicon Drift Detector," IEEE Trans. on Nucl. Sci. V39 (1992) [3] G. Bertuccio, A. Castoldi, A. Longoni, M. Sampietro and C. Gautheir, "New electrode geometry and potential distribution for soft X-ray drift detectors," Nucl. Inst. and Meth. in Phys. Res. A312 (1992) [4] P. Jalas, A. Niemela, W. Chen, P. Rehak, A. Castold, A. Longoni, "New Results with Semiconductor Drift Chambers for X-Ray Spectroscopy," IEEE Trans. on Nucl. Sci., V41 (1994) [5] E. Pinnoti, A. Longoni, M. Gambelli, L. Struder, P. Lechner, C.V. Zanthier, & H. Kraner, Room Temperature High Resolution X-Ray Spectroscopy with Silicon Drift Chambers, IEEE Trans. on Nucl. Sci., V42 (1995) 12. [6] J.S. Iwanczyk, B.E. Patt, G. Vilkelis, L. Rehn, J. Metz, B. Hedman & K. Hodgson, Simulation and Modeling of a New Silicon Drift Chamber X-ray Detector Design for Synchrotron Radiation Applications, Nucl. Instr. & Meth. in Phys. Res. A380 (1996) [7] M. Sampietro, L. Fasoli, P. Rehak and L. Struder, Novel p- JFET embedded in silicon radiation detectors that avoids preamplifier feedback resistor, IEEE Elect. Dev. Lett., 16 (1995) [8] G. Cesura, N. Findeis, D. Hauff, N. Hornel, J. Kemmer, P. Klein, P. Lechner, G. Lutz, R. Richter and H. Seitz, New pixel detector concepts based on junction field effect transistors on high resistivity silicon, Nucl. Instr. Meth. A377 (1996)

7 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume [9] P.F. Manfredi, V. Re and V. Speziali, Monolithic JFET preamplifier with nonresistive charge reset, IEEE Trans. Nucl. Sci. 45 (1998) [10] K. Misiakos and S. Kavadias, A silicon drift detector with a p-type JFET integrated in the n-well anode, Nucl. Instr. Meth. A458 (2001) [11] J.S. Iwanczyk, Bradley E. Patt, Carolyn R. Tull, and Shaul Barkan, High-Throughput, Large Area Silicon X-Ray Detectors For High-Resolution Spectroscopy Applications, Proceedings of the Microscopy and Microanalysis 2001 Conference, Long Beach, CA. Aug , Invited paper [12] J.S. Iwanczyk, B.E. Patt, C.R. Tull, and L.M. MacDonald, Novel X-Ray and Gamma-Ray Drift Detectors Based on Silicon and Compound Semiconductors, Proceedings of SPIE, Vol (1999) [13] J.S. Iwanczyk, B.E. Patt, C.R. Tull, J.D. Segal, C. Kenney, J. Bradley, B. Hedman, and K.O. Hodgson, Large Area Silicon Drift Detectors for X-Rays-New Results IEEE Trans. Nucl. Sci. Vol. 46, No. 3 (1999) [14] J.S. Iwanczyk and B.E. Patt, "New Detectors for XRF Analysis", Advances in X-Ray Analysis, V41 (1998) [15] J.D. Segal, C.H. Aw, J.D. Plummer, C. Kenney, S.I. Parker, G. Vilkelis, J.S. Iwanczyk, and B.E. Patt, "A Vertical High Voltage Termination Structure for High Resistivity Silicon Detectors", IEEE Trans. Nucl. Sci. Vol. 45, No. 3 (1998) [16] J.D. Segal, B.E. Patt, J.S. Iwanczyk, G. Vilkelis, J.D. Plummer, B. Hedman, and K.O. Hodgson, "A New Structure for Controlling Dark Current Due to Surface Generation in Drift Detectors, Nucl. Instr. Meth. A 414 (1998)

SILICON DRIFT DETECTORS FOR HIGH RESOLUTION, HIGH COUNT RATE X-RAY SPECTROSCOPY AT ROOM TEMPERATURE

SILICON DRIFT DETECTORS FOR HIGH RESOLUTION, HIGH COUNT RATE X-RAY SPECTROSCOPY AT ROOM TEMPERATURE Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 53 SILICON DRIFT DETECTORS FOR HIGH RESOLUTION, HIGH COUNT RATE X-RAY SPECTROSCOPY AT ROOM TEMPERATURE

More information

NEW X-RAY DETECTORS FOR XRF ANALYSIS. Jan S. Iwanczyk & Bradley E. Patt Photon Imaging, Inc., Northridge, CA 91324

NEW X-RAY DETECTORS FOR XRF ANALYSIS. Jan S. Iwanczyk & Bradley E. Patt Photon Imaging, Inc., Northridge, CA 91324 951 NEW X-RAY DETECTORS FOR XRF ANALYSIS Jan S. Iwanczyk & Bradley E. Patt Photon Imaging, Inc., Northridge, CA 91324 Abstract The use of miniaturized XRF instrumentation for in-vivo applications imposes

More information

A monolithic array of silicon drift detectors coupled to a single scintillator for γ-ray imaging with sub-millimeter position resolution

A monolithic array of silicon drift detectors coupled to a single scintillator for γ-ray imaging with sub-millimeter position resolution 1 A monolithic array of silicon drift detectors coupled to a single scintillator for γ-ray imaging with sub-millimeter position resolution C.Fiorini a*, A.Longoni a, F.Perotti b, C.Labanti c, E.Rossi c,

More information

Detectors for High Resolution Gamma-ray Imaging Based on a Single CsI(Tl) Scintillator Coupled to an Array of Silicon Drift Detectors

Detectors for High Resolution Gamma-ray Imaging Based on a Single CsI(Tl) Scintillator Coupled to an Array of Silicon Drift Detectors 1 Detectors for High Resolution Gamma-ray Imaging Based on a Single CsI(Tl) Scintillator Coupled to an Array of Silicon Drift Detectors C. Fiorini, A. Longoni, F. Perotti, C. Labanti, E. Rossi, P. Lechner,

More information

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Part A Principles of Semiconductor Detectors 1. Basic Principles 2. Typical Applications 3. Planar Technology 4. Read-out

More information

Semiconductor Drift Detectors: Applications and New Devices

Semiconductor Drift Detectors: Applications and New Devices X-RAY SPECTROMETRY X-Ray Spectrom. 28, 312 316 (1999) Semiconductor Drift Detectors: Applications and New Devices A. Castoldi, 1 C. Fiorini, 1 C. Guazzoni, 1 * A. Longoni 1 and L. Strüder 2 1 Politecnico

More information

Silicon Drift Detectors: Understanding the Advantages for EDS Microanalysis. Patrick Camus, PhD Applications Scientist March 18, 2010

Silicon Drift Detectors: Understanding the Advantages for EDS Microanalysis. Patrick Camus, PhD Applications Scientist March 18, 2010 Silicon Drift Detectors: Understanding the Advantages for EDS Microanalysis Patrick Camus, PhD Applications Scientist March 18, 2010 EDS Detector Requirements Detect whole energy range of x-rays 50 ev

More information

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector C. Fiorini, member, IEEE, A. Gola, M. Zanchi, A. Longoni, P. Lechner, H. Soltau, L. Strüder Abstract In this work

More information

BENEFITS OF IMPROVED RESOLUTION FOR EDXRF

BENEFITS OF IMPROVED RESOLUTION FOR EDXRF 135 Abstract BENEFITS OF IMPROVED RESOLUTION FOR EDXRF R. Redus 1, T. Pantazis 1, J. Pantazis 1, A. Huber 1, B. Cross 2 1 Amptek, Inc., 14 DeAngelo Dr, Bedford MA 01730, 781-275-2242, www.amptek.com 2

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

Time-Resolved μ-xrf and Elemental Mapping of Biological Materials

Time-Resolved μ-xrf and Elemental Mapping of Biological Materials 296 Time-Resolved μ-xrf and Elemental Mapping of Biological Materials K. Tsuji 1,2), K. Tsutsumimoto 1), K. Nakano 1,2), K. Tanaka 1), A. Okhrimovskyy 1), Y. Konishi 1), and X. Ding 3) 1) Department of

More information

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 59 DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN

More information

Analysis of Background Events in Silicon Drift Detectors

Analysis of Background Events in Silicon Drift Detectors Analysis of Background Events in Silicon Drift Detectors T. Eggert a, P. Goldstrass a J. Kemmer a A. Pahlke b a Ketek GmbH, Gustav-Heinemann-Ring 125, D-81739 München, Germany b MPI Halbleiterlabor, Otto-Hahn-Ring

More information

X-ray spectrometry with Peltier-cooled large area avalanche photodiodes

X-ray spectrometry with Peltier-cooled large area avalanche photodiodes Nuclear Instruments and Methods in Physics Research B 213 (24) 267 271 www.elsevier.com/locate/nimb X-ray spectrometry with Peltier-cooled large area avalanche photodiodes L.M.P. Fernandes, J.A.M. Lopes,

More information

Outline. Introduction, motivation Readout electronics, Peltier cooling Input J-FETsJ

Outline. Introduction, motivation Readout electronics, Peltier cooling Input J-FETsJ Progress in low energy X-rayX spectroscopy using semi-insulating insulating GaAs detectors F. Dubecký 1, B. Zaťko 1, P. Boháček 1, L. Ryć 2, E. Gombia 2, and V. Nečas 3 1 IEE SAS, Bratislava, Slovakia

More information

PERFORMANCE OF A ROOM TEMPERATURE GAS PROPORTIONAL SCINTILLATION COUNTER IN X-RAY ANALYSIS OF METALLIC ALLOYS EXCITED WITH ALPHA PARTICLES

PERFORMANCE OF A ROOM TEMPERATURE GAS PROPORTIONAL SCINTILLATION COUNTER IN X-RAY ANALYSIS OF METALLIC ALLOYS EXCITED WITH ALPHA PARTICLES 249 PERFORMANCE OF A ROOM TEMPERATURE GAS PROPORTIONAL SCINTILLATION COUNTER IN X-RAY ANALYSIS OF METALLIC ALLOYS EXCITED WITH ALPHA PARTICLES F. I. G. M. Borges, S. J. C. do Carmo, T. H. V. T. Dias, F.

More information

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS 302 ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS M. Song 1, K. Mitsuishi 1, M. Takeguchi 1, K. Furuya 1, R. C. Birtcher 2 1 High Voltage Electron Microscopy Station, National

More information

ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS

ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS 390 ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS J. C. Rao 1, 2 *, M. Song 2, K. Mitsuishi 2, M. Takeguchi 2, K. Furuya 2 1 Department

More information

AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD

AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD Copyright JCPDS-International Centre for Diffraction Data 2014 ISSN 1097-0002 219 AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD Takao Moriyama 1), Atsushi Morikawa 1), Makoto

More information

RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA

RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA 90 RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA Christopher G. Worley Los Alamos National Laboratory, MS G740, Los Alamos, NM 87545 ABSTRACT Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward

More information

GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS

GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS 176 177 GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS Robert W. Zuneska, Y. Rong, Isaac Vander, and F. J. Cadieu* Physics Dept., Queens College of CUNY, Flushing, NY 11367. ABSTRACT

More information

ORTEC. SLP Series Silicon Lithium-Drifted Planar Low-Energy X Ray Detector Product Configuration Guide

ORTEC. SLP Series Silicon Lithium-Drifted Planar Low-Energy X Ray Detector Product Configuration Guide ORTEC SLP Series Silicon Lithium-Drifted Planar Low-Energy Ray Detector For x-ray spectroscopy with a nuclear accelerator, radioactive source, or x-ray tube. Premium performance spectroscopy from 1 kev

More information

Review of Semiconductor Drift Detectors

Review of Semiconductor Drift Detectors Pavia October 25, 2004 Review of Semiconductor Drift Detectors Talk given by Pavel Rehak following a presentation on 5 th Hiroshima Symposium of Semiconductor Tracking Detectors Outline of the Review Principles

More information

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY Copyright -International Centre for Diffraction Data 2010 ISSN 1097-0002 CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY B. Chyba, M. Mantler, H. Ebel, R. Svagera Technische Universit Vienna,

More information

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K.

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. 783 SCOPE AND LIMITATIONS XRF ANALYSIS FOR SEMI-QUANTITATIVE Introduction Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. Historically x-ray fluorescence spectrometry has

More information

CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE

CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE 218 Chris M. Sparks 1, Elizabeth P. Hastings 2, George J. Havrilla 2, and Michael Beckstead 2 1. ATDF,

More information

SEM. Chemical Analysis in the. Elastic and Inelastic scattering. Chemical analysis in the SEM. Chemical analysis in the SEM

SEM. Chemical Analysis in the. Elastic and Inelastic scattering. Chemical analysis in the SEM. Chemical analysis in the SEM THE UNIVERSITY Chemical Analysis in the SEM Ian Jones Centre for Electron Microscopy OF BIRMINGHAM Elastic and Inelastic scattering Electron interacts with one of the orbital electrons Secondary electrons,

More information

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 266 NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

More information

Diffraction: spreading of waves around obstacles (EM waves, matter, or sound) Interference: the interaction of waves

Diffraction: spreading of waves around obstacles (EM waves, matter, or sound) Interference: the interaction of waves Diffraction & Interference Diffraction: spreading of waves around obstacles (EM waves, matter, or sound) Interference: the interaction of waves Diffraction in Nature What is Interference? The resultant

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

Nuclear Instruments and Methods in Physics Research A

Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 624 (2010) 270 276 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

Horst Ebel, Robert Svagera, Christian Hager, Maria F.Ebel, Christian Eisenmenger-Sittner, Johann Wernisch, and Michael Mantler

Horst Ebel, Robert Svagera, Christian Hager, Maria F.Ebel, Christian Eisenmenger-Sittner, Johann Wernisch, and Michael Mantler DETECTION OF SUBMONOLAYERS BY MEASUREMENT OF THE TOTAL ELECTRON YIELD (TEY) OF X-RAY EXCITED ELECTRON EMISSION Horst Ebel, Robert Svagera, Christian Hager, Maria F.Ebel, Christian Eisenmenger-Sittner,

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Energy Dispersive X-ray Spectroscopy B513 Stand: 19.10.2016 Contents 1 Introduction... 2 2. Fundamental Physics and Notation... 3 2.1. Alignments of the microscope... 3 2.2.

More information

A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS

A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 320 A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS Hiroyoshi SOEJIMA and

More information

CHEM-E5225 :Electron Microscopy X-Ray Spectrometry

CHEM-E5225 :Electron Microscopy X-Ray Spectrometry CHEM-E5225 :Electron Microscopy X-Ray Spectrometry 2016.11 Yanling Ge Outline X-ray Spectrometry X-ray Spectra and Images Qualitative and Quantitative X-ray Analysis and Imaging Discussion of homework

More information

InAs avalanche photodiodes as X-ray detectors

InAs avalanche photodiodes as X-ray detectors Home Search Collections Journals About Contact us My IOPscience InAs avalanche photodiodes as X-ray detectors This content has been downloaded from IOPscience. Please scroll down to see the full text.

More information

EDS Mapping. Ian Harvey Fall Practical Electron Microscopy

EDS Mapping. Ian Harvey Fall Practical Electron Microscopy EDS Mapping Ian Harvey Fall 2008 1 From: Energy Dispersive X-ray Microanalysis, An Introduction Kevex Corp. 1988 Characteristic X-ray generation p.2 1 http://www.small-world.net/efs.htm X-ray generation

More information

How we wanted to revolutionize X-ray radiography, and how we then "accidentally" discovered single-photon CMOS imaging

How we wanted to revolutionize X-ray radiography, and how we then accidentally discovered single-photon CMOS imaging How we wanted to revolutionize X-ray radiography, and how we then "accidentally" discovered single-photon CMOS imaging Stanford University EE Computer Systems Colloquium February 23 rd, 2011 EE380 Peter

More information

Pulse Height Analysis System (PHA) designed for W7-X Presented by Monika KUBKOWSKA

Pulse Height Analysis System (PHA) designed for W7-X Presented by Monika KUBKOWSKA Pulse Height Analysis System (PHA) designed for W7-X Presented by Monika KUBKOWSKA This scientific work has been partly supported by Polish Ministry of Science and Higher Education within the framework

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

Application of large-area avalanche photodiodes to energy-dispersive x-ray fluorescence analysis

Application of large-area avalanche photodiodes to energy-dispersive x-ray fluorescence analysis X-RAY SPECTROMETRY X-Ray Spectrom. 2; 3: 64 69 Application of large-area avalanche photodiodes to energy-dispersive x-ray fluorescence analysis L. M. P. Fernandes, J. A. M. Lopes, J. M. F. dos Santos and

More information

THE spectroscopic performance of large volume CdZnTe

THE spectroscopic performance of large volume CdZnTe 3098 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 6, DECEMBER 2004 Analysis of Detector Response Using 3-D Position-Sensitive CZT Gamma-Ray Spectrometers Feng Zhang, Student Member, IEEE, Zhong He,

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Chem 481 Lecture Material 3/20/09

Chem 481 Lecture Material 3/20/09 Chem 481 Lecture Material 3/20/09 Radiation Detection and Measurement Semiconductor Detectors The electrons in a sample of silicon are each bound to specific silicon atoms (occupy the valence band). If

More information

New perspectives in X-ray detection of concealed illicit materials brought by CdTe/CdZnTe spectrometric detectors

New perspectives in X-ray detection of concealed illicit materials brought by CdTe/CdZnTe spectrometric detectors New perspectives in X-ray detection of concealed illicit materials brought by CdTe/CdZnTe spectrometric detectors Jean-Marc Dinten, Jean-Louis Amans, Loïck Verger, Olivier Peyret CEA-LETI, MINATEC, Recherche

More information

Improvements for Absorption Spectroscopy at Beamlines A1, E4, X1

Improvements for Absorption Spectroscopy at Beamlines A1, E4, X1 Improvements for Absorption Spectroscopy at Beamlines A1, E4, X1 U. Brüggmann 1, N. Haack, M. Herrmann 2, S.K.J. Johnas 3, P. Kappen, K. Klementiev 4, E. Welter For an improvement of the conditions of

More information

STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION

STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 106 STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION F. A. Selim 1, D.P. Wells 1, J. F. Harmon 1,

More information

ION-EXCHANGE FILMS FOR ELEMENT CONCENTRATION IN X-RAY FLUORESCENCE ANALYSIS WITH TOTAL REFLECTION OF THE PRIMARY BEAM.

ION-EXCHANGE FILMS FOR ELEMENT CONCENTRATION IN X-RAY FLUORESCENCE ANALYSIS WITH TOTAL REFLECTION OF THE PRIMARY BEAM. 822 ION-EXCHANGE FILMS FOR ELEMENT CONCENTRATION IN X-RAY FLUORESCENCE ANALYSIS WITH TOTAL REFLECTION OF THE PRIMARY BEAM. Abstract A.P.Morovov, L.D.Danilin, V.V.Zhmailo, Yu.V.Ignatiev, A.E.Lakhtikov,

More information

Key words: avalanche photodiode, soft X-ray detector, scintillation γ-ray detector, imaging device PACS: 07.85;95.55.A;85.60.D

Key words: avalanche photodiode, soft X-ray detector, scintillation γ-ray detector, imaging device PACS: 07.85;95.55.A;85.60.D We have studied the performance of large area avalanche photodiodes (APDs) recently developed by Hamamatsu Photonics K.K, in high-resolution X-rays and γ- rays detections. We show that reach-through APD

More information

On the development of compound semi-conductor thallium bromide detectors for astrophysics

On the development of compound semi-conductor thallium bromide detectors for astrophysics On the development of compound semi-conductor thallium bromide detectors for astrophysics A. Owens *1, M. Bavdaz 1, I. Lisjutin 2, A. Peacock 1, S. Zatoloka 2 1 Astrophysics Division, ESA/ESTEC, Postbus

More information

Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers

Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers Nuclear Instruments and Methods in Physics Research A 441 (2000) 459}467 Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers Z. He *, W.Li, G.F. Knoll, D.K. Wehe,

More information

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM GEM at CERN Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM MicroStrip Gas Chamber Semiconductor industry technology: Photolithography Etching Coating Doping A. Oed Nucl. Instr. and Meth. A263 (1988) 351.

More information

FACTORS AFFECTING IN-LINE PHASE CONTRAST IMAGING WITH A LABORATORY MICROFOCUS X-RAY SOURCE

FACTORS AFFECTING IN-LINE PHASE CONTRAST IMAGING WITH A LABORATORY MICROFOCUS X-RAY SOURCE Copyright JCPDS-International Centre for Diffraction Data 26 ISSN 197-2 FACTORS AFFECTING IN-LINE PHASE CONTRAST IMAGING WITH A LABORATORY MICROFOCUS X-RAY SOURCE 31 K. L. Kelly and B. K. Tanner Department

More information

GEM: A new concept for electron amplification in gas detectors

GEM: A new concept for electron amplification in gas detectors GEM: A new concept for electron amplification in gas detectors F. Sauli, Nucl. Instr. & Methods in Physics Research A 386 (1997) 531-534 Contents 1. Introduction 2. Two-step amplification: MWPC combined

More information

Open Research Online The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs Open Research Online The Open University s repository of research publications and other research outputs Proton radiation damage study of the next generation of swept charge devices Conference or Workshop

More information

Advances in Field-Portable XRF

Advances in Field-Portable XRF Advances in Field-Portable XRF Volker Thomsen and Debbie Schatzlein Field-portable x-ray fluorescence (XRF) allows us to take the laboratory to the sample. The latest generation of such handheld x-ray

More information

Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes

Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes Rihua Mao, Liyuan Zhang, Ren-yuan Zhu California Institute of Technology Introduction Because of its immunity to magnetic

More information

XRF books: Analytical Chemistry, Kellner/Mermet/Otto/etc. 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures:

XRF books: Analytical Chemistry, Kellner/Mermet/Otto/etc. 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures: 1 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures: XRF spectroscopy 1 exam question. Notes on: www.nuigalway.ie/nanoscale/3rdspectroscopy.html XRF books: Analytical Chemistry,

More information

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg Pulse-shape shape analysis with a Broad-energy Ge-detector Marik Barnabé é Heider Dušan Budjáš Oleg Chkvorets Stefan Schönert MPI für f r Kernphysik Heidelberg Outline 1. Motivation and goals 2. BEGe detector

More information

Controlled Si-Drift Detectors

Controlled Si-Drift Detectors Controlled Si-Drift Detectors A.Castoldi Politecnico di Milano and INFN sez. Milano E-mail: andrea.castoldi@polimi.it Brookhaven National Laboratory, NY MPI Halbleiterlabor, Munich -potential [V] 65 60

More information

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 321 X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL Kazuhiro Takada 1,

More information

THE EFFECT OF THE SIGNAL PROCESSOR ON THE LINE SHAPE

THE EFFECT OF THE SIGNAL PROCESSOR ON THE LINE SHAPE 302 THE EFFECT OF THE SIGNAL PROCESSOR ON THE LINE SHAPE T. Papp 1,2 * and J. A. Maxwell 1 1 Cambridge Scientific, 175 Elizabeth Street, Guelph, ON, N1E 2X5, Canada, 2 Institute of Nuclear Research of

More information

Efficiency and Attenuation in CdTe Detectors

Efficiency and Attenuation in CdTe Detectors Efficiency and Attenuation in CdTe Detectors Amptek Inc. Bob Redus, May 5, 00 Amptek s XR-00T-CdTe is a high performance x-ray and gamma ray detector system. Like Amptek s other XR00 products, a detector

More information

arxiv: v2 [physics.ins-det] 8 Feb 2013

arxiv: v2 [physics.ins-det] 8 Feb 2013 Preprint typeset in JINST style - HYPER VERSION arxiv:1302.0278v2 [physics.ins-det] 8 Feb 2013 Investigation of gamma ray detection performance of thin LFS scintillator with MAPD readout E.Guliyev a, F.Ahmadov

More information

Final report on DOE project number DE-FG07-99ID High Pressure Xenon Gamma-Ray Spectrometers for Field Use

Final report on DOE project number DE-FG07-99ID High Pressure Xenon Gamma-Ray Spectrometers for Field Use Final report on DOE project number DE-FG07-99ID13772 High Pressure Xenon Gamma-Ray Spectrometers for Field Use Principle Investigator: Glenn K. Knoll Co-investigator: David K. Wehe, Zhong He, University

More information

MONTE-CARLO MODELING OF SILICON X-RAY DETECTORS

MONTE-CARLO MODELING OF SILICON X-RAY DETECTORS 274 MONTE-CARLO MODELING OF SILICON X-RAY DETECTORS Brian Cross (1), Greg Bale (2), Barrie Lowe (2) and Rob Sareen (2) (1) CrossRoads Scientific, 414 Av. Portola, El Granada, CA 94018-1823, USA. (2) Gresham

More information

Comparison of the Photo-peak Efficiencies between the Experimental Data of 137 Cs Radioactive Source with Monte Carlo (MC) Simulation Data

Comparison of the Photo-peak Efficiencies between the Experimental Data of 137 Cs Radioactive Source with Monte Carlo (MC) Simulation Data International Journal of Advanced Research in Physical Science (IJARPS) Volume 5, Issue 10, 2018, PP 24-28 ISSN No. (Online) 2349-7882 www.arcjournals.org Comparison of the Photo-peak Efficiencies between

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 316 Effective atomic number of composite materials by Compton scattering - nondestructive evaluation method Kiran K U a, Ravindraswami K b, Eshwarappa K M a and Somashekarappa H M c* a Government Science

More information

Detector R&D at KIPAC. Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology

Detector R&D at KIPAC. Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology Detector R&D at KIPAC Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology Detector R&D Overview Si detector ASIC Integration GLAST GeV Gamma-ray Observatory ASIC DAQ Next generation X-ray

More information

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector A. H. D. Rasolonjatovo 1, T. Shiomi 1, T. Nakamura 1 Y. Tsudaka 2, H. Fujiwara 2, H. Araki 2, K. Matsuo 2, H. Nishizawa 2 1 Cyclotron

More information

IMPROVEMENT OF DETECTION LIMITS OF A PORTABLE TXRF BY REDUCING ELECTRICAL NOISE

IMPROVEMENT OF DETECTION LIMITS OF A PORTABLE TXRF BY REDUCING ELECTRICAL NOISE Copyright JCPDS-International Centre for Diffraction Data 2012 ISSN 1097-0002 281 IMPROVEMENT OF DETECTION LIMITS OF A PORTABLE TXRF BY REDUCING ELECTRICAL NOISE Susumu Imashuku 1, Deh Ping Tee 1, Yasukazu

More information

MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS

MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS , MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS K.O. Goyal, J.W. Westphal Semiconductor Equipment Group Watkins-Johnson Company Scotts Valley, California 95066 Abstract Deposition of borophosphosilicate

More information

New trends in CdTe detectors for X and γ-ray applications

New trends in CdTe detectors for X and γ-ray applications New trends in CdTe detectors for X and γ-ray applications Olivier Limousin CEA Saclay / DSM / DAPNIA Service d Astrophysique France New developments in photodetection, Beaune 2002 / Solid state detectors

More information

USABILITY OF PORTABLE X-RAY SPECTROMETER FOR DISCRIMINATION OF VALENCE STATES

USABILITY OF PORTABLE X-RAY SPECTROMETER FOR DISCRIMINATION OF VALENCE STATES Copyright (c)jcpds-international Centre for Diffraction Data 00, Advances in X-ray Analysis, Volume 45. 409 ISSN 1097-000 USABIITY OF POTABE X-AY SPECTOMETE FO DISCIMINATION OF VAENCE STATES I.A.Brytov,.I.Plotnikov,B.D.Kalinin,

More information

Silicon Drift Detectors for gamma-ray detection: 15 years of research (and collaboration between Politecnico and INAF-Milano)

Silicon Drift Detectors for gamma-ray detection: 15 years of research (and collaboration between Politecnico and INAF-Milano) Silicon Drift Detectors for gamma-ray detection: 15 years of research (and collaboration between Politecnico and INAF-Milano) Outline The Silicon Drift Detector (SDD) Gamma-ray detectors based on scintillators

More information

1842 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 5, OCTOBER M. Marisaldi, C. Labanti, H. Soltau, C. Fiorini, A. Longoni, and F.

1842 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 5, OCTOBER M. Marisaldi, C. Labanti, H. Soltau, C. Fiorini, A. Longoni, and F. 1842 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 5, OCTOBER 2005 X- and Gamma-Ray Detection With a Silicon Drift Detector Coupled to a CsI(Tl) Scintillator Operated With Pulse Shape Discrimination

More information

Amonolithic X/gamma-ray detector with an energy range

Amonolithic X/gamma-ray detector with an energy range 1916 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 4, AUGUST 2004 A Pulse Shape Discrimination Gamma-Ray Detector Based on a Silicon Drift Chamber Coupled to a CsI(Tl) Scintillator: Prospects for

More information

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY Applications of Nuclear Techniques (CRETE3) International Journal of Modern Physics: Conference Series Vol. 27 (24) 4644 (8 pages) The Authors DOI:.42/S294546446 PERFORMANCE IMPROVEMENT OF CZT DETECTORS

More information

INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES

INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES 122 INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES I. Busch 1, M. Krumrey 2 and J. Stümpel 1 1 Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

More information

Development of New MicroStrip Gas Chambers for X-ray Applications

Development of New MicroStrip Gas Chambers for X-ray Applications Joint International Workshop: Nuclear Technology and Society Needs for Next Generation Development of New MicroStrip Gas Chambers for X-ray Applications H.Niko and H.Takahashi Nuclear Engineering and Management,

More information

Development and optimization of scanning micro-xrf instrumentation using monochromatic excitation

Development and optimization of scanning micro-xrf instrumentation using monochromatic excitation Department of Analytical Chemistry X-Ray Microspectroscopy and Imaging Development and optimization of scanning micro-xrf instrumentation using monochromatic excitation Thesis submitted to obtain the degree

More information

Solid State Detectors

Solid State Detectors Solid State Detectors Most material is taken from lectures by Michael Moll/CERN and Daniela Bortoletto/Purdue and the book Semiconductor Radiation Detectors by Gerhard Lutz. In gaseous detectors, a charged

More information

SLS Symposium on X-Ray Instrumentation

SLS Symposium on X-Ray Instrumentation SLS Symposium on X-Ray Instrumentation Tuesday, December 7, 2010 10:00 to 12:15, WBGB/019 10:00 The optics layout of the PEARL beamline P. Oberta, U. Flechsig and M. Muntwiler 10:30 Instrumentation for

More information

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5 Chemical Analysis in TEM: XEDS, EELS and EFTEM HRTEM PhD course Lecture 5 1 Part IV Subject Chapter Prio x-ray spectrometry 32 1 Spectra and mapping 33 2 Qualitative XEDS 34 1 Quantitative XEDS 35.1-35.4

More information

arxiv:physics/ v2 27 Mar 2001

arxiv:physics/ v2 27 Mar 2001 High pressure operation of the triple-gem detector in pure Ne, Ar and Xe A. Bondar, A. Buzulutskov, L. Shekhtman arxiv:physics/0103082 v2 27 Mar 2001 Budker Institute of Nuclear Physics, 630090 Novosibirsk,

More information

Performance of a Si PIN photodiode at low temperatures and in high magnetic fields

Performance of a Si PIN photodiode at low temperatures and in high magnetic fields Performance of a Si PIN photodiode at low temperatures and in high magnetic fields Frederik Wauters *, Ilya Kraev *, Nathal Severijns *, Sam Coeck *, Michael Tandecki *, Valentin Kozlov *, Dalibor Zákoucký

More information

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics Detection of X-Rays Solid state detectors Proportional counters Microcalorimeters Detector characteristics Solid State X-ray Detectors X-ray interacts in material to produce photoelectrons which are collected

More information

Characteristics of the Large-Area Stacked Microstructured Semiconductor Neutron Detector

Characteristics of the Large-Area Stacked Microstructured Semiconductor Neutron Detector Invited Paper Characteristics of the Large-Area Stacked Microstructured Semiconductor Neutron Detector S.L. Bellinger *a, R.G. Fronk a, T.J. Sobering b, D.S. McGregor a a S.M.A.R.T. Laboratory, Department

More information

CHARACTERIZATION OF Pu-CONTAINING PARTICLES BY X-RAY MICROFLUORESCENCE

CHARACTERIZATION OF Pu-CONTAINING PARTICLES BY X-RAY MICROFLUORESCENCE Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 534 CHARACTERIZATION OF Pu-CONTAINING PARTICLES BY X-RAY MICROFLUORESCENCE Marco Mattiuzzi, Andrzej Markowicz,

More information

RADIOISOTOPE RH-101 AS X-RAY SOURCE FOR INSTRUMENTS ON SPACE MISSIONS

RADIOISOTOPE RH-101 AS X-RAY SOURCE FOR INSTRUMENTS ON SPACE MISSIONS 167 RADIOISOTOPE RH-101 AS X-RAY SOURCE FOR INSTRUMENTS ON SPACE MISSIONS Ch. Stenzel 1, Ch. Schroer 2, B. Lengeler 3, M. Rasulbaev 4, R. Vianden 4 1 Astrium GmbH, Friedrichshafen, Germany 2 Technical

More information

IN c/1vfl XRF SPECTROSCOPY: SUMMARY OF WORKSHOP II

IN c/1vfl XRF SPECTROSCOPY: SUMMARY OF WORKSHOP II 958 IN c/1vfl XRF SPECTROSCOPY: SUMMARY OF WORKSHOP II Contributors: Q. Ao, North Carolina State University R. Gardner, North Carolina State University J. Iwanczyk, Photon Imaging, Inc. L. Wielopolski,

More information

Multi-element process analyzer

Multi-element process analyzer Multi-element process analyzer Elemental analysis by X-ray fluorescence Compact multi-element process analyzer for liquid streams or f ixed position web applications Featuring advanced third generation

More information

Advances in the Micro-Hole & Strip Plate gaseous detector

Advances in the Micro-Hole & Strip Plate gaseous detector Nuclear Instruments and Methods in Physics Research A 504 (2003) 364 368 Advances in the Micro-Hole & Strip Plate gaseous detector J.M. Maia a,b,c, *, J.F.C.A. Veloso a, J.M.F. dos Santos a, A. Breskin

More information

arxiv: v1 [physics.ins-det] 12 Jan 2016

arxiv: v1 [physics.ins-det] 12 Jan 2016 arxiv:1601.02784v1 [physics.ins-det] 12 Jan 2016 Development and tests of a new prototype detector for the XAFS beamline at Elettra Synchrotron in Trieste S Fabiani 1, M Ahangarianabhari 2,G Baldazzi 3,

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT

MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 363 MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT J.E. Fernández, V.

More information

Advantages / Disadvantages of semiconductor detectors

Advantages / Disadvantages of semiconductor detectors Advantages / Disadvantages of semiconductor detectors Semiconductor detectors have a high density (compared to gas detector) large energy loss in a short distance diffusion effect is smaller than in gas

More information

on behalf of CAST Collaboration

on behalf of CAST Collaboration S. Cenk YILDIZ Dogus University/Istanbul on behalf of CAST Collaboration 13th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD13) 7-10 October 2013 Siena, Italy Axions and CAST Experiment

More information